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1 Molecular dynamics simulation

1.1 Restrained Molecular Dynamics (RMD) for estimating free en-

ergy

In this section we quickly summarize the system set-up and method we used to compute the

free energy pro�le from atomistic simulations, for further details on the subject refer to.1

Lx

Ly

Hydrophobic wall

Figure S1: Snapshot from a RMD simulation. The wall atoms are represented as orange
spheres while the liquid is reported in cyan.

System set-up. In the main text we compare MD and CREaM results. This comparison

is performed considering the case of a Lennard-Jones liquid (LJ) con�ned between two hy-

drophobic planar walls with a nanoscale rectangular groove on one of them, see Fig. S1. The

solid walls are formed by LJ atoms in FCC con�guration, interacting with the liquid via the

modi�ed LJ potential v(r) = 4ε[(σ/r)12 − c(σ/r)6], where ε de�nes the energy scale, σ the

length scale, r is the interatomic distance and the parameter c is used to tune the hydropho-

bicity of the walls. Along with the mass of the atoms, σ and ε completely specify all the

fundamental quantities (density, pressure, time. . . ) in the simulation. As usually done for

LJ systems, in our simulations these three parameters are set to unity and �dimensionless�
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quantities are always referred to. We set c = 0.6, corresponding to a Young contact angle

θY ' 112◦ (see following section). The simulation box is a parallelepiped of average size

118×72×11; the average distance between the two con�ning walls is 53. The groove where

nucleation is simulated is around 11× 11× 11, i.e., about 10 times the LJ atoms size.

RMD. Let us consider a microscopic observable θ(r), where r denotes an atomistic con�g-

uration. The probability density to �nd the system in a con�guration in which θ(r) = z

is Pθ(z) =
∫
dV
∫
dr µ(r, V )δ(θ(r) − z), where µ(r, V ) is the equilibrium distribution of

the system, that here we assume to be the one corresponding to the ensemble at constant

number of particles, temperature, and pressure (NPT). The (Landau) free energy is de�ned

as Gθ(z) = −β−1 logPθ(z), with β = 1/(kBT ). A naive approach for computing the free

energy consists in running a long MD simulation, building the histogram of θ(r) along it,

which is an estimate of Pθ(z), and from this evaluate Gθ(z). However, in case of rare events

this approach is unsuitable because the regions having low probability, around the transition

state, are visited too infrequently (in many cases never over the typical timescale of atom-

istic simulations). Techniques for dealing with this problem consist in forcing the system to

visit the low probability regions. Here we use an approach derived from the Temperature

Accelerated MD method.2 In short, we replace δ(θ(r)− z) in the de�nition of Pθ(z) with the

Gaussian
√
βk/2π exp[−(θ(r)− z)2βk/2], which converges to the Dirac delta, δ, in the limit

βk →∞. Thus, the derivative of the free energy can be approximated by

dGθ(z)

dz
' −

∫
dV
∫
dr k(θ(r)− z)µ(r, V ) exp[−βk

2
(θ(r)− z)2]∫

dV
∫
dr µ(r, V ) exp[−βk

2
(θ(r)− z)2]

. (1)

This approximate formula can be recast into the ensemble average of the observable−k(θ(r)−

z) over the biased distribution µ′(r, V ) = exp[−β(U(r) +k/2(θ(r)− z)2 +PV )]/Q(z), where

U(r) is the physical potential and Q(z) is the normalization factor. The above ensemble

average can be estimated via NPT MD simulations3 driven by the biased potential U(r) +
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k/2(θ(r)−z)2. Finally, the free energy pro�le Gθ(z) can be obtained numerically integrating

dGθ(z)/dz.

The collective variable θ(r) used in the present work counts the number of particles m

in a box around the groove. This can be expressed using the characteristic function χ(r),

which is equal to 1 if r is in the box and 0 otherwise: θ(r) =
∑N

i=1 χ(ri), where ri is the

position of the i-th particle and N is the number of liquid particles in the sample. In

turn, the characteristic function can be expressed as the product of Heaviside step functions:

χ(r) = H(xu − x)H(x − xl)H(yu − y)H(y − yl), where xu and xl, and yu and yl are the

upper and lower bounds of the box in the x and y direction, respectively. This form of

the collective variable is unsuitable for our purposes as it produces impulsive forces on the

particles as they cross the boundaries of the box (the force associated to the biasing potential

depends on ∇θ(r)). This problem is solved by replacing the Heaviside step function with a

smooth approximation. In particular, we use an approximation based on the Fermi function

f(s) = 1 − 1/(exp(cs) + 1), where c is a parameter controlling the steepness of f(s) (c = 3

in our simulations).

