Supporting Information:

Staurosporine-derived inhibitors broaden the scope of analogsensitive kinase technology

Michael S. Lopez^{1, 6}, Jonathan W. Choy^{1, 6}, Ulf Peters¹, Martin L. Sos¹, David O. Morgan² and Kevan M. Shokat^{1,5}*

¹Howard Hughes Medical Institute and Department of Cellular & Molecular Pharmacology, University of California, San Francisco, California 94143, USA

²Department of Physiology and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA

⁵Department of Chemistry, University of California, Berkeley, California 94720, USA

⁶Graduate Program in Chemistry and Chemical Biology, University of California, San Francisco, California 94158, USA

Supplemental Figures

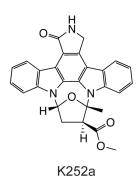
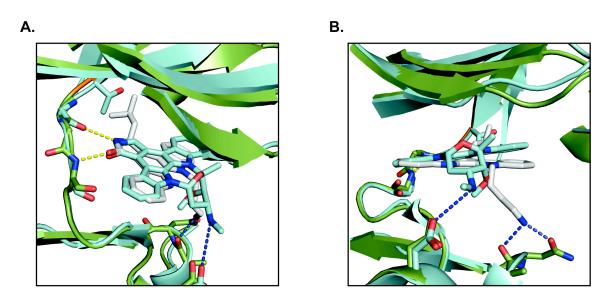
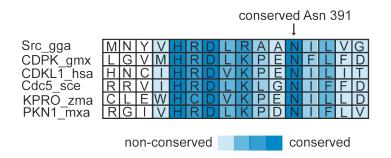




Figure S1. Structure of K252a

Figure S2. Overlay of X-ray co-crystal structures of Star 12/Src-AS1 with staurosporine/Src-WT¹. A. Rings F and A of both inhibitors occupy identical positions and maintain the hinge-binding interaction between ring F and the backbone amides of residues. B. Star 12 rings C and D project below the plane of staurosporine and allow interaction of the N12 butylamine with Asn 391.

Figure S3. Representative sequence alignment of kinases from diverse families and organisms highlights the conservation of Asn391.

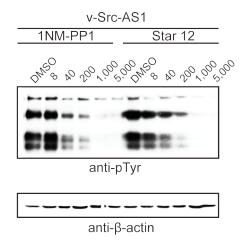
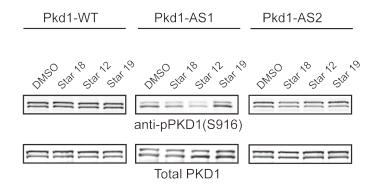
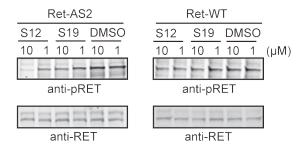




Figure S4. Inhibition of v-Src-AS1 by 1NM-PP1 or Star 12 in mouse 3T3 cells.

Figure S5. 5 µM Star 18, Star 12, and Star 19 were tested for activity against Pkd-WT, PKD-AS1, and Pkd1-AS2 transiently transfected in 293T cells.

Figure S6. Star 12 and Star 19 were tested for inhibition of auto-phosphorylation of Ret-AS2 and Ret-WT in mouse 3T3 cells.

Supplemental Tables

Data Collection	
Space Group	P1
Unit Cell Dimensions	a = 42.34, b = 63.34, c = 73.62, α = 100.34, β = 90.81, γ = 89.95
Number protein molceules/assymetric unit	2
X-ray Source	A.L.S. 8.2.1
Wavelength (Å)	1.000
Resolution (Å)	2.73
Total Reflections	29599
Unique Reflections	17909
Ι/σ	9.600
Completeness (%)	98.7
Model Refinement	
Redolution (Å)	43.5 - 2.73
Number of Reflection Rwork/Rfree	27320/1467
Rwork/Rfree	0.2378/0.2897
Rmsd from ideality in bond length (Å)	0.005
Rmsd from ideality in Angles (°)	0.9
Number of Protein Atoms In Model	4220
Number of Drug atoms In Model	66
Favored/Allowed/Outliers in the Ramachandran Plot (%)	87.2/12.9/0

Table S1. Data Collection and refinement statistics for X-ray co-crystal structure of Star 12 bound to Src-AS1 kinase domain.

SSKB-Adapta Screen

				%	Difference Between Data Test Compound			Kinase	
[ATP] Tested	Kinase Tested	% Inhi	bition	% Inhibition	Data Points		ompound ference	Z'	Ninase Part# / Lot#
(µM)		Point 1		mean	Point 1 - Point 2	Donor	Acceptor		
100	CAMK1 (CaMK1) CDK7/cyclin	-20	-7	-14	13	Pass	Pass	0.77	PV4391/36046
100	H/MNAT1	0	-3	-2	3	Pass	Pass	0.86	PV3868/893276
100	CDK9/cyclin T1 CHUK (IKK	-11	-1	-6	10	Pass	Pass	0.70	PV4131/950376
100	alpha)	-12	-12	-12	0	Pass	Pass	0.84	PV4310/447027
100	DAPK1	4	-4	0	8	Pass	Pass	0.75	PV3969/32654
100	GSG2 (Haspin)	-30	-2	-16	28	Pass	Pass	0.65	PV5708/532062
100	IRAK1	-12	-6	-9	5	Pass	Pass	0.70	PV4403/586648
100	LRRK2	-21	-11	-16	10	Pass	Pass	0.78	PV4873/768523
100	LRRK2 G2019S	10	9	10	0	Pass	Pass	0.85	PV4881/742572
100	NUAK1 (ARK5) PI4KA (PI4K	-8	12	2	20	Pass	Pass	0.71	PV4127/36741
10	alpha) PI4KB (PI4K	-15	-14	-14	1	Pass	Pass	0.85	PV5689/1033749
100	beta) PIK3C2A (PI3K-	-12	-20	-16	8	Pass	Pass	0.65	PV5277/493329
100	C2 alpha) PIK3C2B (PI3K-	-5	0	-2	4	Pass	Pass	0.80	PV5586/514135
100	C2 beta) PIK3C3	-9	20	6	29	Pass	Pass	0.71	PV5374/927501
100	(hVPS34) PIK3CA/PIK3R1 (p110 alpha/p85	-16	-7	-11	9	Pass	Pass	0.79	PV5126/461254
100	alpha) PIK3CD/PIK3R1 (p110 delta/p85	1	0	0	1	Pass	Pass	0.84	PV4788/616250
100	alpha) PIK3CG (p110	-12	-7	-9	5	Pass	Pass	0.65	PV5273/722462
100	gamma)	-9	-21	-15	12	Pass	Pass	0.66	PV4786/663536
100	SPHK1	6	17	12	11	Pass	Pass	0.78	PV5214/417324
100	SPHK2	-14	7	-4	21	Pass	Pass	0.54	PV5216/884914

SSBK-LanthaScreen Binding Assay

Kinase Tested		% cement	% Displacement	Difference Between Data Points	Test Compound Interference		Z'	Kinase Part# / Lot#
	Point 1	Point 2	mean	│Point 1 - Point 2│	Donor	Acceptor		
ACVR2B	6	18	12	12	Pass	Pass	0.76	PV6049/745099
BMPR1A (ALK3)	13	-4	4	17	Pass	Pass	0.65	PV6038/670004
CAMKK1 (CAMKKA)	14	-3	5	17	Pass	Pass	0.76	PV4670/406782
CAMKK2 (CaMKK beta)	22	17	20	5	Pass	Pass	0.85	PV4206/35319
CDK8/cyclin C	9	9	9	0	Pass	Pass	0.84	PV4402/36848
CDK9/cyclin K	17	9	13	8	Pass	Pass	0.74	PV4335/35774
CLK4	19	23	21	4	Pass	Pass	0.73	PV3839/827665
DDR1	-1	5	2	6	Pass	Pass	0.78	PV6047/693053
DDR2	0	-5	-2	5	Pass	Pass	0.77	PV3870/916220
DMPK	13	12	13	1	Pass	Pass	0.89	PV3784/34024
EPHA3	19	9	14	10	Pass	Pass	0.71	PV3359/30916
EPHA7	12	6	9	5	Pass	Pass	0.69	PV3689/33790
KIT V654A	8	3	6	5	Pass	Pass	0.64	PV4132/35129
LIMK1	5	6	6	1	Pass	Pass	0.70	PV4337/367810
LIMK2	15	8	11	7	Pass	Pass	0.87	PV3860/36861
MAP2K1 (MEK1) S218D S222D	-1	11	5	12	Pass	Pass	0.80	P3099/38541
MAP2K3 (MEK3)	-15	-7	-11	8	Pass	Pass	0.66	PV3662/357368
MAP2K6 (MKK6) S207E T211E	7	6	6	1	Pass	Pass	0.84	PV3293/42371
MAP3K10 (MLK2)	10	5	8	5	Pass	Pass	0.87	PV3877/34554
MAP3K11 (MLK3)	9	10	10	2	Pass	Pass	0.88	PV3788/625672
MAP3K14 (NIK)	4	6	5	2	Pass	Pass	0.73	PV4902/840992
MAP3K2 (MEKK2)	10	11	10	1	Pass	Pass	0.66	PV3822/34361

MAP3K3 (MEKK3)	17	-6	5	23	Pass	Pass	0.64	PV3876/702480
MAP3K5 (ASK1)	7	17	12	10	Pass	Pass	0.66	PV3809/666419
MAP3K7/MAP3K7IP1 (TAK1-TAB1)	15	3	9	12	Pass	Pass	0.80	PV4394/452618
MKNK2 (MNK2)	5	8	6	3	Pass	Pass	0.69	PV5607/811381
MLCK (MLCK2)	19	11	15	8	Pass	Pass	0.78	PV3835/34028
MYLK (MLCK)	20	21	21	0	Pass	Pass	0.86	PV4339/36152
NLK	16	3	9	13	Pass	Pass	0.75	PV4309/35323
RIPK2	7	0	4	7	Pass	Pass	0.92	PV4213/35334
SLK	7	5	6	3	Pass	Pass	0.84	PV3830/34390
STK16 (PKL12)	9	13	11	4	Pass	Pass	0.62	PV4311/36847
STK17A (DRAK1)	16	17	16	1	Pass	Pass	0.83	PV3783/33789
STK33	14	7	10	7	Pass	Pass	0.86	PV4343/708765
TAOK3 (JIK)	7	10	8	3	Pass	Pass	0.59	PV3652/32935
TEC	6	3	4	4	Pass	Pass	0.79	PV3269/29194
TGFBR1 (ALK5)	4	2	3	2	Pass	Pass	0.83	PV5837/562479
TNK2 (ACK)	10	10	10	0	Pass	Pass	0.89	PV4807/407338
ттк	6	-2	2	7	Pass	Pass	0.78	PV3792/759947
WEE1	11	3	7	8	Pass	Pass	0.58	PV3817/722460
WNK2	9	2	6	8	Pass	Pass	0.71	PV4341/35976
ZAK	3	1	2	2	Pass	Pass	0.87	PV3882/34603

SSKB-Z'-Lyte Screen

[ATP] Tested	Kinase Tested	% Inhibition		% % Inhibition Inhibition		Development Reaction Interference	Test Compound		Test Compound				Z'	Kinase Part# / Lot#
(µM)		Point 1	Point 2	mean	│Point 1 - Point 2│		Coumarin	Fluorescein						
100	ABL1 E255K	-2	6	2	8	Pass	Pass	Pass	0.89	PV3864/34528				
100	ABL1 G250E	-1	-4	-2	3	Pass	Pass	Pass	0.94	PV3865/34529				
100	ABL1 T315I	1	0	1	1	Pass	Pass	Pass	0.87	PV3866/39639				
100	ABL1 Y253F	-4	-2	-3	2	Pass	Pass	Pass	0.91	PV3863/34531				
100	ABL2 (Arg)	-5	0	-3	5	Pass	Pass	Pass	0.90	PV3266/29170				
100	ACVR1B (ALK4)	-11	-14	-13	3	Pass	Pass	Pass	0.88	PV4312/794484				
100	ADRBK1 (GRK2)	0	14	7	13	Pass	Pass	Pass	0.63	PV3361/883372				
100	ADRBK2 (GRK3)	16	2	9	14	Pass	Pass	Pass	0.81	PV3827/38897				
100	AKT1 (PKB alpha)	13	17	15	4	Pass	Pass	Pass	0.85	P2999/685567				
100	AKT2 (PKB beta)	14	17	16	3	Pass	Pass	Pass	0.69	PV3184/28770				
100	AKT3 (PKB gamma)	6	17	11	11	Pass	Pass	Pass	0.68	PV3185/28771				
100	AMPK A1/B1/G1	8	11	10	3	Pass	Pass	Pass	0.71	PV4672/38499				
100	AMPK A2/B1/G1	16	11	13	6	Pass	Pass	Pass	0.82	PV4674/568101				
100	AURKA (Aurora A)	-1	18	8	19	Pass	Pass	Pass	0.71	PV3612/32155				
100	AURKB (Aurora B)	7	9	8	2	Pass	Pass	Pass	0.74	PV6130/857013				
100	AURKC (Aurora C)	7	8	7	1	Pass	Pass	Pass	0.70	PV3856/824479				

