One F-octyl versus two F-butyl chains in surfactant aggregation behavior

A. Damé^{a,b}, , E. Taffin de Givenchy^a, S. Y. Dieng^b, M. Oumar^b F. Guittard^a

^a Université de Nice-Sophia Antipolis, Laboratoire de Chimie des Matériaux Organiques et Métalliques, CMOM, équipe de Chimie Organique aux interfaces, Parc Valrose, 06108 Nice Cedex 2, France
^b Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal

Precursor monotailed <u>4</u>: **x** = 4 and **n** =1 ; yellowish liquid ; yield : 72% ; IR (cm⁻¹): 2776-2948 (v_{C-H}), 1100-1400 (v_{C-F}), 1730 et 1740 (v_{C=0}), 1050 (v_{C-0}); ¹H NMR (600MHz, CDCl₃), δ (ppm): 1.9–2.3 [4H, m, C₄F₉-(CH₂)₂-]; 3.31 [1H, t, -(CH₂)-CH-(CO₂CH₃)₂]; 3.7 [6H, s, -CH-(CO₂CH₃)₂]; ¹⁹F NMR (600MHz, CDCl₃) δ (ppm): -81.78 (3F, t, CF₃), -115.20 (2F, q, (CF₂)_α), -125.01 (2F, s, (CF₂)_β), -126.70 (2F, s, (CF₂)_α) for CF₃-(CF₂)_α-CH₂...

Precursor monotailed <u>5</u>: x = 4 and n = 2; yellowish liquid ; yield : 76% ; IR (cm⁻¹): 2776-2948 (v_{C-H}), 1100-1400 (v_{C-F}), 1730 et 1740 (v_{C=0}), 1050 (v_{C-0}); ¹H NMR (600MHz, CDCl₃), δ (ppm): 1.2 [6H, t, -CH-(CO₂CH₂CH₃)₂]; 1.9-2.4 [4H, m, C₄F₉-(CH₂)₂-]; 3.35 [1H, t, -(CH₂)-CH-(CO₂CH₂CH₃)₂]; 4.3 [4H, q, -CH-(CO₂CH₂CH₃)₂]; ¹⁹F NMR (600MHz, CDCl₃) δ (ppm): -81.78 (3F, t, CF₃), -115.30 (2F, q, (CF₂)_α), -125.01 (2F, s, (CF₂)_β), -126.70 (2F, s, (CF₂)_ω) for CF₃-(CF₂)_ω-(CF₂)_β-(CF₂)_α-CH₂

Precursor monotailed <u>6</u>: x = 6 and n = 1; yellowish liquid ; yield : 74.3; IR (cm⁻¹) : 2776-2948 (v_{C-H}), 1100-1400 (v_{C-F}), 1730 et 1740 (v_{C=O}), 1050 (v_{C-O}); ¹H NMR (600MHz, CDCl₃), δ (ppm): 1.9–2.3 [4H, m, C₄F₉-(CH₂)₂-]; 3.31 [1H, t, -(CH₂)-CH-(CO₂CH₃)₂]; 3.7 [6H, s, -CH-(CO₂CH₃)₂]; ¹⁹F NMR (600MHz, CDCl₃) δ (ppm) : -81.2 (3F, t, CF₃), -114.30 (2F, q, (CF₂)_α), -121.6 (2F, s, (CF₂n)_β), -122.6, (2F, s, (CF₂)δ), -123.3 (2F, s, (CF₂)γ), -125.9 (2F, s, (CF₂)ω) for CF₃-(CF₂)_ω-(CF₂)γ - (CF₂)δ - (CF₂n_β - (CF₂)_α-CH₂...

Precursor monotailed <u>7</u>: **x** = 6 and **n** = 2; yellowish liquid ; yield : 77.1%; IR (cm⁻¹): 2776-2948 (v_{C-H}), 1100-1400 (v_{C-F}), 1730 et 1740 (v_{C=O}), 1050 (v_{C-O}); ¹H NMR (600MHz, CDCl₃), δ (ppm): 1.2 [6H, t, -CH-(CO₂CH₂CH₃)₂]; 1.9-2.4 [4H, m, C₄F₉-(CH₂)₂-]; 3.35 [1H, t, -(CH₂)-CH-(CO₂CH₂.CH₃)₂]; 4.3 [4H, q, -CH-(CO₂CH₂CH₃)₂]; ¹⁹F NMR (600MHz, CDCl₃) δ (ppm) : -81.2 (3F, t, CF3), -114.30 (2F, q, (CF₂)_α), -121.6 (2F, s, (CF₂)_β), -122.6, (2F, s, (CF₂)δ), -123.3 (2F, s, (CF₂)γ), -125.9 (2F, s, (CF₂)ω) for CF₃-(CF₂)_α-(CF₂)_β - (CF₂)_α - (CF₂)_α - (CF₂)_α - (CF₂)_α