Free energy pro�les as a function of m obtained from MD simulation cannot be directly

compared with free energy pro�les as a function of Vv obtained from CREaM. The relation

between m and Vv is Vv = (Nbox −m)/ρl, where Nbox is the number of particle in the box

around the groove when the system is in the fully wet Wenzel state, and ρl is the bulk density

of the liquid. Another detail that must be addressed in comparing atomistic and CREaM

results is the size of the system the free energy refers to. The free energy computed in the

atomistic simulation is relative to a periodic slice of (average) thickness 11 (in the direction

perpendicular to the page in Fig. S1). The CREaM grand potential reported in the main

text is therefore referred to the same slice.

A further comment concerns the determination of ∆P in our atomistic simulations, to

be used as input parameter in the CREaM calculations reported in Fig. 2 of the main text.

This datum is not readily available in our simulation, in which we �x only the total pressure
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of the system. We obtain ∆P by computing the average value of the pressure in two control-

volumes in the vapor and liquid domains following an approach à la Irving and Kirkwood.4

Obviously, this is possible only when the groove is not completely wet; in these cases, we

observe that the value of ∆P is practically constant with respect to the box �lling m.
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Figure S2: Free energy pro�les from RMD simulations of the groove geometry in Fig. S1,
the same used in the main text, for two di�erent values of liquid pressure Pl = 0.001 and
Pl = 0.01. A curvature change is apparent in the �rst branch of the curve at V ' 100. The
maxima at V ' 250 correspond to the con�guration change from asymmetric (bubble in the
corner) to symmetric meniscus. The pressure Pl = −0.05 is the same of Fig. 2 of the main
text and is reported here for comparison.

As anticipated in the main text, in Fig. S2 we report free energy pro�les obtained from

atomistic simulations for the groove geometry at di�erent values of the liquid pressure,

namely Pl = 0.001 and Pl = 0.01. Di�erently from the case of Fig. 2 of the main text and

reported in blue in Fig. S2, the free energy pro�les at these pressures present a curvature

change in the �rst branch (Vv < 250). The small Vv range (Vv ≤ 100), where the free energy

pro�le presents a positive curvature, is associated with a state in which the bubble in the

corner is not yet formed. Rather, a liquid depletion is observed at the bottom wall of the

groove (see upper right panel of Fig. 2 of the main text). In the second range (100 < Vv <

250), where the ∆Ω presents a negative curvature as predicted by CREaM, the bubble in

the corner is, indeed, formed.
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1.2 Liquid-vapor surface tension

The liquid-vapor surface tension γlv (used in CREaM for the comparison with restrained

MD results) is computed using the Kirkwood et al. approach.5 A two phase LJ liquid-vapor

system is simulated in a triperiodic box, the interface being parallel to the Oxz plane. In

this MD set-up the surface tension γlv reads:6

γlv =
Ly

2
(PN − PT) (2)

where the factor 1/2 follows because of the presence of two interfaces and PN and PT are the

normal and tangential components of the pressure tensor Pαβ:

PN = Pyy =
ρl

β
+

1

V

〈∑
i,j>i

yijf
y
ij

〉
(3)

and

PT =
Pxx + Pzz

2
=
ρl

β
+

1

2V

〈∑
i,j>i

xijf
x
ij + zijf

z
ij

〉
(4)

where fxij , f
y
ij , and f zij are the pair force components between atoms i and j in the x, y,

and z direction, respectively. xij, yij and zij are the three components of the di�erence of

the positions of the atoms i and j. The symbol 〈·〉 denotes an ensemble average over the

canonical ensemble, which we estimate via a Langevin MD simulation.