100	AXL	35	35	35	1	Pass	Pass	Pass	0.84	PV3971/748353
100	BLK	1	7	4	7	Pass	Pass	Pass	0.86	PV3683/33635
100	BMX	-3	0	-2	3	Pass	Pass	Pass	0.92	PV3371/953336
100	BRAF	-20	3	-8	23	Pass	Pass	Pass	0.76	PV3848/34486
100	BRAF V599E	-14	-7	-10	7	Pass	Pass	Pass	0.83	PV3849/910409
100	BRSK1 (SAD1)	-9	3	-3	12	Pass	Pass	Pass	0.93	PV4333/36097
100	ВТК	-3	-6	-5	3	Pass	Pass	Pass	0.81	PV3363/619547
100	CAMK1D (CaMKI delta)	-1	0	-1	1	Pass	Pass	Pass	0.61	PV3663/1042984
100	CAMK2A (CaMKII alpha)	1	8	5	7	Pass	Pass	Pass	0.85	PV3142/28192
100	CAMK2B (CaMKII beta)	7	21	14	14	Pass	Pass	Pass	0.64	PV4205/35330
100	CAMK2D (CaMKII delta)	28	19	24	9	Pass	Pass	Pass	0.90	PV3373/31647
100	CAMK4 (CaMKIV)	-3	-18	-10	15	Pass	Pass	Pass	0.62	PV3310/980091
100	CDC42 BPA (MRCKA)	6	11	9	5	Pass	Pass	Pass	0.78	PV4398/36844
100	CDC42 BPB (MRCKB)	0	22	11	22	Pass	Pass	Pass	0.53	PV4399/36845
100	CDK1/cyclin B	-2	5	2	7	Pass	Pass	Pass	0.94	PV3292/873341
100	CDK2/cyclin A	9	1	5	8	Pass	Pass	Pass	0.75	PV3267/884904
100	CDK5/p25	-3	-3	-3	0	Pass	Pass	Pass	0.77	PV4676/474298
100	CDK5/p35	-1	4	2	5	Pass	Pass	Pass	0.86	PV3000/25348
100	CHEK1 (CHK1)	12	10	11	2	Pass	Pass	Pass	0.76	P3040/28702
100	CHEK2	6	7	7	1	Pass	Pass	Pass	0.87	PV3367/794466

	(CHK2)									
100	CLK1	3	7	5	4	Pass	Pass	Pass	0.88	PV3315/943590
100	CLK2	2	5	3	3	Pass	Pass	Pass	0.84	PV4201/271879
100	CLK3	4	4	4	0	Pass	Pass	Pass	0.90	PV3826/939820
100	CSF1R (FMS)	3	6	4	3	Pass	Pass	Pass	0.87	PV3249/66239
100	CSK	-15	-3	-9	12	Pass	Pass	Pass	0.83	P2927/933640
100	CSNK1A1 (CK1 alpha 1)	-13	0	-7	13	Pass	Pass	Pass	0.91	PV3850/784631
100	CSNK1D (CK1 delta)	-2	2	0	4	Pass	Pass	Pass	0.95	PV3665/843704
100	CSNK1E (CK1 epsilon)	-4	-3	-4	1	Pass	Pass	Pass	0.78	PV3500/807880
100	CSNK1G1 (CK1 gamma 1)	-7	8	0	15	Pass	Pass	Pass	0.91	PV3825/34360
100	CSNK1G2 (CK1 gamma 2)	2	6	4	4	Pass	Pass	Pass	0.96	PV3499/31770
100	CSNK1G3 (CK1 gamma 3)	-2	1	-1	3	Pass	Pass	Pass	0.94	PV3838/34380
100	CSNK2A1 (CK2 alpha 1)	-7	-3	-5	4	Pass	Pass	Pass	0.87	PV3248/29242
100	CSNK2A2 (CK2 alpha 2)	6	5	5	1	Pass	Pass	Pass	0.89	PV3624/32653
100	DAPK3 (ZIPK)	15	4	9	11	Pass	Pass	Pass	0.62	PV3686/827666
100	DCAMKL2 (DCK2)	-2	8	3	10	Pass	Pass	Pass	0.81	PV4297/869931
100	DNA-PK	-6	5	0	11	Pass	Pass	Pass	0.82	PV5864/628328
100	DYRK1A	6	5	6	1	Pass	Pass	Pass	0.86	PV3785/683159
100	DYRK1B	-1	4	2	5	Pass	Pass	Pass	0.69	PV4649/714104(
100	DYRK3	-13	-9	-11	4	Pass	Pass	Pass	0.89	PV3837/290370

100	DYRK4	2	8	5	6	Pass	Pass	Pass	0.93	PV3871/37361
100	EEF2K	0	0	0	1	Pass	Pass	Pass	0.93	PV4559/1048261
100	EGFR (ErbB1)	-7	-2	-5	5	Pass	Pass	Pass	0.61	PV3872/742577
100	EGFR (ErbB1) L858R	-15	-15	-15	0	Pass	Pass	Pass	0.73	PV4128/279551
100	EGFR (ErbB1) L861Q	-5	2	-1	7	Pass	Pass	Pass	0.67	PV3873/34562
100	EGFR (ErbB1) T790M	5	9	7	4	Pass	Pass	Pass	0.58	PV4803/552604
100	EGFR (ErbB1) T790M L858R	9	6	7	3	Pass	Pass	Pass	0.89	PV4879/350247
100	EPHA1	0	1	0	2	Pass	Pass	Pass	0.89	PV3841/629216
100	EPHA2	-5	0	-2	5	Pass	Pass	Pass	0.95	PV3688/36904
100	EPHA4	-3	-1	-2	2	Pass	Pass	Pass	0.88	PV3651/32933
100	EPHA5	0	0	0	1	Pass	Pass	Pass	0.90	PV3840/34383
100	EPHA8	-8	-5	-6	4	Pass	Pass	Pass	0.94	PV3844/36870
100	EPHB1	-5	-4	-4	1	Pass	Pass	Pass	0.91	PV3786/34225
100	EPHB2	-2	-3	-2	2	Pass	Pass	Pass	0.92	PV3625/32656
100	EPHB3	1	-1	0	2	Pass	Pass	Pass	0.92	PV3658/33066
100	EPHB4	-7	-1	-4	7	Pass	Pass	Pass	0.95	PV3251/29241
100	ERBB2 (HER2)	-1	-8	-5	7	Pass	Pass	Pass	0.79	PV3366/100711(
100	ERBB4 (HER4)	-8	4	-2	12	Pass	Pass	Pass	0.87	PV3626/32657
100	FER	-1	2	0	3	Pass	Pass	Pass	0.72	PV3806/38496
100	FES (FPS)	-1	13	6	14	Pass	Pass	Pass	0.86	PV3354/35734
100	FGFR1	1	8	5	8	Pass	Pass	Pass	0.70	PV3146/28427
100	FGFR2	-17	-23	-20	6	Pass	Pass	Pass	0.58	PV3368/31517
100	FGFR3	-9	12	1	21	Pass	Pass	Pass	0.69	PV3145/28459

100	FGFR3 K650E	3	7	5	4	Pass	Pass	Pass	0.84	PV4392/36445
100	FGFR4	0	3	1	2	Pass	Pass	Pass	0.65	P3054/26967
100	FGR	-1	1	0	2	Pass	Pass	Pass	0.91	P3041/26670
100	FLT1 (VEGFR1)	-16	2	-7	18	Pass	Pass	Pass	0.64	PV3666/33924
100	FLT3	39	44	41	5	Pass	Pass	Pass	0.90	PV3182/101290§
100	FLT3 D835Y	48	61	55	13	Pass	Pass	Pass	0.74	PV3967/308809
100	FLT4 (VEGFR3)	-5	-3	-4	2	Pass	Pass	Pass	0.81	PV4129/38454
100	FRAP1 (mTOR)	-10	-3	-6	8	Pass	Pass	Pass	0.84	PV4753/873345
100	FRK (PTK5)	-5	0	-3	5	Pass	Pass	Pass	0.87	PV3874/34553
100	FYN	-3	6	1	9	Pass	Pass	Pass	0.85	P3042/1046027
100	GRK4	10	7	8	3	Pass	Pass	Pass	0.72	PV3807/618977
100	GRK5	-3	6	2	9	Pass	Pass	Pass	0.90	PV3824/879275
100	GRK6	-1	9	4	11	Pass	Pass	Pass	0.81	PV3661/37437
100	GRK7	-3	0	-2	3	Pass	Pass	Pass	0.83	PV3823/34013
100	GSK3A (GSK3 alpha)	-4	-1	-2	3	Pass	Pass	Pass	0.81	PV6126/862449
	GSK3B (GSK3									
100	beta)	14	15	14	2	Pass	Pass	Pass	0.90	PV3365/371501
100	HCK	-6	5	0	11	Pass	Pass	Pass	0.85	PV6128/862448
100	HIPK1 (Myak)	-2	-2	-2	0	Pass	Pass	Pass	0.81	PV4561/725394
100	HIPK2	-4	3	0	6	Pass	Pass	Pass	0.95	PV5275/452552
100	HIPK3 (YAK1)	-6	5	-1	11	Pass	Pass	Pass	0.87	PV4209/35332
100	HIPK4	-2	3	1	6	Pass	Pass	Pass	0.75	PV3852/719847
100	IGF1R	-7	-2	-5	5	Pass	Pass	Pass	0.91	PV3250/924345
100	IKBKB (IKK beta)	3	4	3	1	Pass	Pass	Pass	0.93	PV3836/38273

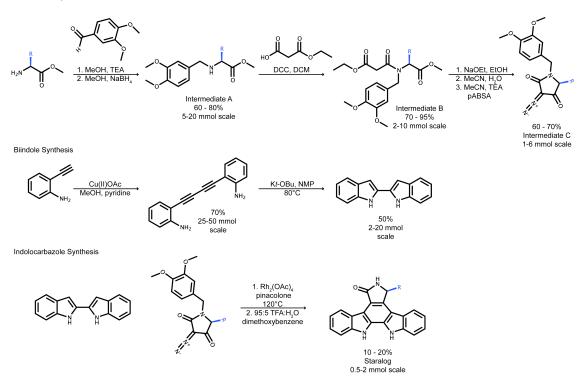
100	IKBKE (IKK epsilon)	6	3	5	2	Pass	Pass	Pass	0.80	PV4875/853377
100	INSR	0	3	1	4	Pass	Pass	Pass	0.89	PV3781/34033
100	INSRR (IRR)	8	9	8	1	Pass	Pass	Pass	0.86	PV3808/34272
100	IRAK4	9	23	16	13	Pass	Pass	Pass	0.70	PV3362/788123
100	ITK	-4	-3	-4	1	Pass	Pass	Pass	0.88	PV3875/919688
100	JAK1	-5	-2	-4	3	Pass	Pass	Pass	0.95	PV4774/877058
100	JAK2	-2	-3	-3	2	Pass	Pass	Pass	0.87	PV4210/565233
100	JAK2 JH1 JH2	12	11	11	1	Pass	Pass	Pass	0.72	PV4393/311662
100	JAK2 JH1 JH2 V617F	2	-1	0	3	Pass	Pass	Pass	0.81	PV4336/463344
100	JAK3	6	1	4	6	Pass	Pass	Pass	0.89	PV3855/1017963
100	KDR (VEGFR2)	-6	-4	-5	2	Pass	Pass	Pass	0.89	PV3660/36431
100	KIT	4	2	3	1	Pass	Pass	Pass	0.82	P3081/401941
100	KIT T670I	1	3	2	2	Pass	Pass	Pass	0.83	PV3869/34504
100	LCK	-3	-1	-2	2	Pass	Pass	Pass	0.91	P3043/850070
100	LTK (TYK1)	-1	-3	-2	2	Pass	Pass	Pass	0.92	PV4651/538791
100	LYN A	0	0	0	0	Pass	Pass	Pass	0.89	P2906/469157
100	LYN B	-2	0	-1	2	Pass	Pass	Pass	0.88	P2907/21076
100	MAP2K1 (MEK1)	12	21	17	9	Pass	Pass	Pass	0.81	PV3303/814863
100	MAP2K2 (MEK2)	6	13	10	7	Pass	Pass	Pass	0.78	PV3615/32519
100	MAP2K6 (MKK6)	-4	4	0	7	Pass	Pass	Pass	0.69	PV3318/884909
100	MAP3K8 (COT)	13	13	13	1	Pass	Pass	Pass	0.81	PV4313/103375
100	MAP3K9 (MLK1)	24	31	27	6	Pass	Pass	Pass	0.81	PV3787/762486
100	MAP4K2 (GCK)	18	6	12	12	Pass	Pass	Pass	0.75	PV4211/685403
100	MAP4K4	2	2	2	1	Pass	Pass	Pass	0.86	PV3687/792773

