Supporting Information

Wetting States on Circular Micropillars with Convex Sidewalls after Liquids Contact Groove Base

*Cheng Luo and Mingming Xiang

Department of Mechanical and Aerospace Engineering, University of Texas at Arlington 500 W. First Street, Woolf Hall 226, Arlington, TX 76019, USA; *email: chengluo@uta.edu

Equation (4) can be further re-written as

$$
\begin{equation*}
\frac{d[(w-x) \sin \theta]}{d x}=2 b(w-x), \tag{s1}
\end{equation*}
$$

where $\frac{d x}{d s}=\cos \theta$ was used in deriving this equation from Eq. (4). With the aid of Eq. 2(b), it follows from Eq. (s1) that

$$
\begin{equation*}
\sin \theta=\frac{c}{(w-x)}-b(w-x) \tag{s2}
\end{equation*}
$$

where c is a constant and has the following expression:

$$
\begin{equation*}
c=r \sin \theta_{2}+b r^{2} . \tag{s3}
\end{equation*}
$$

Given that $\theta=\theta_{1}$ at a_{1}, it follows from Eqs. (s2) and (s3) that

$$
\begin{equation*}
b=\frac{r \sin \theta_{2}-w \sin \theta_{1}}{w^{2}-r^{2}} . \tag{s4}
\end{equation*}
$$

Noting that

$$
\begin{equation*}
\frac{d y}{d x}=\tan \theta, \tag{s5}
\end{equation*}
$$

with the assistance of Eq. (s2), we have

$$
\begin{equation*}
\frac{d y}{d x}=\frac{c-b(w-x)^{2}}{\sqrt{\left(1+\frac{b c}{2}\right)(w-x)^{2}-\left[b^{2}(w-x)^{4}+c^{2}\right]}} \tag{s6}
\end{equation*}
$$

Let x_{p} and y_{p} represent x and y coordinates of a representative point p on $a_{1} b_{1}$, where x_{p} ranges from 0 to ($w-r$). In view of Eq. (s6), y_{p} is given below:

$$
\begin{equation*}
y_{p}\left(x_{p}\right)=\int_{0}^{x_{p}} \frac{c-b(w-x)^{2}}{\sqrt{\left(1+\frac{b c}{2}\right)(w-x)^{2}-\left[b^{2}(w-x)^{4}+c^{2}\right]}} d x . \tag{s7}
\end{equation*}
$$

This equation gives a solution to Eqs. (4) and (2). When $x_{p}=w-r$, we have

$$
\begin{equation*}
y_{b_{1}}=\int_{0}^{w-r} \frac{c-b(w-x)^{2}}{\sqrt{\left(1+\frac{b c}{2}\right)(w-x)^{2}-\left[b^{2}(w-x)^{4}+c^{2}\right]}} d x \tag{s8}
\end{equation*}
$$

where ($w-r$) and $y_{b_{1}}$, respectively, represent x and y coordinates of b_{1}. In the case of circular micropillars with concave sidewalls, it is observed from Eq. (2b) that θ_{2} is a function of φ. For a given sidewall profile, φ can also be determined from r. In this sense, φ is also a function of r. Therefore, by Eq. (s4), b is actually a function of w and r for given microstructures. Since Eq. (s8) gives another relation that b, w and r have to meet, b and w both can be considered to be functions of r only. Thus, once $\theta_{01}, \theta_{02}, r$, and the equation of the sidewall profile are given, the solution to Eqs. (s4) and (s8) give unique values to b and w. Subsequently, a unique value of y_{p} can be obtained from Eq. (s7). Consequently, Eq. (s7) is also a unique solution to Eqs. (4) and (2). On the other hand, since the right-hand side of Eq. (s7) is an elliptical integral, we cannot get a straightforward expression of y_{p}. However, once $\theta_{01}, \theta_{02}, r$, and the equation of the
sidewall profile are given, a numerical value can be found for y_{p} by numerically integrating this elliptical integral.