Precursor monotailed <u>8</u>: x = 8 and n = 1; white solid; yield: 78.8; IR (cm⁻¹) : 2776-2948 (v_{C-H}), 1100-1400 (v_{C-F}), 1730 et 1740 (v_{C=O}), 1050 (v_{C-O}); ¹H NMR (600MHz, CDCl₃), δ (ppm): 1.9–2.3 [4H, m, C₄F₉-(CH₂)₂-]; 3.31 [1H, t, -(CH₂)-CH-(CO₂CH₃)₂]; 3.7 [6H, s, -CH-(CO₂CH₃)₂]; ¹⁹F NMR (600MHz, CD₃OD) δ (ppm): -81.9 (3F), -115.2 (2F), -122.4 (6F), -123.4, (2F), -123.5 à -124.20 (2F), -127.03 (2F) for CF₃-(CF₂)_ω-(CF₂)γ – (CF₂)δ - (CF_{2n})_β - (CF₂)_α-CH₂...

Precursor monotailed <u>9</u>: x = 8 and n = 2; yellowish liquid ; yield : 70.5% ; IR (cm⁻¹): 2776-2948 (v_{C-H}), 1100-1400 (v_{C-F}), 1730 et 1740 (v_{C=O}), 1050 (v_{C-O}); ¹H NMR (600MHz, CDCl₃), δ (ppm): 1.2 [6H, t, -CH-(CO₂CH₂CH₃)₂]; 1.9-2.4 [4H, m, C₄F₉-(CH₂)₂-]; 3.35 [1H, t, -(CH₂)-CH-(CO₂CH₂.CH₃)₂]; 4.3 [4H, q, -CH-(CO₂CH₂CH₃)₂]; ¹⁹F NMR (600MHz, CD₃OD) δ (ppm): -81.9 (3F), -115.2 (2F), -122.4 (6F), -123.4, (2F), -123.5 à -124.20 (2F), -127.03 (2F) for CF₃-(CF₂)_ω-(CF₂)γ - (CF₂)δ - (CF₂)_α - (CF₂)_α-CH₂...

Precursor detailed <u>13</u>: **x=z=4 and n = 1**; colorless liquid; yield: 43.9%; IR (cm⁻¹): 2776-2948 (v_{C-H}), 1100-1400 (v_{C-F}), 1735 et 1740 (v_{C=0}); 1050 (v_{C-0}); ¹H NMR (600MHz, CDCl₃); δ (ppm): 1.8-2.25 [8H, m, 2C₄F₉-(CH₂)₂-]; 3.7 [6H, s (CO₂CH₃)₂]; ¹⁹F NMR, (600MHz, CDCl₃) δ (ppm): -81.6 (6F, t, 2CF₃), -115.20 (q, 4F, 2(CF₂)_α), -125.01 (s, 4F, 2(CF₂)_β), -126.6 (4F, s, 2(CF₂)_α) for CF₃-(CF₂)_α-(CF₂)_α-CH₂...

Precursor detailed <u>14</u>: **x=z=4 and n = 2**; colorless liquid; yield: 43.9%; IR (cm⁻¹): 2776-2948 (v_{C-H}), 1100-1400 (v_{C-F}), 1735 et 1740 (v_{C=0}); 1050 (v_{C-0}); ¹H NMR (600MHz, CDCl₃); δ (ppm): 1.2 [6H, t -(CO₂CH₂CH₃)₂]; 1.8-2.25 [8H, m, 2C₄F₉-(CH₂)₂-]; 4.3 [4H, q, -(CO₂CH₂CH₃)₂]; ¹⁹F NMR, (600MHz, CDCl₃) δ (ppm): -81.6 (6F, t, 2CF₃), -115.20 (q, 4F, 2(CF₂)_α), -125.01 (s, 4F, 2(CF₂)_β), -126.6 (4F, s, 2(CF₂)_α) for CF₃-(CF₂)_α-(CF₂)_α-(CF₂)_α-CH₂...

Compound PFM-C4 <u>10</u>: white solid; yield: 90%; IR (cm⁻¹): 2776-2948 (v_{C-H}), 1100-1400 (v_{C-F}), 1590 et 1389 (v_{C-O}); 1130 (v_{C-O}); ¹H NMR (CD₃OD); δ (ppm): 1.8-2.4 [4H, m, C₄F₉-(CH₂)₂-]; 3.0-3.2 [1H, t, -(CH₂)-CH-(CO₂⁻)₂]; ¹⁹F NMR (600MHz, CD₃OD) δ (ppm): -81.2 (3F, t, CF3), -115.20 (2F, q, (CF₂)_a), -125.01 (2F, s, (CF₂)_β), -126.70 (2F, s, (CF₂)_a) for CF₃-(CF₂)_a-(CF₂)_a-CH₂... MS: ESI negative mode; m/z (%) = 348.9 (100) ([M-Na⁺]⁺); MS/MS: CID to 25%); m/z = 304.9 ([M-Na⁺ -CO₂]⁺).