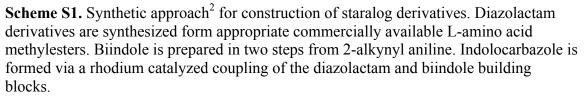
MAP4K5 -6 3 -2 9 Pass Pass Pass 0.77 PV3682/33461 100 MAPK10 8 13 100 5 Pass Pass Pass 0.91 PV3682/346841 100 MAPK10 18 30 24 13 Pass Pass Pass 0.84 PV4563/939823 100 (JNK3) 1.1 0 0 0 1 Pass Pass Pass 0.84 PV4563/939823 100 (JNK3) 1.1 0 0 0 1 Pass Pass Pass 0.74 PV3654/904349 100 MAPK13 5 7 6 2 Pass Pass Pass 0.58 PV3656/96471 100 MAPK14 6 7 6 Pass Pass Pass 0.58 PV361/95436 100 MAPK3 8 14 11 6 Pass Pass Pass 0.77		(HGK)									
100 (ERK2) 8 13 100 5 Pass Pass Pass 0.91 PV3313/648841 100 MAPK10 (JNK3) 18 30 24 13 Pass Pass Pass 0.84 PV4563/939823 100 MAPK11 (p38 beta) -1 0 0 1 Pass Pass Pass 0.79 PV3679/36343 100 MAPK12 (p38 deta) -2 0 -1 2 Pass Pass Pass 0.74 PV3656/36817 100 MAPK13 (p38 detba) -5 7 6 2 Pass Pass Pass 0.94 PV3656/36817 100 MAPK14 (p38 detba) -5 -6 -5 6 Pass Pass Pass 0.94 PV3304/37819 100 MAPK14 (p38 detba) -5 -6 -5 0 Pass Pass Pass 0.94 PV3304/37819 100 MAPK3 (JNK1) 8 14 16 Pass P	100		-6	3	-2	9	Pass	Pass	Pass	0.77	PV3682/33456
100 (JNK3) 18 30 24 13 Pass Pass Pass 0.84 PV4563/93823. 100 MAPK11 (p38 beta) -1 0 0 1 Pass Pass 0.79 PV3679/36343 100 MAPK12 (p38 gamma) -2 0 -1 2 Pass Pass Pass 0.74 PV3679/36343 100 mAPK12 (p38 delta) 5 7 6 2 Pass Pass Pass 0.74 PV3654/904349 100 MAPK14 (p38 delta) 5 7 6 2 Pass Pass Pass 0.58 PV3656/36817 100 MAPK14 (p38 delta) -5 -6 -5 6 Pass Pass Pass Pass 0.90 PV3304/37819 100 MAPK3 (ERK1) 8 14 11 6 Pass Pass Pass 0.78 PV3311/35296 100 MAPK9 (JNK1) 3 5 2 4 Pass	100		8	13	10	5	Pass	Pass	Pass	0.91	PV3313/648841
100 (p38 beta) -1 0 0 1 Pass Pass Pass 0.79 PV3679/36343 100 (p38 deta) -2 0 -1 2 Pass Pass Pass 0.74 PV3654/904349 100 (p38 deta) 5 7 6 2 Pass Pass Pass 0.58 PV3656/36817 100 (p38 deta) -8 -2 -5 6 Pass Pass Pass Pass 0.90 PV304/37819 100 (mAPK14 (p38 alpha) -8 -2 -5 6 Pass Pass Pass Pass 0.91 PV304/37819 100 MAPK3 (p38 alpha) -5 -6 -5 0 Pass Pass Pass 0.91 PV304/37819 100 MAPK3 (ERK1) 8 14 11 6 Pass Pass Pass 0.75 PV3311/35296 100 MAPK9 (JNK2) 3 5 4 2 Pass Pass Pass 0.63 PV3317/3659 100 MAPKA	100		18	30	24	13	Pass	Pass	Pass	0.84	PV4563/939823
100 gamma) -2 0 -1 2 Pass Pass Pass 0.74 PV3654/904349 100 (p38 delta) 5 7 66 2 Pass Pass Pass 0.58 PV3656/36817 100 (p38 alpha) -8 -2 -5 6 Pass Pass Pass 0.90 PV3304/37819 100 (p38 alpha) -8 -2 -5 6 Pass Pass Pass 0.91 PV3304/37819 100 (PAPK14 (p38 alpha) -5 -6 -5 0 Pass Pass Pass Pass 0.91 PV3304/37819 100 (ERK1) 8 14 11 6 Pass Pass Pass 0.81 PV3311/35296 100 (MAPK3) 7 5 2 4 Pass Pass Pass Pass 0.81 PV3620/32388 100 MAPKAPK2 5 -1 2 Pass Pa	100		-1	0	0	1	Pass	Pass	Pass	0.79	PV3679/36343
100 (p38 delta) 5 7 6 2 Pass Pass Pass 0.58 PV3656/36817 100 MAPK14 (p38 alpha) -8 -2 -5 6 Pass Pass Pass 0.90 PV3304/37819 100 MAPK14 (p38 alpha) -5 -6 -5 0 Pass Pass Pass 0.91 PV3304/37819 100 MAPK14 (p38 alpha) -5 -6 -5 0 Pass Pass Pass 0.91 PV3304/37819 100 MAPK3 (JNK1) 8 14 11 6 Pass Pass Pass 0.91 PV3304/37819 100 MAPK3 (JNK1) 8 14 11 6 Pass Pass Pass 0.78 PV3311/35296 100 MAPK49 5 -1 2 Pass Pass Pass Pass 0.80 PV3217/36559 100 MAPKAPK3 7 11 9 4 Pass P	100	(p38	-2	0	-1	2	Pass	Pass	Pass	0.74	PV3654/904349
100 (p38 alpha) -8 -2 -5 6 Pass Pass Pass 0.90 PV3304/37819 100 MAPK14 (p38 alpha) Direct -5 -6 -5 0 Pass Pass Pass 0.91 PV3304/37819 100 MAPK3 (ERK1) 8 14 11 6 Pass Pass Pass 0.91 PV3304/37819 100 MAPK3 (ERK1) 8 14 11 6 Pass Pass Pass 0.91 PV3304/37819 100 MAPK3 (ERK1) 8 14 11 6 Pass Pass Pass Pass 0.91 PV3311/35296 100 MAPK8 (JNK2) 3 5 4 2 Pass Pass Pass Pass 0.63 PV320/3288 100 MAPKAPK3 7 11 9 4 Pass Pass Pass 0.63 PV3301/86017 100 MAPKAPK3 7 11 9 5	100		5	7	6	2	Pass	Pass	Pass	0.58	PV3656/36817
100 (p38 alpha) Direct -5 -6 -6 0 Pass Pass Pass 0.91 PV3304/37819 100 MAPK3 (ERK1) 8 14 11 6 Pass Pass Pass 0.78 PV3311/35296 100 MAPK8 (JNK1) 0 5 2 4 Pass Pass Pass 0.77 PV3319/762483 100 MAPK9 (JNK2) 3 5 2 4 Pass Pass Pass 0.89 PV320/3288 100 MAPKAP 5 -1 2 Pass Pass Pass Pass 0.89 PV320/3288 100 MAPKAPK2 5 -11 2 6 Pass Pass Pass Pass 0.63 PV321736559 100 MAPKAPK3 7 11 9 4 Pass Pass Pass 0.80 PV3301/880117 100 MARK1 6 11 9 5 Pass Pass	100		-8	-2	-5	6	Pass	Pass	Pass	0.90	PV3304/37819
100 (ERK1) 8 14 11 6 Pass Pass Pass 0.78 PV3311/35296 100 MAPK8 (JNK1) 0 5 2 4 Pass Pass Pass 0.77 PV3319/762483 100 MAPK9 (JNK2) 3 5 4 2 Pass Pass Pass 0.89 PV3620/32388 100 MAPKAPK2 5 -1 2 6 Pass Pass Pass 0.63 PV317/36559 100 MAPKAPK3 7 11 9 4 Pass Pass Pass 0.63 PV329/38895 100 MAPKAPK5 -3 2 -1 5 Pass Pass Pass 0.63 PV329/38895 100 MARK1 -3 2 -1 5 Pass Pass Pass 0.63 PV3317/36591 100 MARK1 -6 11 9 5 Pass Pass Pass 0.82 PV3878/877060 100 MARK2 2 -6 -2 8	100	(p38 alpha)	-5	-6	-5	0	Pass	Pass	Pass	0.91	PV3304/37819
100 (JNK1) 0 5 2 4 Pass Pass Pass 0.77 PV3319/762483 100 MAPK9 (JNK2) 3 5 4 2 Pass Pass Pass 0.89 PV3620/32388 100 MAPKAPK2 5 -1 2 6 Pass Pass Pass 0.63 PV3620/32388 100 MAPKAPK3 7 11 9 4 Pass Pass Pass 0.63 PV3620/32388 100 MAPKAPK3 7 11 9 4 Pass Pass Pass 0.63 PV39317/36559 100 MAPKAPK5 -3 2 -1 5 Pass Pass Pass 0.80 PV3301/880117 100 MARK1 (MARK) 6 11 9 5 Pass Pass Pass 0.82 PV4395/877060 100 MARK2 2 -6 -2 8 Pass Pass Pass 0.82 PV3878/877056 100 MARK3 -6 1 -2 7<	100		8	14	11	6	Pass	Pass	Pass	0.78	PV3311/35296
100 (JNK2) 3 5 4 2 Pass Pass Pass 0.89 PV3620/32388 100 MAPKAPK2 5 -1 2 6 Pass Pass Pass 0.63 PV3317/36559 100 MAPKAPK3 7 11 9 4 Pass Pass Pass 0.63 PV3299/38895 100 MAPKAPK3 7 11 9 4 Pass Pass Pass 0.86 PV3299/38895 100 MAPKAPK5 -3 2 -1 5 Pass Pass Pass 0.80 PV3301/880117 100 MARK1 6 11 9 5 Pass Pass Pass 0.82 PV4395/877060 100 MARK2 2 -6 -2 8 Pass Pass Pass 0.82 PV3878/877056 100 MARK3 -6 1 -2 7 Pass Pass Pass 0.83 PV3851/304213 100 MARK4 7 19 13 13 <	100		0	5	2	4	Pass	Pass	Pass	0.77	PV3319/762483
100MAPKAPK371194PassPassPass0.86PV3299/38895100MAPKAPK5 (PRAK)-32-15PassPassPass0.80PV3301/80117100MARK1 (MARK)61195PassPassPass0.82PV4395/877060100MARK22-6-28PassPassPass0.82PV4395/877060100MARK3-61-27PassPassPass0.87PV4819/423469100MARK47191313PassPassPass0.83PV3851/304213100MATK (HYL)-7-2-54PassPassPassPass0.94PV3370/31553	100		3	5	4	2	Pass	Pass	Pass	0.89	PV3620/32388
MAPKAPKS (PRAK)-32-15PassPassPass0.80PV3301/880117100MARK1 (MARK)61195PassPassPass0.82PV4395/877060100MARK22-6-28PassPassPass0.82PV3878/877050100MARK3-61-27PassPassPass0.87PV4819/423469100MARK47191313PassPassPass0.83PV3851/304213100MATK (HYL)-7-2-54PassPassPassPass0.94PV3370/31553	100	MAPKAPK2	5	-1	2	6	Pass	Pass	Pass	0.63	PV3317/36559
100 (PRAK) -3 2 -1 5 Pass Pass Pass 0.80 PV3301/880117 100 MARK1 (MARK) 6 11 9 5 Pass Pass Pass 0.82 PV4395/877060 100 MARK2 2 -6 -2 8 Pass Pass Pass 0.82 PV4395/877060 100 MARK3 -6 1 -2 7 Pass Pass Pass 0.82 PV4395/877056 100 MARK4 7 19 13 13 Pass Pass Pass 0.83 PV3851/304213 100 MATK (HYL) -7 -2 -5 4 Pass Pass Pass Pass 0.94 PV3370/31553	100	MAPKAPK3	7	11	9	4	Pass	Pass	Pass	0.86	PV3299/38895
100 (MARK) 6 11 9 5 Pass Pass Pass 0.82 PV4395/877060 100 MARK2 2 -6 -2 8 Pass Pass Pass 0.82 PV3878/877056 100 MARK3 -6 1 -2 7 Pass Pass Pass 0.82 PV4819/423469 100 MARK4 7 19 13 13 Pass Pass Pass 0.83 PV3851/304213 100 MATK (HYL) -7 -2 -5 4 Pass Pass Pass Pass 0.94 PV3370/31553	100		-3	2	-1	5	Pass	Pass	Pass	0.80	PV3301/880117
100 MARK3 -6 1 -2 7 Pass Pass Pass 0.87 PV4819/423469 100 MARK4 7 19 13 13 Pass Pass Pass 0.83 PV3851/304213 100 MATK (HYL) -7 -2 -5 4 Pass Pass Pass Pass 0.94 PV3370/31553	100		6	11	9	5	Pass	Pass	Pass	0.82	PV4395/877060
100 MARK4 7 19 13 Pass Pass Pass 0.83 PV3851/304213 100 MATK (HYL) -7 -2 -5 4 Pass Pass Pass 0.94 PV3370/31553	100	MARK2	2	-6	-2	8	Pass	Pass	Pass	0.82	PV3878/877056
MATK 100 (HYL) -7 -2 -5 4 Pass Pass 0.94 PV3370/31553	100	MARK3	-6	1	-2	7	Pass	Pass	Pass	0.87	PV4819/423469
100 (HYL) -7 -2 -5 4 Pass Pass 0.94 PV3370/31553	100	MARK4	7	19	13	13	Pass	Pass	Pass	0.83	PV3851/304213
100 MELK 29 25 27 4 Pass Pass Pass 0.88 PV4823/315179	100		-7	-2	-5	4	Pass	Pass	Pass	0.94	PV3370/31553
	100	MELK	29	25	27	4	Pass	Pass	Pass	0.88	PV4823/315179

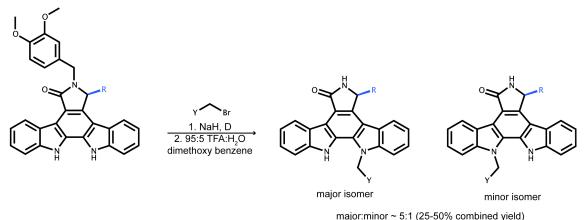
100	MERTK (cMER)	2	0	1	2	Pass	Pass	Pass	0.92	PV3627/32658
100	MET (cMet)	21	9	15	12	Pass	Pass	Pass	0.77	PV3143/625156
100	MET M1250T	-3	-1	-2	3	Pass	Pass	Pass	0.85	PV3968/34718
100	MINK1	4	3	4	1	Pass	Pass	Pass	0.93	PV3810/100710§
100	MKNK1 (MNK1)	6	8	7	2	Pass	Pass	Pass	0.74	PV6023/652363
100	MST1R (RON)	-4	-1	-2	2	Pass	Pass	Pass	0.93	PV4314/765277
100	MST4	17	20	19	3	Pass	Pass	Pass	0.79	PV3690/33785
100	MUSK	11	5	8	6	Pass	Pass	Pass	0.64	PV3834/36795
100	MYLK2 (skMLCK)	18	12	15	6	Pass	Pass	Pass	0.60	PV3757/36606
100	NEK1	-1	3	1	4	Pass	Pass	Pass	0.72	PV4202/735797
100	NEK2	4	0	2	5	Pass	Pass	Pass	0.65	PV3360/549845
100	NEK4	6	2	4	3	Pass	Pass	Pass	0.89	PV4315/924342
100	NEK6	4	6	5	2	Pass	Pass	Pass	0.78	PV3353/30778
100	NEK7	-5	-1	-3	4	Pass	Pass	Pass	0.73	PV3833/34387
100	NEK9	8	2	5	6	Pass	Pass	Pass	0.86	PV4653/38162
100	NTRK1 (TRKA)	-2	10	4	12	Pass	Pass	Pass	0.65	PV3144/792772
100	NTRK2 (TRKB)	3	9	6	6	Pass	Pass	Pass	0.95	PV3616/35706
100	NTRK3 (TRKC)	9	26	17	17	Pass	Pass	Pass	0.86	PV3617/708766
100	PAK1	0	3	1	3	Pass	Pass	Pass	0.83	PV3820/35463
100	PAK2 (PAK65)	7	5	6	2	Pass	Pass	Pass	0.84	PV4565/545403
100	PAK3	25	7	16	18	Pass	Pass	Pass	0.61	PV3789/34118
100	PAK4	-3	-5	-4	1	Pass	Pass	Pass	0.83	PV4212/35324
100	PAK6	14	10	12	4	Pass	Pass	Pass	0.76	PV3502/31794
100	PAK7 (KIAA1264)	0	1	1	1	Pass	Pass	Pass	0.59	PV4405/36846

