Supporting Information:

Staurosporine-derived inhibitors broaden the scope of analogsensitive kinase technology

Michael S. Lopez ${ }^{1,6}$, Jonathan W. Choy ${ }^{1,6}$, Ulf Peters ${ }^{1}$, Martin L. Sos ${ }^{1}$, David O. Morgan ${ }^{2}$ and Kevan M. Shokat ${ }^{1,5 *}$
${ }^{1}$ Howard Hughes Medical Institute and Department of Cellular \& Molecular Pharmacology, University of California, San Francisco, California 94143, USA
${ }^{2}$ Department of Physiology and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
${ }^{5}$ Department of Chemistry, University of California, Berkeley, California 94720, USA
${ }^{6}$ Graduate Program in Chemistry and Chemical Biology, University of California, San Francisco, California 94158, USA

Supplemental Figures

K252a
Figure S1. Structure of K252a

Figure S2. Overlay of X-ray co-crystal structures of Star 12/Src-AS1 with staurosporine $/ \mathrm{Src}^{-W T}{ }^{1}$. A. Rings F and A of both inhibitors occupy identical positions and maintain the hinge-binding interaction between ring F and the backbone amides of residues. B. Star 12 rings C and D project below the plane of staurosporine and allow interaction of the N12 butylamine with Asn 391.

Figure S3. Representative sequence alignment of kinases from diverse families and organisms highlights the conservation of Asn391.

Figure S4. Inhibition of v-Src-AS1 by 1NM-PP1 or Star 12 in mouse 3 T 3 cells.

Figure S5. $5 \mu \mathrm{M}$ Star 18, Star 12, and Star 19 were tested for activity against Pkd-WT, PKD-AS1, and Pkd1-AS2 transiently transfected in 293T cells.

Figure S6. Star 12 and Star 19 were tested for inhibition of auto-phosphorylation of RetAS2 and Ret-WT in mouse 3T3 cells.

Supplemental Tables

Data Collection	
Space Group	P1
Unit Cell Dimensions	$\begin{gathered} a=42.34, b=63.34, c=73.62, \alpha=100.34, \\ \beta=90.81, \gamma=89.95 \end{gathered}$
Number protein molceules/assymetric unit	2
X-ray Source	A.L.S. 8.2.1
Wavelength (\AA)	1.000
Resolution ($\mathbf{(}$)	2.73
Total Reflections	29599
Unique Reflections	17909
I/ σ	9.600
Completeness (\%)	98.7
Model Refinement	
Redolution (\AA)	43.5-2.73
Number of Reflection Rwork/Rfree	27320/1467
Rwork/Rfree	0.2378/0.2897
Rmsd from ideality in bond length (\AA)	0.005
Rmsd from ideality in Angles (${ }^{\circ}$)	0.9
Number of Protein Atoms In Model	4220
Number of Drug atoms In Model	66
Favored/Allowed/Outliers in the Ramachandran Plot (\%)	87.2/12.9/0

Table S1. Data Collection and refinement statistics for X-ray co-crystal structure of Star 12 bound to Src-AS1 kinase domain.