1.3 Contact angle

To compute the Young contact angle θY we deposited a cylindrical drop of LJ liquid on a �at

surface parallel to the Oxz plane. The characteristics of the surface and of the liquid-surface

interaction are the same used throughout and described above. The cylindrical shape of the

drop is obtained by using a thin simulation box. The advantage of this set-up compared with

the sessile spherical drop (see e.g.7,8) is that the length of the triple line does not depend on

the size of the drop and, consequently, the line-tension contribution to energy balance and
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droplet radius does not enter in the θY expression.9

Consider the normalized density �eld ρ∗(x, y):

ρ∗(x, y) =
ρ(x, y)− ρBv
ρBl − ρBv

(5)

where ρ(x, y) is the density at the point (x, y). ρBv and ρBl are the bulk densities of the vapor

and the liquid phases, respectively. ρ∗(x, y) goes from 1 in the bulk of the liquid to 0 in the

bulk of the vapor. The droplet surface S is de�ned as S = {(x, y) : ρ∗(x, y) = 0.5}. S is

�tted with a circumference and from the angle formed by its tangent at the triple line with

the solid surface we obtain θY, which in the present case is ∼ 112◦.

Effective wall

L

Figure S3: Depletion layer and e�ective wall position. The solid LJ atoms are represented
as orange spheres. The e�ective wall is at a distance δ from the �surface� atoms of the solid.

1.4 Depletion layer

Another parameter used as an input to CREaM is the size of the surface corrugation, the

width L of the cavity in the case of the groove. This quantity is not clearly de�ned in

atomistic systems. A possibility is de�ning L as the distance between the �surface� atoms on

the opposite walls of the groove. However, for hydrophobic surfaces, due to the low a�nity

between the solid and the liquid, a local depletion layer of length δ is observed, shifting the
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solid-liquid interface towards the liquid. Thus, the e�ective wall position is that shown with

a dashed line in Fig. S3, with the associated corrugation length L encompassing δ. Following

Janecek and Netz,10 δ is de�ned as:

δ =

∫ ∞
−∞

[
1− ρl(y)

ρBl
− ρs(y)

ρBs

]
dy (6)

where l denotes the liquid phase, s the solid phase. To evaluate δ we perform a NVT

simulation of a triperiodic system constituted by a solid and a liquid slab parallel to Oxz

plane. Solid-liquid interactions are the same discussed in previous sections. From the NVT

simulation we obtain the �elds ρl(y) and ρs(y) that we plug into Eq. (6). The resulting

depletion layer is δ = 0.52.

2 Hydrophilic crevices

In some cases, discussed below, even hydrophilic surface defects can increase rates as com-

pared to nucleation in the bulk and on a �at surface. By de�nition, hydrophilic surfaces have

θY < π/2. This means that the crevice angle β is always larger than 2θY − π, which implies

that we always fall in the wide crevice case. For θY ≥ β/2 the curvature vs volume diagram

is qualitatively similar to that shown in Fig. 1b of the main text, the major di�erence being

that the minimum of j̃(ṽv) (at the pinned-outside regions boundary for the hydrophobic

case) here moves inside the pinned region. For θY < β/2, j̃(ṽv) changes shape, becoming

monotonically growing. This implies that the system presents only two metastable states,

Wenzel and vapor, and a single barrier regardless of the value of Nnu.

In Fig. S4, top panel, we report the free energy barriers relative to the bulk barrier,

∆˜̃ω†∗ ≡ ∆Ω†∗/∆Ω†b, against the nucleation number, Nnu for a case where θY > β/2. For this

value (θY = 0.4 π and β = 0.4π), crevices have a catalytic e�ect for all Nnu. For θY = 0.15π,

at su�ciently large nucleation numbers, the free energy barrier on a single defect are lower

than in the bulk or on a �at surface. For θY = 0.1π, nucleation in the crevice is always
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unfavorable as compared to nucleation on a �at surface having the same contact angle.

N∗
nu,1 N∗

nu,2

Bulk

Flat

Inside

Outside

θY = 0.4π

0 2 4 6
0

0.5

1

0 2 4 6
0.9

1

1.1

∆
˜̃ ω
†

θY = 0.15π

0 2 4 6

Nnu

0.9

1

1.1 θY = 0.1π

Figure S4: Forward free energy barriers (de�ned as in Fig. 3 of the main text) for hydrophilic
conical crevices, as a function of the nucleation number Nnu ≡ −L∆P/γlv. The cone angle
is taken to be β = 0.4π for all panels. The shaded region in the top panel denotes the range
where nucleation is a two-steps process (three metastable states).