100	PASK	14	2	8	12	Pass	Pass	Pass	0.80	PV3972/762487
100	PDGFRA (PDGFR alpha)	15	12	14	3	Pass	Pass	Pass	0.82	PV3811/682476
100	PDGFRA D842V	-1	10	4	11	Pass	Pass	Pass	0.86	PV4203/269691
100	PDGFRA T674I	26	12	19	13	Pass	Pass	Pass	0.63	PV3847/35891
100	PDGFRA V561D	11	15	13	4	Pass	Pass	Pass	0.79	PV4680/38719
100	PDGFRB (PDGFR beta)	-1	-2	-2	2	Pass	Pass	Pass	0.76	P3082/27567
100	PDK1	8	18	13	10	Pass	Pass	Pass	0.81	P3001/35371
100	PDK1 Direct	9	6	8	2	Pass	Pass	Pass	0.73	P3001/35371
100	PHKG1	16	14	15	2	Pass	Pass	Pass	0.79	PV3853/555813
100	PHKG2	-7	6	0	13	Pass	Pass	Pass	0.71	PV4555/37321
100	PIM1	60	60	60	1	Pass	Pass	Pass	0.73	PV3503/811382
100	PIM2	9	5	7	4	Pass	Pass	Pass	0.84	PV3649/32930
100	PKN1 (PRK1)	20	19	19	1	Pass	Pass	Pass	0.76	PV3790/356552
100	PLK1	-6	-5	-5	2	Pass	Pass	Pass	0.80	PV3501/39441
100	PLK2	-2	10	4	12	Pass	Pass	Pass	0.84	PV4204/38798
100	PLK3	0	-11	-6	11	Pass	Pass	Pass	0.61	PV3812/38812
100	PRKACA (PKA)	-3	-2	-2	1	Pass	Pass	Pass	0.76	P2912/37377
100	PRKCA (PKC alpha)	-3	0	-1	3	Pass	Pass	Pass	0.82	P2232/38479
100	PRKCB1 (PKC beta I)	6	13	10	7	Pass	Pass	Pass	0.80	P2291/299686
100	PRKCB2 (PKC beta II)	-1	8	4	9	Pass	Pass	Pass	0.84	P2251/306499
100	PRKCD (PKC delta)	-1	0	-1	1	Pass	Pass	Pass	0.91	P2293/39038

100	PRKCE (PKC epsilon)	-13	-9	-11	3	Pass	Pass	Pass	0.79	P2292/37717
100	PRKCG (PKC gamma)	6	8	7	3	Pass	Pass	Pass	0.71	P2233/39126
100	PRKCH (PKC eta)	0	2	1	1	Pass	Pass	Pass	0.80	P2633/25059
100	PRKCI (PKC iota)	-2	5	2	7	Pass	Pass	Pass	0.91	PV3183/28662
100	PRKCN (PKD3)	-4	6	1	10	Pass	Pass	Pass	0.58	PV3692/33787
100	PRKCQ (PKC theta)	15	9	12	6	Pass	Pass	Pass	0.89	P2996/26231
100	PRKCZ (PKC zeta)	1	12	7	11	Pass	Pass	Pass	0.75	P2273/31602
100	PRKD1 (PKC mu)	0	12	6	12	Pass	Pass	Pass	0.88	PV3791/34226
100	PRKD2 (PKD2)	2	8	5	6	Pass	Pass	Pass	0.68	PV3758/34015
100	PRKG1	-3	-1	-2	2	Pass	Pass	Pass	0.78	PV4340/36099
100	PRKG2 (PKG2)	9	19	14	10	Pass	Pass	Pass	0.78	PV3973/273926
100	PRKX	7	10	8	4	Pass	Pass	Pass	0.72	PV3813/34283
100	PTK2 (FAK)	2	4	3	2	Pass	Pass	Pass	0.90	PHO3141/37750
100	PTK2B (FAK2)	-7	0	-4	7	Pass	Pass	Pass	0.94	PV4567/883370
100	PTK6 (Brk)	-3	3	0	6	Pass	Pass	Pass	0.73	PV3291/1042981
	RAF1 (cRAF) Y340D									
100	Y341D	-13	-4	-9	9	Pass	Pass	Pass	0.84	PV3805/835989
100	RET	-6	-3	-4	3	Pass	Pass	Pass	0.91	PV3819/571760
100	RET V804L	-1	0	-1	1	Pass	Pass	Pass	0.95	PV4397/36640
100	RET Y791F	-3	-1	-2	2	Pass	Pass	Pass	0.93	PV4396/36639
100	ROCK1	6	-1	2	7	Pass	Pass	Pass	0.83	PV3691/37178
100	ROCK2	0	-7	-4	7	Pass	Pass	Pass	0.79	PV3759/843703


100	ROS1	-2	0	-1	2	Pass	Pass	Pass	0.87	PV3814/479684
100	RPS6KA1 (RSK1)	5	12	9	7	Pass	Pass	Pass	0.86	PV3680/880119
100	RPS6KA2 (RSK3)	19	21	20	1	Pass	Pass	Pass	0.84	PV3846/34468
100	RPS6KA3 (RSK2)	24	22	23	2	Pass	Pass	Pass	0.72	PV3323/378153
100	RPS6KA4 (MSK2)	9	8	8	1	Pass	Pass	Pass	0.80	PV3782/990109
100	RPS6KA5 (MSK1)	-3	7	2	10	Pass	Pass	Pass	0.71	PV3681/33702
100	RPS6KA6 (RSK4)	31	35	33	4	Pass	Pass	Pass	0.58	PV4557/37496
100	RPS6KB1 (p70S6K)	5	5	5	1	Pass	Pass	Pass	0.88	PV3815/38944
100	SGK (SGK1)	-12	-21	-17	8	Pass	Pass	Pass	0.76	PV3818/34366
100	SGK2	6	11	9	5	Pass	Pass	Pass	0.84	PV3858/34433
100	SGKL (SGK3)	-10	9	0	18	Pass	Pass	Pass	0.82	PV3859/38954
100	SNF1LK2	-1	18	9	20	Pass	Pass	Pass	0.70	PV4792/719848
100	SRC	9	10	10	1	Pass	Pass	Pass	0.85	P3044/26726
100	SRC N1	-4	0	-2	4	Pass	Pass	Pass	0.85	P2904/21068
100	SRMS (Srm)	9	3	6	5	Pass	Pass	Pass	0.85	PV4214/860773
100	SRPK1	19	18	18	0	Pass	Pass	Pass	0.59	PV4215/35335
100	SRPK2	15	20	18	4	Pass	Pass	Pass	0.70	PV3829/725393
100	STK22B (TSSK2)	1	5	3	4	Pass	Pass	Pass	0.66	PV3622/32396
100	STK22D (TSSK1)	2	2	2	0	Pass	Pass	Pass	0.87	PV3505/947248
100	STK23 (MSSK1)	-11	-11	-11	1	Pass	Pass	Pass	0.74	PV3880/889510
100	STK24 (MST3)	-3	-8	-6	6	Pass	Pass	Pass	0.56	PV3650/32932
100	STK25 (YSK1)	-6	-5	-5	0	Pass	Pass	Pass	0.85	PV3657/33163


100	STK3 (MST2)	-2	2	0	4	Pass	Pass	Pass	0.82	PV4805/371195
100	STK4 (MST1)	-1	-1	-1	1	Pass	Pass	Pass	0.85	PV3854/38395
100	SYK	2	2	2	0	Pass	Pass	Pass	0.93	PV3857/756818
100	TAOK2 (TAO1)	0	-3	-2	3	Pass	Pass	Pass	0.79	PV3760/759946
100	TBK1	-5	-2	-4	3	Pass	Pass	Pass	0.92	PV3504/857011
100	TEK (Tie2)	2	4	3	2	Pass	Pass	Pass	0.89	PV3628/34398
100	ТХК	0	-4	-2	3	Pass	Pass	Pass	0.73	PV5860/750657
100	TYK2	-7	-5	-6	2	Pass	Pass	Pass	0.57	PV4790/884908
100	TYRO3 (RSE)	15	16	16	1	Pass	Pass	Pass	0.89	PV3828/68475
100	YES1	-2	5	1	8	Pass	Pass	Pass	0.87	P3078/27228
100	ZAP70	-3	9	3	12	Pass	Pass	Pass	0.95	P2782/843705


Table S2. Kinase Inhibitor Profiling Data. 1µM **Star 12** was analyzed for inhibitory activity against 308 human kinases using SelectScreen® Profiling Services from Life Technologies. The inhibitor was tested against each kinase in duplicate and average values were plotted in Figure 4. The LanthaScreen Binding Assay was used if there was not an activity assay (Z'Lyte or Adapta Screens) available for a particular kinase. Experimental details for each kinase and each assay can be found at http://www.lifetechnologies.com/us/en/home/products-and-services/services/custom-services/selectscreen-profiling-services/selectscreen-kinase-profiling-service.html.

Supplemental Schemes

Diazolactam Synthesis

major:minor ~ 5:1 (25-50% combined yield)

Scheme S2. Synthetic approach ³ for installing N12 and N13 substituents. Major product is alkylation at N12 and minor product is alkylation at N13. 3,4-dimethoxybenzyl group as well as other Y-protecting groups (Boc, etc.) were removed with TFA in methylene chloride and scavenger dimethoxy benzene. Regiochemistry of the alkylations were determined by 1H NMR (described in ref. 3) and relative shift by liquid chromatography where the major isomer (N12-alkylated) migrated more quickly than the minor isomer (N13-alkylated). Finally, the regiochemistry was further confirmed by X-ray co-crystallography of **Star 12** (Figure 3) and **Star 16** (unpublished data) bound to Src-AS1.

Supplemental Methods

In Vitro Kinases Assays:

Src Kinase. 6xHis-tagged Src (257-533), Src-AS1 (T338G), and Src-AS2 (T338A) were expressed in BL-21 *E. coli* cells as previously described⁴. Kinase activity was assayed under the following conditions: 2nM Src kinase, 50mM TRIS (pH 8.0), 10mM MgCl₂, 100 μ M Src peptide substrate (IYGEFKKK), 100 μ M ATP, 0.5 μ Ci ³²P-ATP, 2% DMSO, and variable concentrations of inhibitors (5 μ M to 1.2 nM). 2 μ L of the reaction mixture was placed onto P81 paper at various time points and evaporated under a heat lamp for 5 min. The P81 paper was washed with 1% phosphoric acid, dried, and exposed to phosphor-imaging screen. Radioactivity was measured using a Typhoon fluorescence imager (Molecular Dynamics) and IC₅₀ values were determined by fitting the data to a sigmoid function in Prism 4.0 (GraphPad Software).

CK18 and CK1E. Casein Kinase 18 (catalog # PV3665) and Casein Kinase 1E (catalog # PV3500) were purchased from Life Technologies and assayed under the following conditions: 50mM TRIS (pH 8.0), 10mM MgCl₂, 0.4 mg/mL casein, 2.5 mM DTT, 2% DMSO, 5nM kinase, 100 μ M ATP, 0.1 mg/mL BSA, 1 μ Ci ³²P-ATP and various concentrations of inhibitors (5 μ M to 1.2 nM). 2 μ L of the reaction mixture was placed onto P81 paper at various time points and evaporated under a heat lamp for 5 min. The P81 paper was washed with 1% phosphoric acid, dried, and exposed to phosphor-imaging screen. Radioactivity was measured using a Typhoon fluorescence imager (Molecular Dynamics) and IC₅₀ values were determined by fitting the data to a sigmoid function in Prism 4.0 (GraphPad Software).

PKD1 and PKD2. PKD1 (catalog # PV3791) and PKD2 (catalog # PV3758) were purchased from Life Technologies and assayed under the following conditions: 50 mM TRIS (pH 8.0), 10 mM MgCl₂, 2mM DTT, 2% DTT, 0.1 mg/mL BSA, 100 μ M ATP, 3 μ Ci ³²P-ATP, 7 nM kinase and various concentrations of inhibitors (5 μ M to 1.2 nM). 2 μ L of the reaction mixture was placed onto P81 paper at various time points and evaporated under a heat lamp for 5 min. The P81 paper was washed with 1% phosphoric

S23

acid, dried, and exposed to phosphor-imaging screen. Radioactivity was measured using a Typhoon fluorescence imager (Molecular Dynamics) and IC_{50} values were determined by fitting the data to a sigmoid function in Prism 4.0 (GraphPad Software).

RET and ACK. RET (catalog # PV3819) and ACK (catalog # PV4807) were purchased from Life Technologies and assayed under the following conditions: 50 mM TRIS (pH 8.0), 10 mM MgCl₂, 2 mM DTT, 0.1 mg/mL BSA, 2% DMSO, 200 μ M Abltide, 10 nM kinase, 100 μ M ATP, 1 μ Ci ³²P-ATP and variable concentrations of inhibitors (5 μ M to 1.2 nM). 2 μ L of the reaction mixture was placed onto P81 paper at various time points and evaporated under a heat lamp for 5 min. The P81 paper was washed with 1% phosphoric acid, dried, and exposed to phosphor-imaging screen. Radioactivity was measured using a Typhoon fluorescence imager (Molecular Dynamics) and IC₅₀ values were determined by fitting the data to a sigmoid function in Prism 4.0 (GraphPad Software).

