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Scheme S1 Synthesis of Terbium(IIT) double-decker Tb(obPc),
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Scheme S2 Synthesis of the fused phthalocyanine ligand.
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Figure S1. (a) ESI-MS spectrum of [Thy] in chloroform. The peak at 2268.37 corresponds to [M>']
and 3403.06 corresponds to [(M+H)*']. (b) Experimental (top) and calculated (bottom) isotope
distribution for [M**]. (c) Experimental (top) and calculated (bottom) isotope distribution for
[(M+H)™].
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Figure S2. FT-IR spectra of [Thy] as KBr Pellets at 298 K.
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Figure S3. Absorbance spectrum of [Thg] in CHCl; (8.2 x 107° M) at 298 K.
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Figure S4. Comparison of the dc magnetic susceptibility of [Thy4] (red dots) with 1 (the sample
diluted by Y>(obPc); matrix, purple dots) and 2 (the sample diluted by THF matrix, green dots). The

dc magnetic measurements were performed under the same conditions as those of [Thy].
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Figure S5. M-H curve for [Thy4]. No hysteresis was observed. Each point was measured every 0.035
T(-1-1T)and 0.15T (-7—1 T, 1-7T).

S4



—
o
T T T
L

107 ¢ :
% —2: o'.°. :
= 10" F o® E
At é

10°F ¢

F o 5
'4_ ! | | I J;

—_—
o
s

01 02 03 04
7Tk

Figure S6. Arrhenius plot for [Thy] in a dc field of 0 T. The purple dots were plotted by using fitted
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parameter of the plot in Figure S11, and the red ones were plotted by using yu”’T peaks from the
temperature and frequency dependence measurements. These two plots are consistent with each

other.
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Figure S7. Frequency (f) and temperature (7) dependences of (a),(c) the real and (b),(d) imaginary
parts of the ac magnetic susceptibility for 1. (a) and (b) were measured in absence of a magnetic
field, and (c) and (d) were done in the presence of a magnetic field of 0.4 T. In all graphs, the solid
lines are guides for the eyes.
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Figure S8. Arrhenius plot made by using the data of Figure S7. The straight lines are least square
fits of the data, which yielded the following parameters: A/hc = 164 cm™, 7y =83 x 107 s at 0 T,
and A/hc =122 cmﬁl, n=1.2x 107sat0.4 T
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Figure S9. Frequency (f) and temperature (7) dependences of (a),(c) the real and (b),(d) imaginary
parts of the ac magnetic susceptibility for 2. (a) and (b) were measured in absence of a magnetic
field, and (c) and (d) were done in the presence of a magnetic field of 0.4 T. In all graphs, the solid

lines are guides for the eyes.
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Figure S10. Arrhenius plot made by using the data of Figure S9. The straight lines are least square
fits of the data, which yielded the following parameters: A/hc = 123 cm ™', 7y =58 x 10°sat 0 T,
and A/hc=141cm, =2.2x 10"sat 0.4 T.
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Figure S11. a) ym’ and b) yum” versus f plots at 0 T and ¢) Argand plot for 1. Black solid lines were
fitted by using a generalized Debye model.
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Figure S12. a) y\’ and b) y” versus fplots at 0.4 T and ¢) Argand plot for 1. Black solid lines were
fitted by using an extended Debye model.
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Figure S13. Arrhenius plot made by using the data of Figure (a) S11 and (b) S12 (z;: high-f part, red

triangles, 7,: low-f part, purple dots). Linear fitted parameters are as follows: (a) AE =116 cm™', 7o =
1.6 x 107’ s, (b) AE=143 cmfl, 70=7.7 % 107 s for 7. 71 could not be fitted.
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Figure S14. a) y’ and b) yu” versus fplots at 5 K and c) Argand plot for 1. Black solid lines were
fitted by using generalized and extended Debye models.
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Figure S15. Relaxation time (7) versus magnetic field plot by using parameters obtained from the
Argand plots (Figure S14).
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Figure S16. a) ym’ and b) ym” versus f'plots at 0 T and ¢) Argand plot for 2. Black solid lines were
fitted by using a generalized Debye model.
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Figure S17. a) ym’ and b) y\” versus fplots at 0.4 T and ¢) Argand plot for 2. Black solid lines were
fitted by using an extended Debye model.
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Figure S18. Arrhenius plot made by using the data of Figure (a) S16 and (b) S17 (z;: high-f part,
red triangles, 7,: low-f part, purple dots). Linear fitted parameters are as follows: (a) AE =117 cm ',
0=1.1x10"s,(b) AE=117cm ', 70=2.9 x 10" s for 7 and AE = 109 cm ™, 7o = 5.1 x 10™* s for

7.
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[Eq.1]-[Eq.3] is the equations of the extended Debye model.

ZT _ /llx

1+(iwr)™ [Ea- 1]

x(w)=y, +
1+ (w7)"™ sin(%)
x(o)=x,+r—x,) — (Eq.2]
1+ 2(w7)"™ sin(7) +(w7)

(w7)"™ cos(”—a)
X'"(@)=r—x,) — 2 [Eq. 3]
1+ 2(w7)"™ sin(T) +(w7)"

[Eq.4]-[Eq.6] is the equations of the extended Debye model.

ZT_ZS ZT_ZS
)=y, + +
2(@)=1, 1+(ior)™  1+(iwr,)"™ [Ea-4]
1+ (wr,)" sin( ”;‘1 )

X(@)=k(x, +(xr—2,) o )
1+ 2(wr,) ™ sin(Tl) +(w7,)

1+ (wr,)"™ sin( ”;‘2 )

+A-K)(x, +(xr—2,) ) [Eq. 5]

1+2(wz,)"™ sin( ”2’2 )+ (0r,)

(o1, cos(%al)
X" @) =k(x,+(xr —2,) p )
1+ 2(wr,) ™ sin(Tl) +(wz,) "

(@0r,)" cos("?)

+(=k)x, + (e = 20) pv ) [Eq.6]
1+ 2(wr,)" ™ sin(Tz) +(w7,)*"
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