3 Computation of the nucleation rate

In this section we discuss the calculation of the characteristic time, τ , of the cavitation

process that we used in the main text to derive the catalytic e�ect of a surface textured with

wide hydrophobic crevices, α = τflat/τcrev (τflat and τcrev denote the characteristic times of

�at and textured surfaces, respectively).

Following the results presented in the main text, the most general set of master equations
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Figure S5: Nondimensional free energy barriers ∆˜̃ω†. Solid lines denote the wide crevice
forward (green and blue) and backward (black) free energy barriers. The dashed line denotes
the only barrier present in the narrow crevice case, occurring outside the crevice. The vertical
dotted lines identify the range N∗nu,1 < Nnu < N∗nu,2 (shaded) where nucleation is a two-step
process.

governing the time evolution of the system is:

ṗW(t) = −kWCpW + kCWpC , (7a)

ṗC(t) = kWCpW − (kCW + kCV)pC + kVCpV , (7b)

ṗV(t) = kCVpC − kVCpV , (7c)

with pa the probability to be in the state a, and kab the transition rate from a to b.

pa =
∫
Va dz Pθ(z), i.e. is the integral of the probability density introduced above over the

z-space volume identifying the state a, Va. The indices W , C and V indicate the Wenzel,

Cassie and Vapor phases, respectively. The sum of the probabilities to be in the Wenzel,

Cassie and vapor states is almost equal to one, re�ecting the fact that the system spends

almost all the time in one of the metastable states. For the sake of simplicity, we assume

that the above probabilities obey the relation pW(t) + pC(t) + pV(t) = 1. This implies that

only two of the Eqs. (7) are independent.

When the system features only two metastable states, Wenzel and vapor, Eqs. (7) reduce
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to the set:

ṗW(t) = −kWVpW + kVWpV , (8a)

ṗV(t) = kWVpW − kVWpV . (8b)

Consider a system with a wide crevice prepared in the Wenzel state, pW(0) = 1. For

Nnu < N∗nu,1 the system presents only two metastable states, Wenzel and vapor, see the

single associated barrier ∆˜̃ω
†
out in Fig. S5 (solid blue line). Given the initial conditions,

pW(t) = exp[−t/τ ], where the characteristic time is τ = 1/(kWV + kVW). However, since

kVW is negligible, τ = 1/(kWV). kWV corresponds to the barrier denoted as �outside� in Fig. 3

of the main text. Thus, for consistency of notation, we call kWV = kout and τ = 1/(kout).

WhenN∗nu,1 < Nnu < N∗nu,2 the system is characterized by three metastable states, and the

kinetics of the systems is described by the master equations (7). Neglecting the vanishingly

small term kVC, the solution of this set of di�erential equations is

pv(t) = 1 +
λ2√
∆

eλ1t − λ1√
∆

eλ2t , (9)

where λ1,2 are the eigenvalues of the reduced set of two di�erential equations obtained com-

bining Eq. (7) with the conservation of the total probability and ∆ = (kCW + kCV + kWC)2−

4kWCkCV. The eigenvalues (both negative) read:

λ1,2 =
−(kCW + kCV + kWC)±

√
∆

2
.

Equation (9) has a double exponential form, however, with the actual values calculated for

the kWC, kCV and kCW rates the prefactor of the eλ2t term results negligible. Moreover, since

|λ1| � |λ2|, the eλ2t term quickly converges to zero and, hence, the governing timescale of

the nucleation process is τ = 1/λ1.
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Finally, for Nnu > N∗nu,2 the system is once again two-states, with a single barrier corre-

sponding to a transition state in which the liquid-vapor interface is inside the crevice, ∆˜̃ω†in

(see green lines in Fig. 4a in the main text and Fig. S5). Here, like in the �rst region, the

backward rate is negligible as compared to the forward one and, using the notation adopted

in the main text, the characteristic time is τ = 1/kin.

For the case of smooth surfaces we have only a one-step process (two metastable states),

and the characteristic time is τ = 1/(kWV + kVW), where here W stands for wet. Like in the

case of textured surfaces, kVW is negligible and τ = 1/kWV.
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