EPHA1 and PTK6. EPHA1 (catalog # 3841) and PTK6 (catalog # 3291) were purchased from Life Technologies and assayed under the following conditions: 50 mM TRIS (pH 8.0), 10 mM MgCl₂, 2.5 mM DTT, 0.1 mg/mL BSA, 2% DMSO, 0.2 mg/mL poly[Glu, Tyr] 4:1, 2 nM kinase, 100 μ M ATP, 1 μ Ci ³²P-ATP and variable concentrations of inhibitors (5 μ M to 1.2 nM). 2 μ L of the reaction mixture was placed onto P81 paper at various time points and evaporated under a heat lamp for 5 min. The P81 paper was washed with 1% phosphoric acid, dried, and exposed to phosphor-imaging screen. Radioactivity was measured using a Typhoon fluorescence imager (Molecular Dynamics) and IC₅₀ values were determined by fitting the data to a sigmoid function in Prism 4.0 (GraphPad Software).

Cellular Kinases Assays:

v-Src-WT and v-Src-AS1

NIH-3T3 cell lines transformed with v-Src gatekeeper variants were prepared using the procedure of Bishop et al.⁵. $5x10^5$ cells were seeded in each well of a 6-well dish and grown overnight at 37°C with 5% CO₂ in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% Fetal Bovine Serum (FBS). The next day the medium was

S24

removed and replaced with 1.5ml of fresh DMEM (+10% FBS) containing inhibitor and a final concentration of 1% DMSO. The cells were incubated with drug medium for 1.5 hours, washed with cold PBS, and lysed with 150 μ L buffer (50 mM Tris (pH 7.4), 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM Na₃VO₄, 10 mM sodium- β glycerophosphate, 1% triton, 50 mM NaF, 5 mM sodium pyrophosphate, 0.27 M sucrose, 50 mM benzamidine, 1 complete mini protease inhibitor tablet (Roche), 1 mM PMSF, 1 PhosSTOP (Roche) phosphatase inhibitor tablet, 0.1 mg/ml RNAse A, and 0.1 mg/ml DNAse I), normalized for concentration and analyzed by Western blot for global phosphotyrosine levels (4G10, Millipore, 1:5000) and β -actin (β -actin Antibody, Cell Signaling, 1:1000).

EphA4-WT and EphA4-AS1

 3×10^5 HEK-293T cells were seeded into each well of a six-well tissue culture plate and grown in 2 mL DMEM (+10% FBS) at 37°C under 5% CO₂ for 12-18 hrs. pCS2+ plasmids containing full length EphA4-WT or EphA4-AS1(T640G) were transfected into HEK 293T cells using Lipofectamine®, LTX and PLUS reagent (Life Technologies) and the cells returned to 37°C 5% CO₂ incubator for 12-18 hrs. The next day the medium was removed and replaced with 1.5ml of fresh DMEM (+10% FBS) containing inhibitor and a final concentration of 1% DMSO. The cells were incubated with drug medium for 1.5 hours, washed with cold PBS, and lysed with 150 µL buffer (50 mM Tris (pH 7.4), 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM Na₃VO₄, 10 mM sodium-βglycerophosphate, 1% triton, 50 mM NaF, 5 mM sodium pyrophosphate, 0.27 M sucrose, 50 mM benzamidine, 1 complete mini protease inhibitor tablet (Roche), 1 mM PMSF, 1 PhosSTOP (Roche) phosphatase inhibitor tablet, 0.1 mg/ml RNAse A, and 0.1 mg/ml DNAse I), normalized for concentration and the proteins were separated by SDS-PAGE. Next, the proteins were transferred to nitrocellulose and probed with pEph (provided by Greenberg Lab⁶, 1:1000) and total EphA4 (anti-EphA4, Santa Cruz Biotechnology, 1:1000) primary antibodies, and fluorescent secondary antibodies (LICOR, anti-rabbit IgG, 800nm). Phospho-Eph and total EphA4 were imaged and quantified using a LI-COR Odyssey Quantitative Quantitative Imaging System. The ratio of phospho-Eph/Total Eph

was plotted as a function of drug concentration and the error represents the standard error from the mean (SEM) for three experiments.

Pkd1-WT, Pkd1-AS1, and Pkd1-AS2

 $3x10^5$ HEK-293T cells were seeded into each well of a six-well tissue culture plate and grown in 2 mL DMEM (+10% FBS) at 37°C under 5% CO₂ for 12-18 hrs. Venus-Pkd1-WT, Venus-Pkd1-AS1 (M665G), or Venus-Pkd1-AS2 (M665A)⁷ were transfected into HEK 293T cells using Lipofectamine®, LTX and PLUS reagent (Life Technologies) and the cells returned to 37°C 5% CO₂ incubator for 12-18 hrs. The next day the medium was removed and replaced with 1.5ml of fresh DMEM (+10% FBS) containing inhibitor and a final concentration of 1% DMSO. The cells were incubated with drug medium for 1.5 hours, washed with cold PBS, and lysed with 150 µL buffer (50 mM Tris (pH 7.4), 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM Na₃VO₄, 10 mM sodium- β -glycerophosphate, 1% triton, 50 mM NaF, 5 mM sodium pyrophosphate, 0.27 M sucrose, 50 mM benzamidine, 1 complete mini protease inhibitor tablet (Roche), 1 mM PMSF, 1 PhosSTOP (Roche) phosphatase inhibitor tablet, 0.1 mg/ml RNAse A, and 0.1 mg/ml DNAse I), normalized for concentration and analyzed by Western blot for pS916 Pkd1 (Cell Signaling # 2051, 1:1000) and total Pkd1 (Cell Signaling # 2052, 1:1000).

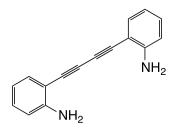
Kif5b-Ret-WT and Kif5b-Ret-AS2

The KIF5B-RET WT cDNA was cloned into pBABE-Puro vectors using SLIC-cloning⁸ and the V804A-AS mutation was introduced by site-directed mutagenesis. Replicationincompetent retroviruses were produced in Phoenix-Eco HEK 293T cells. Supernatant was filtered and used at 1:2 dilutions for transduction of NIH3T3 cells that were selected with puromycin (1.0 μ g/ml). 5x10⁵ cells were seeded in each well of a 6-well dish and grown overnight at 37°C with 5% CO₂ in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% Fetal Bovine Serum (FBS) and puromycin. The next day the medium was removed and replaced with 1.5ml of fresh DMEM (+10% FBS, +1 μ /mL

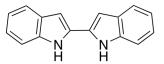
S26

puromycin) containing inhibitor and a final concentration of 1% DMSO. The cells were incubated with drug medium for 1.5 hours, washed with cold PBS, and lysed with 150 μ L buffer (50 mM Tris (pH 7.4), 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM Na₃VO₄, 10 mM sodium- β -glycerophosphate, 1% triton, 50 mM NaF, 5 mM sodium pyrophosphate, 0.27 M sucrose, 50 mM benzamidine, 1 complete mini protease inhibitor tablet (Roche), 1 mM PMSF, 1 PhosSTOP (Roche) phosphatase inhibitor tablet, 0.1 mg/ml RNAse A, and 0.1 mg/ml DNAse I), normalized for concentration and analyzed by Western blot for Ret autophosphorylation (anti-pY905, Cell Signaling # 3221, 1:1000) and total Ret (anti-Ret, Cell Signaling # 3220, 1:1000).

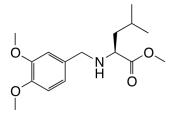
Crystalization and Data Collection

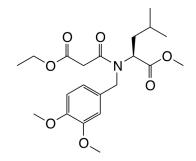

Prior to crystallization, purified c-Src-AS1 was applied to a S200 gel filtration column. Pooled fractions were concentrated to 3-10mg/mL and mixed with Star 12 (1:1.3 ratio of protein: inhibitor) in 100 mM NaCl, 50 mM Tris [pH 8.0], 5% glycerol, 1 mM DTT, and 4% DMSO. Hanging drops containing 1 µL of kinase-inhibitor complexes were mixed with equal volume of well buffer containing 8% PEG 4K, 50 mM NaAc, 100 mM MES [pH 6.5] and grown at 14°C to yield c-Src-AS1-Star 12 crystals. Crystals were cryoprotected in well buffer supplemented with 20% glycerol and flash frozen in liquid nitrogen. Diffraction data were collected at -170°C and processing was carried out using HKL2000 (HKL Research Inc.). The structure was solved by molecular replacement using 1YOJ⁹ lacking the activation segment, helix αC , and ligands as the search model in the program PHASER¹⁰. Molecular replacement solutions were modified and refined with alternate cycles of manual fitting and building into |2Fo-Fc| and composite omit electron density maps using Coot¹¹. Refinement of the structures was carried out using Phenix¹². Data collection and refinement statistics are shown in supplementary Table S1. All structural figures were prepared with PYMOL (The PyMOL Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC). Structure has been deposited in the Protein Data Bank under ID code 4MCV.

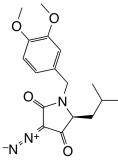
S27

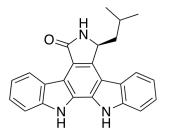

Chemical Synthesis

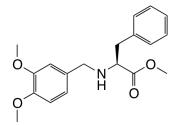
General Methods: Reactions were performed in flame-dried flasks under argon with magnetic stirring. All ¹³C and ¹H NMR spectra were recorded on a Varian Innova 400 spectrometer and referenced to solvent peaks.chemical shifts are reported in δ (ppm) as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) or br (broad). Low resolution mass spectra (LC/ESI-MS) were recorded on a Waters Micromass ZQ equipped with a Waters 2695 Separations Module and a XTerra MS C18 3.5 mm column (Waters). Pinacolone was freshly distilled before use and all other commercial reagents were used without further purification. All RP-HPLC were performed on a Varian ProStar solvent delivery system equipped with a Zorbax 300-SB C18 column using H₂O + 0.1% formic acid and CH3CN + 0.1% formic acid (1-100% gradient) and monitoring at 260 nm.

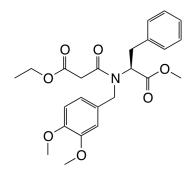

Compound Characterization

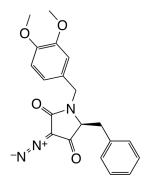

2,2'-(buta-1,3-diyne-1,4-diyl)dianiline ¹H NMR (d₆ DMSO, 400 MHz) δ 5.60 (s, 2H), 6.48 (t, 1H, *J* = 8Hz), 6.68 (d, 1H, *J* = 8Hz), 7.07 (t, 1H, *J* = 8Hz), 7.19 (d, 1H, *J* = 8Hz); ¹³C NMR (d₆DMSO, 400 MHz) δ 79.79, 81.53, 104.83, 115.30, 117.07, 131.95, 133.78, 152.80; LCMS: calculated [M+H]⁺ = 233.10, found = 233.22.

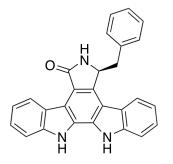

1*H***,1'***H***-2,2'-biindole ¹H NMR (d₆ DMSO, 400 MHz) \delta 6.89 (s, 2H), 6.98 (t, 2H, J = 8Hz), 7.08 (t, 2H, J = 8Hz), 7.37 (d, 2H, J = 4Hz), 7.53 (d, 2H, J = 4Hz); ¹³C NMR (d₆DMSO, 400 MHz) \delta 99.05, 111.69, 120.04, 120.67, 122.33, 129.08, 132.05, 137.55; LCMS: calculated [M+H]⁺ = 233.10, found = 233.18.**

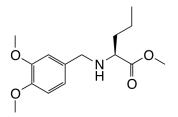

(*S*)-methyl 2-((3,4-dimethoxybenzyl)amino)-4-methylpentanoate (Star 1a) ¹H NMR (d₆ DMSO, 400 MHz) δ 0.75 (d, 3H, *J* = 2Hz), 0.82 (d, 3H, *J* = 2Hz), 1.30 – 1.38 (m, 2H), 1.66 – 1.76 (m, 1H), 2.24 (s, 2H), 3.13 (t, 1H, *J* = 8Hz), 3.43 (d, 1H, *J* = 16Hz), 3.62 (d, 1H, *J* = 16Hz), 3.69 (s, 3H), 3.70 (s, 3H), 6.75 (d, 1H, *J* = 8Hz), 6.82 (d, 1H, *J* = 8Hz), 6.89 (s, 1H); ¹³C NMR (d₆DMSO, 400 MHz) δ 22.58, 23.34, 25.02, 42.68, 50.30, 51.33, 55.92, 58.82, 112.11, 112.18, 112.32, 120.55, 133.39, 148.34, 149.28, 176.31; LCMS: calculated [M+H]⁺ = 296.18, found = 296.33.

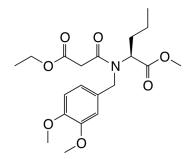

(*S*)-methyl 2-(*N*-(3,4-dimethoxybenzyl)-3-ethoxy-3-oxopropanamido)-4methylpentanoate (Star 1b) ¹H NMR (d₆ DMSO, 400 MHz) δ 0.71 (d, 3H, *J* = 4Hz), 0.77 (d, 3H, *J* = 4Hz), 1.13 – 1.20 (3H), 1.46 – 1.53 (m, 2H), 1.73 – 1.75 (m, 1H), 3.50 (s, 3H), 3.67 (d, 2H, *J* = 4Hz), 3.71 (s, 3H), 3.72 (s, 3H), 4.01 – 4.12 (m, 2H), 6.73 – 6.95 (m, 3H); ¹³C NMR (d₆DMSO, 400 MHz) 14.58, 14.62, 22.72, 23.17, 25.09, 38.56, 41.77, 51.19, 52.40, 55.54, 56.04, 56.18, 61.25, 111.75, 112.32, 129.73, 148.81, 149.32, 167.59, 167.99, 171.72; LCMS: calculated [M+Na]⁺ = 432.20, found = 432.33.