Compound PFM-C6 <u>11</u>: white solid; yield: 82%; IR (cm⁻¹): 2776-2948 (v_{C-H}), 1100-1400 (v_{C-F}), 1590 et 1389 (v_{C=O}); 1130 (v_{C-O}); ¹H NMR (CD₃OD); δ (ppm): 1.9-2.3 [4H, m, C₄F₉-(**CH**₂)₂-]; 2.9-3.25 [1H, t, -(CH₂)-**CH**-(CO₂)₂]; ¹⁹F NMR (600MHz, CD₃OD) δ (ppm): -81.2 (3F, t, CF3), -114.30 (2F, q, (CF₂)_a), -121.6 (2F, s, (CF₂)_β), -122.6, (2F, s, (CF₂) δ), -123.3 (2F, s, (CF₂) γ), -125.9 (2F, s, (CF₂) ω) for CF₃-(CF₂) γ -(CF₂) δ - (CF₂)_β - (CF₂)_α-(CF₂) α -(CF₂)_α-(CF

Compound PFM-C8 <u>12</u> : white solid; yield: 92%; IR (cm⁻¹): 2776-2948 (v_{C-H}), 1100-1400 (v_{C-F}), 1590 et 1389 (v_{C=O}); 1130 (v_{C-O}); ¹H NMR (CD₃OD); δ (ppm): 1.9-2.4 [4H, m, C₄F₉-(CH₂)₂-]; 3.0-3.25 [1H, t, -(CH₂)-CH-(CO₂)₂]; ¹⁹F NMR (600MHz, CD₃OD) δ (ppm): -81.9 (3F), -115.2 (2F), -122.4 (6F), -123.4, (2F), -123.5 \dot{a} - 124.20 (2F), -127.03 (2F) for CF₃-(CF₂)_{ω}-(CF₂) γ - (CF₂) δ - (CF₂)_{α} - (CF₂)_{α}-CH₂...; MS: ESI negative mode; m/z (%) = 548.8 (100) ([M-Na⁺]⁺); MS/MS: CID to 25%); m/z = 504.8 ([M-Na⁺ -CO₂]⁺).

Compound PFM-2C44 <u>17</u> white solid; yield: 82.2%; IR (cm⁻¹): 2776-2948 (v_{C-H}), 1100-1400 (v_{C-F}), 1590 et 1389 (v_{C=O}); 1130 (v_{C-O}); ¹H NMR (CD₃OD); δ (ppm): 1.8-2.25 [8H, m, 2C₄F₉-(**CH**₂)₂-]; ¹⁹F NMR (600MHz, CD₃OD) δ (ppm): -81.2 (6F), -115.20 (4F), -125.01 (4F), -126.70 (4F) for CF₃-(CF₂)_{ω}-(CF₂)_{β}- (CF₂)_{α}-CH₂... MS: ESI negative mode; m/z (%) = 594.8 (100) ([M-Na⁺]⁺); MS/MS: CID to 25%); m/z = 550.8 ([M-Na⁺ - CO₂]⁺).

Compound PFM-2C46 <u>18</u> : white solid; yield: 81.5%; IR (cm⁻¹): 2776-2948 (v_{C-H}), 1100-1400 (v_{C-F}), 1590 et 1389 (v_{C=O}; 1130 (v_{C-O}); ¹H NMR (CD₃OD); δ (ppm): 1.8-2.3 [8H, m, C₄F₉-(**CH**₂)₂- et C₆F₁₃-(**CH**₂)₂-]; ¹⁹F NMR (600MHz, CD₃OD) δ (ppm): -81.2 (6F), -115.5 (4F), -122.70 (2F), -123.4 \dot{a} -124.5 (4F), -125.2 (2F), -127.5 (4F) for CF₃-(CF₂)₀-(CF₂) γ - (CF₂) δ - (CF₂)_{α}-(CF₂)_{α}-(CH₂)_{α}-(CH₂)_{α}: ESI negative mode; m/z (%) = 694.8 (100) ([M-Na⁺]⁺); MS/MS: CID to 25%); m/z = 650.8 ([M-Na⁺ -CO₂]⁺).

Compound PFM-2C66 <u>19</u> white solid; yield: 92%; IR (cm⁻¹): 2776-2948 (v_{C-H}), 1100-1400 (v_{C-F}), 1590 et 1389 (v_{C=O}); 1130 (v_{C-O}); ¹H NMR (CD₃OD); δ (ppm): 1.8-2.4 [8H, m, 2C₆F₁₃-(**CH**₂)₂-]; ¹⁹F NMR (600MHz, CD₃OD) δ (ppm): -81.2 (6F), -115.6 (4F), -122.40 (4F), -123.4 à -124.5 (8F), -127.5 (4F) for CF₃-(CF₂)_{ω}-(CF₂) γ - (CF₂) δ - (CF₂) $_{\alpha}$ -(CH₂)...; MS: ESI negative mode; m/z (%) = 794.7 (100) ([M-Na⁺]⁺); MS/MS: CID to 25%); m/z = 750.8 ([M-Na⁺ -CO₂]⁺).