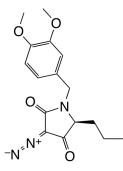

(*S*)-3-diazo-1-(3,4-dimethoxybenzyl)-5-isobutylpyrrolidine-2,4-dione (Star 1c) ¹H NMR (CDCl₃, 400 MHz) δ 0.80 (d, 3H, *J* = 8Hz), 0.85 (d, 3H, *J* = 8Hz), 1.57 – 1.64 (m, 2H), 1.78 – 1.88 (m, 1H), 3.65 – 3.68 (m, 1H), 3.86 (d, 1H, *J* = 16Hz), 5.12 (d, 1H, *J* = 16Hz), 6.72 – 6.77 (m, 3H); ¹³C NMR (CDCl₃, 400 MHz) δ 0.17, 38.25, 44.46, 56.10, 56.15, 62.16, 111.36, 111.55, 120.92, 128.17, 149.13, 149.63, 161.92, 189.72; LCMS: calculated [M+H]⁺ = 331.15, found = 331.34.

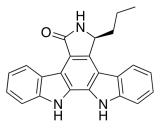

(*S*)-7-isobutyl-6,7,12,13-tetrahydro-5*H*-indolo[2,3-*a*]pyrrolo[3,4-*c*]carbazol-5-one (Star 1) ¹H NMR (d₆ DMSO, 400 MHz) δ 0.79 (d, 3H, *J* = 8Hz), 1.19 (d, 3H, *J* = 8Hz), 1.23 – 1.30 (m, 1H), 1.98 – 2.01 (m, 1H), 2.21 (t, 1H, *J* = 12Hz), 5.22 (d, 1H, *J* = 8Hz), 7.18 (t, 1H, *J* = 8Hz), 7.28 (t, 1H, *J* = 8Hz), 7.38 (t, 1H, *J* = 8Hz), 7.43 (t, 1H, *J* = 8Hz), 7.67 (d, 1H, *J* = 8Hz), 7.75 (d, 1H, *J* = 8Hz), 8.80 (d, 1H, *J* = 8Hz), 8.73 (s, 1H), 9.18 (d, 1H, *J* = 8Hz); ¹³C NMR (d₆ DMSO, 400 MHz) δ 22.39, 24.68, 25.84, 44.77, 55.44, 112.00, 112.77, 114.17, 116.18, 119.09, 119.57, 120.52, 122.19, 122.73, 123.47, 125.53, 125.72, 125.98, 126.26, 128.90, 138.42, 139.93, 140.14, 164.72, 172.39; LCMS: calculated [M+H]⁺ = 368.17, found = 367.98.

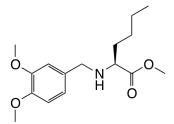

(*S*)-methyl 2-((3,4-dimethoxybenzyl)amino)-3-phenylpropanoate (Star 2a) ¹H NMR (d₆ DMSO, 400 MHz) δ 2.38 (s, 1H), 2.84 (d, 2H, *J* = 8Hz), 3.37 (s, 1H), 3.45 (d, 1H, *J* = 16Hz), 3.53 (s, 3H), 3.62 (s, 3H), 3.65 (d, 1H, *J* = 16Hz), 3.75 (s, 3H), 6.68 (d, 1H, *J* = 8Hz), 6.79 (d, 2H, *J* = 8Hz), 7.14 – 7.25 (m, 5H); ¹³C NMR (d₆DMSO, 400 MHz) δ 51.09, 51.90, 55.89, 56.61, 62.24, 112.11, 112.13, 120.37, 126.92, 128.71, 129.84, 133.20, 138.61, 148.26, 149.26, 175.11; LCMS: calculated [M+H]⁺ = 330.16, found = 329.95.

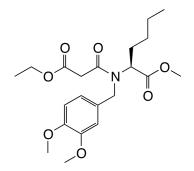

(*S*)-ethyl 3-((3,4-dimethoxybenzyl)(1-methoxy-1-oxo-3-phenylpropan-2-yl)amino)-3-oxopropanoate (Star 2b) ¹H NMR (d₆ DMSO, 400 MHz) δ 1.26 (t, 3H, *J* = 7.2Hz), 1.52 (s, 3H), 3.20 – 3.44 (m, 4H), 3.65 (s, 2H), 3.68 (d, 1H, *J* = 16.8Hz), 3.79 (s, 3H), 3.83 (s, 3H), 4.17 (q, 2H, *J* = 7.2Hz), 4.24 (q, 1H, *J* = 4.0Hz), 4.35 (d, 1H, *J* = 16.8Hz), 6.57 (dd, 1H, *J* = 2Hz, *J* = 8Hz), 6.73 (d, 1H, *J* = 8.4Hz), 6.76 (d, 1H, *J* = 2Hz), 7.13 – 7.29 (m, 5H); LCMS: calculated [M+H]⁺ = 444.19, found = 444.00.

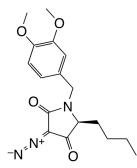

(*S*)-5-benzyl-3-diazo-1-(3,4-dimethoxybenzyl)pyrrolidine-2,4-dione (Star 2c) ¹H NMR (CDCl3, 400 MHz) δ 3.05 (dd, 1H, J = 5.6Hz, J = 14.4Hz), 3.17 (dd, 1H, J = 4Hz, J = 14.4Hz), 3.80 (s, 3H), 3.84 (s, 3H), 5.20 (t, 1H, J = 4.4Hz), 5.18 (d, 1H, J = 14.8Hz), 6.58 - 6.62 (m, 2H), 6.76 (d, 1H, J = 8Hz), 7.08 - 7.10 (m, 2H), 7.23 - 7.29 (m, 3H).

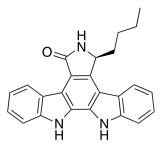

(S)-7-benzyl-6,7,12,13-tetrahydro-5*H*-indolo[2,3-*a*]pyrrolo[3,4-*c*]carbazol-5-one (Star 2) ¹H NMR (d₆ DMSO, 400 MHz) δ 3.02 – 3.08 (m, 2H), 3.29 (dd, 1H, *J* = 5.6Hz, *J* = 13.6Hz), 5.55 (t, 1H, *J* = 4.4Hz), 6.86 – 6.98 (m, 5H), 7.12 (t, 1H, *J* = 7.2Hz), 7.34 (m, 2H), 7.47 (t, 1H, *J* = 7.6Hz), 7.64 (d, 1H, *J* = 8Hz), 7.78 (d, 1H, *J* = 8Hz), 8.29 (d, 1H, *J* = 7.6), 8.45 (s, 1H), 9.04 (d, 1H, *J* = 7.6), 11.26 (s, 1H), 11.56 (s, 1H); ¹³C NMR (d₆ DMSO, 600 MHz) δ 39.03, 57.15, 111.76, 112.62, 114.36, 115.75, 119.29, 119.84, 120.45, 122.28, 122.66, 123.17, 125.44, 125.47, 125.76, 126.08, 126.59, 128.08, 128.61, 130.01, 136.25, 136.91, 139.66, 140.04, 171.99; LCMS: calculated [M+H]⁺ = 402.15, found = 401.97.

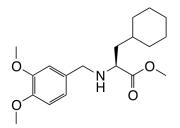

(*S*)-methyl 2-((3,4-dimethoxybenzyl)amino)pentanoate (Star 3a) ¹H NMR (d₆ DMSO, 400 MHz) δ 0.80 (t, 3H, *J* = 8Hz), 1.23 – 1.30 (m, 2H), 1.46 – 1.52 (m, 2H), 2.27 (s, 1H), 3.10 (t, 1H, *J* = 12Hz), 3.42 (d, 1H, *J* = 12Hz), 3.60 (s, 3H), 3.63 (d, 1H, *J* = 12Hz), 3.69 (s, 3H), 3.70 (s, 3H), 6.75 (d, 1H, *J* = 8Hz), 6.82 (d, 1H, *J* = 8Hz), 6.88 (s, 1H); ¹³C NMR (d₆DMSO, 400 MHz) δ 14.35, 19.32, 35.57, 51.33, 51.90, 55.97, 56.15, 60.15, 112.17, 112.33, 120.50, 133.42, 148.30, 149.28, 176.02; LCMS: calculated [M+H]⁺ = 282.16, found = 282.32.

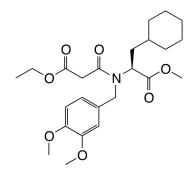

(*S*)-methyl 2-(*N*-(3,4-dimethoxybenzyl)-3-ethoxy-3-oxopropanamido)pentanoate (Star 3b) ¹H NMR (d₆ DMSO, 400 MHz) δ 0.66 – 0.79 (m, 3H), 1.12 – 1.17 (m, 5H), 1.63 – 1.81 (m, 2H), 3.32 – 3.51 (m, 1H), 3.48 (s, 3H), 3.71 (s, 3H), 3.72 (s, 3H), 3.99 – 4.11 (m, 2H), 4.23 – 4.29 (m, 1H), 4.42 – 4.56 (2H), 6.76 – 6.97 (m, 3H); ¹³C NMR (d₆DMSO, 400 MHz) δ 14.41, 14.49, 19.73, 41.72, 51.80, 52.33, 56.03, 56.17, 59.01, 61.25, 111.74, 112.29, 120.03, 129.78, 148.76, 149.40, 167.41, 168.00, 171.51; LCMS: calculated [M+H]⁺ = 396.19, found = 396.32.

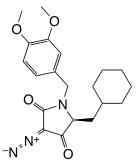

(*S*)-3-diazo-1-(3,4-dimethoxybenzyl)-5-propylpyrrolidine-2,4-dione (Star 3c) ¹H NMR (d_6 DMSO, 400 MHz) δ 0.73 (t, 3H, J = 8Hz), 1.09 – 1.14 (m, 2H), 1.65 – 1.70 (m, 2H), 3.70 (s, 3H), 3.71 (s, 3H), 3.83 (t, 1H, J = 8Hz), 4.18 (d, 1H, J = 16Hz), 4.72 (d, 1H, J = 16Hz), 6.81 – 6.89 (m, 3H); ¹³C NMR (d_6 DMSO, 400 MHz) δ 14.34, 14.73, 16.62, 30.85, 44.37, 56.15, 64.26, 65.56, 112.42, 112.51, 121.00, 129.47, 148.96, 149.49, 162.16, 189.97; LCMS: calculated [M+H]⁺ = 318.14, found = 318.22.

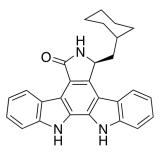

(*S*)-7-propyl-6,7,12,13-tetrahydro-5*H*-indolo[2,3-*a*]pyrrolo[3,4-*c*]carbazol-5-one (Star 3) ¹H NMR (CDCl₃/MeOH, 400 MHz) δ 0.89 (t, 3H, *J* = 8Hz), 1.28-1.32 (m, 1H), 1.50-1.54 (m, 1H), 1.64-1.68 (m, 1H), 3.29 (t, 1H, *J* = 4Hz), 4.95 (dd, 1H, *J* = 4Hz, *J* = 4Hz), 7.21 (t, 1H, *J* = 8Hz), 7.28 (t, 1H, *J* = 8Hz), 7.35 (t, 1H, *J* = 8Hz), 7.43 (t, 2H, *J* = 8Hz), 7.59 (d, 1H, *J* = 8Hz), 7.91 (d, 1H, *J* = 8Hz); ¹³C NMR (CDCl₃/MeOH, 400 MHz) δ 13.64, 18.74, 36.03, 57.32, 110.79, 111.57, 114.20, 116.30, 119.34, 120.07, 121.69, 122.77, 123.23, 125.08, 125.35, 125.38, 125.80, 128.88, 138.04, 139.75, 139.93, 174.30; LCMS: calculated [M+H]⁺ = 354.14, found = 354.2.

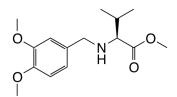

(*S*)-methyl 2-((3,4-dimethoxybenzyl)amino)hexanoate (Star 4a) ¹H NMR (d₆ DMSO, 400 MHz) δ 0.81 (t, 3H, *J* = 8Hz), 1.15 – 1.26 (m, 4H), 1.47 – 1.52 (m, 2H), 2.28 (s, 1H), 3.08 (s, 1H), 3.41 (d, 1H, *J* = 12Hz), 3.59 (s, 3H), 3.64 (d, 1H, *J* = 12Hz), 3.69 (s, 3H), 3.70 (s, 3H), 6.75 (dd, 1H, *J* = 4Hz, *J* = 8Hz), 6.82 (d, 1H, *J* = 8Hz), 6.88 (d, 1H, *J* = 4Hz); ¹³C NMR (d₆DMSO, 400 MHz) δ 14.47, 22.59, 28.27, 33.11, 51.32, 51.92, 55.97, 56.17, 60.38, 112.18, 112.32, 120.50, 133.43, 148.29, 149.27, 176.01; LCMS: calculated [M+H]⁺ = 296.18, found = 296.33.


(*S*)-methyl 2-(*N*-(3,4-dimethoxybenzyl)-3-ethoxy-3-oxopropanamido)hexanoate (Star 4b) ¹H NMR (d₆ DMSO, 400 MHz) δ 0.65 – 0.75 (m, 3H), 1.10 – 1.18 (m, 6H), 1.63 – 1.67 (m, 1H), 1,69 – 1.81 (m, 1H), 3.34 (d, 1H, *J* = 12Hz), 3.50 (s, 3H), 3.54 (d, 1H, *J* = 16Hz), 3.66 – 3.72 (m 6H), 3.99 – 4.07 (m, 2H), 4.20 – 4.27 (m, 1H), 4.43 – 4.58 (m, 2H), 6.75 – 6.97 (3H); ¹³C NMR (d₆DMSO, 400 MHz) δ 14.44, 14.60, 22.65, 28.66, 29.19, 52.34, 56.03, 56.19, 59.27, 61.25, 111.77, 112.31, 120.08, 129.80, 131.36, 148.79, 149.41, 167.40, 168.00, 168.13, 171.52; LCMS: calculated [M+H]⁺ = 410.21, found = 410.32.

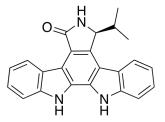

(*S*)-5-butyl-3-diazo-1-(3,4-dimethoxybenzyl)pyrrolidine-2,4-dione (Star 4c) ¹H NMR (d₆ DMSO, 400 MHz) δ 0.73 (t, 3H, *J* = 8Hz), 0.98 – 1.16 (m, 4H), 1.67 – 1.71 (m, 2H), 3.71 (s, 6H), 3.85 (t, 1H, *J* = 4Hz), 4.21 (d, 1H, *J* = 16Hz), 4.68 (d, 1H, *J* = 16Hz), 6.82 (d, 1H, *J* = 8Hz), 6.87 – 6.89 (m, 1H); ¹³C NMR (d₆DMSO, 400 MHz) δ 14.34, 14.74, 21.40, 22.61, 25.17, 28.48, 44.47, 56.14, 56.19, 60.41, 64.44, 65.61, 112.44, 112.54, 121.04, 129.55, 148.97, 149.48, 162.21, 189.98; LCMS: calculated [M+H]⁺ = 332.15, found = 332.26.

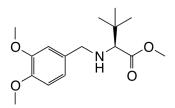

(*S*)-7-butyl-6,7,12,13-tetrahydro-5*H*-indolo[2,3-*a*]pyrrolo[3,4-*c*]carbazol-5-one (Star 4) ¹H NMR (CDCl₃/MeOH, 400 MHz) δ 0.73 (t, 3H, *J* = 8Hz), 1.07-1.29 (m, 5H), 1.39-1.46 (m, 1H), 2.18 (m, 1H), 4.28 (d, 1H, *J* = 8Hz), 7.16 (t, 2H, *J* = 8Hz), 7.22-7.26 (m, 2H), 7.38 (t, 1H, *J* = 8Hz), 7.50 (d, 1H, *J* = 8Hz), 7.72 (d, 1H, 8Hz), 9.02 (d, 1H, *J* = 8Hz); ¹³C NMR (CDCl₃/MeOH, 400 MHz) δ 13.92, 22.56, 22.66, 33.47, 57.40, 110.93, 111.59, 115.97, 119.43, 120.06, 121.79, 122.71, 122.89, 125.03, 125.07, 125.38, 125.49, 128.69, 137.92, 139.37, 139.62, 174.25; LCMS: calculated [M+H]⁺ = 368.17, found = 368.24.

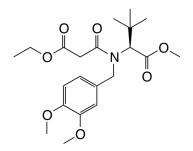

(*S*)-methyl 3-cyclohexyl-2-((3,4-dimethoxybenzyl)amino)propanoate (Star 5a) ¹H NMR (d_6 DMSO, 400 MHz) δ 0.68 – 0.87 (m, 2H), 1.03 – 1.23 (m, 3H), 1.32 – 1.60 (m, 8H), 2.27 (s, 1H), 3.40 (d, 1H, *J* = 12Hz), 3.59 (s, 3H), 3.65 (d, 1H, *J* = 16Hz), 3.69 (s, 3H), 3.70 (s, 3H), 6.73 (d, 1H, *J* = 8Hz), 6.81 (d, 1H, *J* = 12Hz), 6.88 (s, 1H); ¹³C NMR (d_6 DMSO, 400 MHz) δ 26.32, 26.48, 26.70, 32.80, 33.79, 34.31, 51.28, 51.92, 55.93, 56.17, 57.99, 112.10, 112.26, 120.56, 133.42, 148.31, 149.28, 176.40; LCMS: calculated [M+H]⁺ = 336.21, found = 336.69.

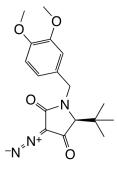

(*S*)-ethyl 3-((3-cyclohexyl-1-methoxy-1-oxopropan-2-yl)(3,4-dimethoxybenzyl) amino)-3-oxopropanoate (Star 5b) ¹H NMR (d₆ DMSO, 400 MHz) δ 0.66 – 0.74 (m, 2H), 0.94 – 1.11 (m, 4H), 1.11 – 1.17 (m, 3H), 1.35 (d, 1H, *J* = 12.8Hz), 1.43 – 1.64 (m, 5H), 1.70 – 1.77 (m, 1H), 3.43 – 3.56 (m, 1H), 3.50 (s, 3H), 3.71 (s, 3H), 3.72 (s, 3H), 4.02 – 4.11 (m, 2H), 4.39 – 4.70 (m, 2H), 6.73 – 6.94 (m, 3H); ¹³C NMR (d₆DMSO, 400 MHz) δ 26.23, 26.42, 32.99, 33.55, 34.38, 37.05, 41.79, 51.35, 52.43, 55.61, 56.03, 56.23, 56.31, 61.25, 111.85, 112.36, 120.16, 129.79, 148.86, 149.45, 167.59, 168.02, 171.84; LCMS: calculated [M+H]⁺ = 450.24, found = 450.33.

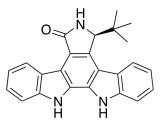
(*S*)-5-(cyclohexylmethyl)-3-diazo-1-(3,4-dimethoxybenzyl)pyrrolidine-2,4-dione (Star 5c) ¹H NMR (CDCl₃, 400 MHz) δ 0.67 – 0.77 (m, 2H), 0.81 – 0.88 (m, 3H), 1.33 – 1.66 (m, 8H), 3.63 (t, 1H, *J* = 8Hz), 3.75 (s, 6H), 3.83 (d, 1H, *J* = 16Hz), 5.03 (d, 1H, *J* = 16Hz), 6.66 – 6.72 (m, 3H); ¹³C NMR (CDCl₃, 400 MHz) δ 26.10, 26.23, 26.31, 33.44, 33.46, 36.80, 44.50, 56.05, 56.08, 61.86, 65.23, 111.34, 111.52, 120.85, 128.24, 149.06, 149.56, 161.92, 189.65; LCMS: calculated [M+H]⁺ = 372.18, found = 372.26.

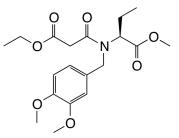

(*S*)-7-(cyclohexylmethyl)-6,7,12,13-tetrahydro-5*H*-indolo[2,3-*a*]pyrrolo[3,4*c*]carbazol-5-one (Star 5) ¹H NMR (CDCl₃/MeOD, 400 MHz) δ 0.76-0.84 (m, 1H), 0.98-1.29 (m, 6H), 1.35-1.41 (m, 2H), 1.52-1.60 (m, 2H), 1.73-1.77 (d, 1H, *J* = 16Hz), 1.96-2.05 (m, 1H), 2.08-2.22 (m, 1H), 4.37-4.69 (m, 1H), 7.10-7.17 (m, 2H), 7.19-7.22 (m, 1H), 7.25-7.36 (m, 2H), 7.42-7.47 (m, 1H), 7.69-7.76 (m, 1H), 7.82 (s, 1H), 9.00-9.07 (m, 1H); ¹³C NMR (CDCl₃/MeOD, 400 MHz) δ 31.52, 34.49, 35.98, 36.72, 42.32, 55.01, 59.51, 87.93, 110.90, 111.53, 113.76, 119.33, 120.05, 121.84, 122.63, 122.98, 124.92, 125.17, 125.29, 125.45, 138.65, 139.39, 139.61, 163.24; LCMS: calculated [M+H]⁺ = 408.20, found = 408.3.

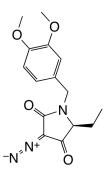

(*S*)-methyl 2-((3,4-dimethoxybenzyl)amino)-3-methylbutanoate (Star 6a) ¹H NMR (d₆ DMSO, 400 MHz) δ 0.83 (d, 3H, *J* = 8Hz), 0.88 (d, 3H, *J* = 8Hz), 1.80 (sep, 1H, *J* = 8Hz), 2.21 (s, 1H), 2.85 (d, 1H, *J* = 8Hz), 3.40 (d, 1H, *J* = 16Hz), 3.61 (s, 3H), 3.69 (d, 1H, *J* = 16Hz), 3.70 (s, 3H), 3.72 (s, 3H), 6.75 (d, 1H, *J* = 8Hz), 6.82 (d, 1H, *J* = 4Hz), 6.90 (s, 1H); ¹³C NMR (d₆DMSO, 400 MHz) δ 19.34, 19.87, 31.66, 51.67, 51.73, 55.92, 55.97, 56.12, 66.36, 112.15, 112.18, 112.25, 120.49, 133.40, 148.33, 149.29, 175.65; LCMS: calculated [M+H]⁺ = 282.16, found = 282.31.

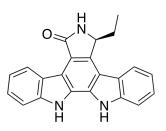

(*S*)-3-diazo-1-(3,4-dimethoxybenzyl)-5-isopropylpyrrolidine-2,4-dione (Star 6c) ¹H NMR (CDCl₃, 400 MHz) δ 0.89 (d, 3H, *J* = 8Hz), 1.06 (d, 3H, *J* = 8Hz), 2.19 – 2.26 (m, 1H), 3.59 (d, 1H, *J* = 4Hz), 3.84 (s, 3H), 3.85 (d, 3H), 3.94 (d, 1H, *J* = 16Hz), 5.14 (d, 1H, 16Hz), 6.73 – 6.80 (m, 3H); ¹³C NMR (CDCl₃, 400 MHz) δ 0.19, 16.14, 18.08, 28.92, 44.55, 56.12, 56.19, 68.02, 111.36, 111.50, 120.85, 128.19, 149.10, 149.65, 162.41, 189.06; LCMS: calculated [M+H]⁺ = 318.14, found = 318.26.

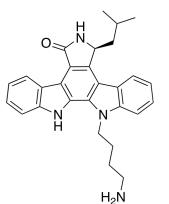

(*S*)-7-isopropyl-6,7,12,13-tetrahydro-5*H*-indolo[2,3-*a*]pyrrolo[3,4-*c*]carbazol-5-one (Star 6) ¹H NMR (d₆ DMSO, 400 MHz) δ 0.24 (d, 3H, *J* = 8Hz), 1.33 (d, 3H, *J* = 8Hz), 2.76-2.83 (m, 1H), 5.19 (s, 1H), 7.20 (t, 1H, *J* = 8Hz), 7.28 (t, 1H, *J* = 8Hz), 7.42 (quin, *J* = 8Hz), 7.69 (d, 1H, *J* = 8Hz). 7.76 (d, 1H, *J* = 8Hz), 8.04 (d, 1H, *J* = 8Hz), 8.54 (s, 1H), 9.20 (d, 1H, *J* = 8Hz), 11.28 (s, 1H), 11.54 (s, 1H); ¹³C NMR (DMSO, 400 MHz) δ 14.32, 21.83, 30.41, 62.00, 112.00, 112.71, 114.25, 115.97, 119.59, 119.80, 120.53, 122.40, 122.83, 123.42, 125.54, 125.74, 126.00, 126.17, 128.85, 137.04, 139.87, 140.08, 173.13; LCMS: calculated [M+H]⁺ = 354.42, found = 354.3.


(*S*)-methyl 2-((3,4-dimethoxybenzyl)amino)-3,3-dimethylbutanoate (Star 7a) ¹H NMR (CDCl₃, 400 MHz) δ 0.93 (s, 9H), 1.82 (br, 1H), 2.87 (s, 1H), 3.45 (d, 1H, *J* = 12Hz), 3.68 (s, 3H), 3.74 (d, 1H, *J* = 12Hz), 3.84 (s, 3H), 3.85 (s, 3H), 6.77 (d, 1H, *J* = 8Hz), 6.80 (dd, 1H, *J* = 8Hz, *J* = 4Hz), 6.91 (d, 1H, *J* = 4Hz); ¹³C NMR (CDCl₃, 400 MHz) δ 26.94, 34.21, 51.22, 52.61, 55.96, 56.09, 69.55, 111.02, 111.60, 120.52, 132.89, 148.19, 149.04, 175.90; LCMS: calculated [M+H]⁺ = 296.18, found = 296.30.

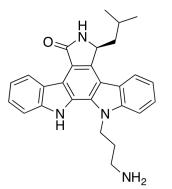

(*S*)-methyl 2-(*N*-(3,4-dimethoxybenzyl)-3-ethoxy-3-oxopropanamido)-3,3dimethylbutanoate (Star 7b) ¹H NMR (CDCl₃, 400 MHz) δ 1.07 (s, 9H), 1.22 (t, 3H, *J* = 8Hz), 3.22 (d, 1H, *J* = 16Hz), 3.40 (d, 1H, *J* = 16Hz), 3.45 (s, 3H), 3.82 (s, 6H), 4.10 – 4.16 (m, 2H), 4.56 (d, 1H, *J* = 16Hz), 4.97 (d, 1H, *J* = 16Hz), 5.12 (br, 1H), 6.60 – 6.64 (m, 2H), 6.78 (d, 1H, *J* = 12Hz); ¹³C NMR (CDCl₃, 400 MHz) δ 14.29, 27.63, 37.06, 42.21, 50.61, 51.64, 56.01, 56.12, 61.62, 63.37, 108.95, 111.50, 117.64, 129.93, 148.37, 149.53, 167.68, 168.65, 170.16; LCMS: calculated [M+H]⁺ = 410.21, found = 410.29.

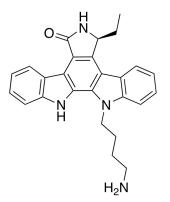

(*S*)-5-(*tert*-butyl)-3-diazo-1- (3,4-dimethoxybenzyl)pyrrolidine-2,4-dione (Star 7c) ¹H NMR (CDCl3, 400 MHz) δ 1.05 (s, 9H), 3.38 (s, 1H), 3.81 (s, 3H), 3.83 (s, 3H), 4.08 (d, 1H, *J* = 16Hz), 5.34 (d, 1H, *J* = 16Hz), 6.67 (s, 1H), 6.69 (d, 1H, *J* = 4Hz), 6.78 (d, 1H, *J* = 8Hz); ¹³C NMR (CDCl3, 400 MHz) δ 27.09, 37.29, 48.46, 56.11, 56.18, 71.70, 77.27, 111.46, 111.47, 120.85, 128.45, 149.03, 149.63, 164.74, 189.54; LCMS: calculated [M+H]⁺ = 332.15, found = 332.20.

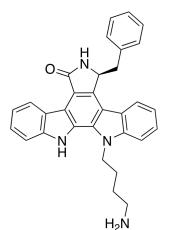

(*S*)-7-(*tert*-butyl)-6,7,12,13-tetrahydro-5*H*-indolo[2,3-*a*]pyrrolo[3,4-*c*]carbazol-5-one (Star 7) ¹H NMR (d₆ DMSO, 400 MHz) δ 0.90 (s, 9H), 5.11 (s, 1H), 7.18-7.22 (m, 2H), 7.37-7.40 (m, 2H), 7.69 (t, 2H, *J* = 8Hz), 8.30 (d, 1H, *J* = 8Hz), 8.46 (s, 1H), 9.22 (d,1H, *J* = 8Hz), 11.27 (s, 1H), 11.50 (s, 1H); ¹³C NMR (DMSO, 400 MHz) δ 27.64, 39.55, 65.65, 111.96, 112.35, 116.05, 116.18, 119.59, 119.65, 120.88, 123.40, 123.81, 123.95, 125.43, 125.82, 126.22, 126.56, 128.90, 135.79, 140.03, 140.09, 172.93; LCMS: calculated [M+H]⁺ = 368.17, found = 368.3.


(*S*)-methyl 2-(*N*-(3,4-dimethoxybenzyl)-3-ethoxy-3-oxopropanamido)butanoate (Star 8b) ¹H NMR (CDCl₃, 400 MHz) δ 0.80 (t, 3H, *J* = 6Hz), 1.21 (t, 3H, *J* = 4Hz), 1.77 – 1.82 (m, 1H), 1.95 – 2.00 (m, 1H), 3.39 (d, 1H, *J* = 8Hz), 3.58 (s, 3H), 3.79 – 3.86 (m, 6H), 4.10 – 4.16 (m, 2H), 4.41 – 4.59 (m, 3H), 6.70 – 6.86 (m, 3H); ¹³C NMR (CDCl₃, 400 MHz) δ 10.93, 11.31, 14.22, 41.78, 42.20, 46.39, 51.03, 52.20, 52.45, 56.03, 61.66, 61.78, 62.24, 110.03, 110.86, 111.42, 111.74, 119.05, 120.50, 128.85, 148.74, 149.53, 167.58, 171.41; LCMS: [M+H]⁺ = 382.18, found = 382.18.


(*S*)-3-diazo-1-(3,4-dimethoxybenzyl)-5-ethylpyrrolidine-2,4-dione (Star 8c) ¹H NMR (d₆ DMSO, 400 MHz) δ 0.66 (t, 3H, *J* = 8Hz), 1.72 – 1.78 (m, 2H), 3.70 (s, 6H), 3.83 (t, 1H, *J* = 4Hz), 4.14 (d, 1H, *J* = 16Hz), 4.75 (d, 1H, *J* = 16Hz), 6.81 – 6.89 (m, 3H); ¹³C NMR (DMSO, 400 MHz) δ 1.81, 7.68, 21.75, 44.25, 56.16, 64.86, 112.42, 112.50, 120.98, 129.40, 148.93, 149.47, 162.30, 189.92; LCMS: [M+H]⁺ = 304.12, found = 304.30.


(*S*)-7-ethyl-6,7,12,13-tetrahydro-5*H*-indolo[2,3-*a*]pyrrolo[3,4-*c*]carbazol-5-one (Star 8) ¹H NMR (d₆ DMSO, 400 MHz) δ 0.83 (t, 3H, *J* = 8Hz), 1.74 (m, 1H), 2.31-2.36 (m, 1H), 5.20 (d, 1H, *J* = 8Hz), 7.20 (t, 1H, *J* = 8Hz), 7.28 (t, 1H, *J* = 8Hz), 7.38-7.46 (m, 2H), 7.68 (d, 1H, *J* = 8Hz), 7.75 (d, 1H, *J* = 8Hz), 8.08 (d, 1H, *J* = 8Hz), 9.21 (d, 1H, *J* = 8Hz), 11.36 (s, 1H), 11.62 (s, 1H); ¹³C NMR (DMSO, 400 MHz) δ 9.89, 27.23, 57.91, 111.97, 112.67, 114.35, 116.08, 119.58, 119.62, 120.55, 122.33, 122.81, 123.45, 125.57, 125.98, 126.21, 128.80, 137.32, 139.88, 140.07, 172.51; LCMS: [M+H]⁺ = 340.14, found = 340.18.


(*S*)-12-(4-aminobutyl)-7-isobutyl-6,7,12,13-tetrahydro-5*H*-indolo[2,3-*a*]pyrrolo[3,4*c*]carbazol-5-one (Star 12) ¹H NMR (d₆ DMSO, 400 MHz) δ 0.81 (d, 3H, *J* = 8 Hz), 1.21 (d, 3H, *J* = 4 Hz), 1.32 (s, 1H), 1.49 – 1.62 (m, 2H), 1.84 – 1.90 (m, 2H), 2.03 – 2.08 (m, 1H), 2.21 (t, 1H, *J* = 12 Hz), 2.66 – 2.75 (m, 2H), 3.67 (s, 1H), 4.95 (b, 2H), 5.25 (d, 1H, *J* = 8 Hz), 7.21 (t, 1H, *J* = 8 Hz), 7.34 (t, 1H, *J* = 8 Hz), 7.42 (t, 1H, *J* = 8 Hz), 7.51 (t, 1H, *J* = 8 Hz), 7.70 (d, 1H, *J* = 4 Hz), 7.82 (d, 1H, *J* = 8 Hz), 8.03 (d, 1H, *J* = 8 Hz), .40 (s, 1H), 8.79 (s, 1H), 9.32 (d, 1H, *J* = 4 Hz); ¹³C NMR (d₆ DMSO, 400 MHz) δ 22.30, 24.67, 25.60, 25.87, 28.13, 44.19, 44.79, 55.24, 110.90, 112.13, 114.30, 117.67, 119.18, 119.63, 120.62, 122.24, 122.31, 122.85, 125.50, 125.62, 125.85, 126.01, 129.40, 138.45, 140.80, 172.16; LCMS: calculated [M+H]⁺ = 439.24, found = 439.32.


(*S*)-13-(3-aminopropyl)-7-isobutyl-6,7,12,13-tetrahydro-5*H*-indolo[2,3-*a*]pyrrolo[3,4*c*]carbazol-5-one (Star 16)) ¹H NMR (d₆DMSO, 400 MHz) δ 0.81 (d, 3H, *J* = 4Hz), 1.21 (d, 3H, *J* = 4Hz), 2.00 – 2.11 (m, 2H), 2.19 – 2.25 (m, 2H), 2.75 (t, 2H, *J* = 6Hz), 4.94 (t, 2H, *J* = 6Hz), 5.26 (d, 1H, *J* = 8Hz), 7.24 (t, 1H, *J* = 8Hz), 7.32 (t, 1H, *J* = 8Hz), 7.45 (t, 2H, *J* = 8Hz), 7.75 (t, 2H, *J* = 8Hz), 8.03 (d, 1H, *J* = 8Hz), 8.80 (s, 1H), 9.36 (d, 1H, *J* = 8Hz); ¹³C NMR (d₆DMSO, 400 MHz) δ 22.32, 24.69, 25.86, 30.81, 37.42, 44.74, 55.28, 61.56, 94.62, 109.86, 112.91, 115.49, 116.52, 119.13, 119.76, 120.61, 122.09, 122.18, 123.02, 125.66, 125.93, 126.36, 127.15, 128.34, 138.65, 140.69, 141.11, 172.13; LCMS: calculated [M+H]⁺ = 425.23 , found = 425.34.

(*S*)-12-(3-aminopropyl)-7-isobutyl-6,7,12,13-tetrahydro-5*H*-indolo[2,3-*a*]pyrrolo[3,4*c*]carbazol-5-one (Star 17) ¹H NMR (d₆ DMSO, 400 MHz) δ 0.80 (d, 3H, *J* = 4Hz), 1.21 (d, 3H, *J* = 4Hz), 1.99 – 2.05 (m, 1H), 2.10 – 2.13 (m, 2H), 2.18 – 2.24 (m, 1H), 2.76 (t, 2H, *J* = 6Hz), 4.97 (t, 2H, *J* = 6Hz), 5.26 (d, 1H, *J* = 8Hz), 7.21 (t, 1H, *J* = 8Hz), 7.35 (t, 1H, *J* = 8Hz), 7.42 (t, 1H, *J* = 8Hz), 7.52 (t, 1H, *J* = 8Hz), 7.68 (d, 1H, *J* = 8Hz), 7.84 (d, 1H, *J* = 8Hz), 8.04 (d, 1H, *J* = 8Hz), 8.80 (s, 1H), 9.32 (d, 1H, *J* = 8Hz); ¹³C NMR (d₆DMSO, 400 MHz) δ 22.32, 24.67, 25.85, 30.82, 37.46, 42.01, 44.77, 55.26, 110.75, 112.08, 114.27, 117.73, 119.27, 119.65, 120.75, 122.27, 122.36, 122.96, 125.71, 125.75, 125.88, 126.06, 129.61, 138.45, 140.86, 140.91, 172.15; LCMS: calculated [M+H]⁺ = 425.23, found = 425.36

(*S*)-12-(4-aminobutyl)-7-ethyl-6,7,12,13-tetrahydro-5*H*-indolo[2,3-*a*]pyrrolo[3,4*c*]carbazol-5-one (Star 18) ¹H NMR (d₆ DMSO, 400 MHz) δ 0.84 (t, 3H, *J* = 6.8 Hz), 1.53 – 1.58 (m, 2H), 1.65 – 1.70 (m, 1H), 1.91 (t, 2H, *J* = 7.2Hz), 2.34 – 2.40 (m, 1H), 2.70 (t, 2H, *J* = 6.8Hz), 3.69 – 3.72 (m, 1H), 7.21 (t, 1H, *J* = 8Hz), 7.30 (t, 1H, *J* = 8Hz), 7.40 (t, 1H, *J* = 7.6Hz), 7.51 (t, 1H, *J* = 7.6Hz), 7.71 (d, 1H, *J* = 8.4Hz), 7.81 (d, 1H, *J* = 8.4Hz), 8.09 (d, 1H, *J* = 8.4), 8.65 (s, 1H), 9.32 (d, 1H, *J* = 8Hz); ¹³C NMR (d₆DMSO, 400 MHz) δ 10.03, 25.67, 27.27, 28.12, 44.18, 57.78, 108.33, 110.66, 110.69, 110.75, 110.80, 112.12, 114.43, 114.47, 117.50, 119.68, 122.35, 125.54, 129.37, 137.36, 140.77, 140.79, 155.45, 165.90, 169.63, 172.33; LCMS: calculated [M+H]⁺ = 411.21, found = 411.32.

(*S*)-12-(4-aminobutyl)-7-benzyl-6,7,12,13-tetrahydro-5*H*-indolo[2,3-*a*]pyrrolo[3,4*c*]carbazol-5-one (Star 19) ¹H NMR (d₆ DMSO, 400 MHz) δ 1.53 – 1.59 (m, 2H), 1.90 – 1.94 (m, 2H), 2.70 – 2.73 (m, 2H), 3.20 – 3.24 (m, 2H), 3.56 – 3.59 (m, 2H), 4.93 – 4.98 (m, 2H), 5.58 (s 1H), 6.90 (d, 2H, *J* = 8Hz), 6.98 – 7.01 (m, 3H), 7.14 (t, 1H, *J* = 8Hz), 7.36 – 7.40 (m, 2H), 7.55 (t, 1H, *J* = 8Hz), 7.68 (d, 1H, *J* = 8Hz), 7.86 (d, 1H, *J* = 8Hz), 8.32 (d, 1H, *J* = 8Hz), 8,49 (s, 1H), 9.18 (d, 1H, *J* = 8Hz); ¹³C NMR (d₆DMSO, 400 MHz) δ 26.14, 28.00, 31.36, 39.25, 44.21, 57.18, 82.56, 94.61, 110.88, 112.11, 114.66, 117.39, 119.51, 120.06, 120.77, 122.38, 122.56, 122.75, 125.51, 125.72, 125.98, 126.81, 128.31, 129.29, 130.14, 136.53, 137.13, 140.76, 140.83, 166.36, 172.00; LCMS: calculated [M+H]⁺ = 473.23, found = 473.30.

References

- 1. Levinson, N. M., Seeliger, M. A., Cole, P. A. & Kuriyan, J. Structural basis for the recognition of c-Src by its inactivator Csk. *Cell* **134**, 124–134 (2008).
- Wood, J. L., Petsch, D. T., Stoltz, B. M. & Hawkins, E. M. Total synthesis and protein kinase activity of C (7) methyl derivatives of K252a. *Synthesis* SI, 1529-1533 (1999).
- 3. Kleinschroth, J., Hartenstein, J. & Rudolph, C. Non-glycosidic/non-aminoalkylsubstituted indolocarbazoles as inhibitors of protein kinase C. *Bioorg Med Chem Lett* **3**, 1959-1964 (1993).
- 4. Seeliger, M. A. *et al.* High yield bacterial expression of active c-Abl and c-Src tyrosine kinases. *Protein Sci.* **14**, 3135–3139 (2005).
- 5. Bishop, A. C., Shah, K., Liu, Y., Witucki, L. & Kung, C. Design of allele-specific inhibitors to probe protein kinase signaling. *Curr Biol* **8**, 257-266 (1998).
- 6. Dalva, M. B. *et al.* EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. *Cell* **103**, 945–956 (2000).
- 7. Zhang, C. *et al.* Structure-guided Inhibitor Design Expands the Scope of Analog-Sensitive Kinase Technology. *ACS Chem. Biol.* **8**, 1931-1938 (2013).
- 8. Li, M. Z. & Elledge, S. J. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. *Nat. Methods* **4**, 251–256 (2007).
- 9. Breitenlechner, C. B. *et al.* Crystal structures of active SRC kinase domain complexes. *J. Mol. Biol.* **353**, 222–231 (2005).
- 10. McCoy, A. J., Grosse-Kunstleve, R. W. & Adams, P. D. Phaser crystallographic software. J. Appl. Cryst. 40, 658-674 (2007).
- 11. Emsley, P., Lohkamp, B. & Scott, W. G. Features and development of Coot. *Acta Cryst.* **D66**, 486-501 (2010).
- 12. Adams, P. D. *et al.* PHENIX: a comprehensive Python-based system for macromolecular structure solution. *Acta Cryst.* **D66**, 213–221 (2010).