SSKB-Adapta Screen

[ATP] Tested ($\mu \mathrm{M}$)	Kinase Tested	\% Inhibition		\% Inhibition mean	Difference Between Data Points \| Point 1 Point 2	Test Compound Interference		Z'	Kinase Part\# / Lot\#
		$\begin{gathered} \text { Point } \\ 1 \end{gathered}$	$\begin{gathered} \text { Point } \\ 2 \\ \hline \end{gathered}$			Donor	Acceptor		
100	CAMK1 (CaMK1) CDK7/cyclin	-20	-7	-14	13	Pass	Pass	0.77	PV4391/36046
100	H/MNAT1	0	-3	-2	3	Pass	Pass	0.86	PV3868/893276
100	CDK9/cyclin T1 CHUK (IKK	-11	-1	-6	10	Pass	Pass	0.70	PV4131/950376
100	alpha)	-12	-12	-12	0	Pass	Pass	0.84	PV4310/447027
100	DAPK1	4	-4	0	8	Pass	Pass	0.75	PV3969/32654
100	GSG2 (Haspin)	-30	-2	-16	28	Pass	Pass	0.65	PV5708/532062
100	IRAK1	-12	-6	-9	5	Pass	Pass	0.70	PV4403/586648
100	LRRK2	-21	-11	-16	10	Pass	Pass	0.78	PV4873/768523
100	LRRK2 G2019S	10	9	10	0	Pass	Pass	0.85	PV4881/742572
100	NUAK1 (ARK5) PI4KA (PI4K	-8	12	2	20	Pass	Pass	0.71	PV4127/36741
10	alpha) PI4KB (PI4K	-15	-14	-14	1	Pass	Pass	0.85	PV5689/1033749
100	beta) PIK3C2A (PI3K-	-12	-20	-16	8	Pass	Pass	0.65	PV5277/493329
100	C2 alpha) PIK3C2B (PI3K-	-5	0	-2	4	Pass	Pass	0.80	PV5586/514135
100	C2 beta) PIK3C3	-9	20	6	29	Pass	Pass	0.71	PV5374/927501
100	(hVPS34) PIK3CA/PIK3R1 (p110 alpha/p85	-16	-7	-11	9	Pass	Pass	0.79	PV5126/461254
100	alpha) PIK3CD/PIK3R1 (p110 delta/p85	1	0	0	1	Pass	Pass	0.84	PV4788/616250
100	alpha) PIK3CG (p110	-12	-7	-9	5	Pass	Pass	0.65	PV5273/722462
100	gamma)	-9	-21	-15	12	Pass	Pass	0.66	PV4786/663536
100	SPHK1	6	17	12	11	Pass	Pass	0.78	PV5214/417324
100	SPHK2	-14	7	-4	21	Pass	Pass	0.54	PV5216/884914

SSBK-LanthaScreen Binding Assay

Kinase Tested	$\begin{gathered} \% \\ \text { Displacement } \end{gathered}$		\% Displacement mean	DifferenceBetweenDataPoints\|Point 1-Point 2\|	Test Compound Interference		Z'	Kinase Part\# / Lot\#
	$\begin{gathered} \text { Point } \\ 1 \end{gathered}$	$\begin{gathered} \text { Point } \\ 2 \end{gathered}$			Donor	Acceptor		
ACVR2B	6	18	12	12	Pass	Pass	0.76	PV6049/745099
BMPR1A (ALK3)	13	-4	4	17	Pass	Pass	0.65	PV6038/670004
CAMKK1 (CAMKKA)	14	-3	5	17	Pass	Pass	0.76	PV4670/406782
CAMKK2 (CaMKK beta)	22	17	20	5	Pass	Pass	0.85	PV4206/35319
CDK8/cyclin C	9	9	9	0	Pass	Pass	0.84	PV4402/36848
CDK9/cyclin K	17	9	13	8	Pass	Pass	0.74	PV4335/35774
CLK4	19	23	21	4	Pass	Pass	0.73	PV3839/827665
DDR1	-1	5	2	6	Pass	Pass	0.78	PV6047/693053
DDR2	0	-5	-2	5	Pass	Pass	0.77	PV3870/916220
DMPK	13	12	13	1	Pass	Pass	0.89	PV3784/34024
EPHA3	19	9	14	10	Pass	Pass	0.71	PV3359/30916
EPHA7	12	6	9	5	Pass	Pass	0.69	PV3689/33790
KIT V654A	8	3	6	5	Pass	Pass	0.64	PV4132/35129
LIMK1	5	6	6	1	Pass	Pass	0.70	PV4337/367810
LIMK2	15	8	11	7	Pass	Pass	0.87	PV3860/36861
MAP2K1 (MEK1) S218D S222D	-1	11	5	12	Pass	Pass	0.80	P3099/38541
MAP2K3 (MEK3)	-15	-7	-11	8	Pass	Pass	0.66	PV3662/357368
MAP2K6 (MKK6) S207E T211E	7	6	6	1	Pass	Pass	0.84	PV3293/42371
MAP3K10 (MLK2)	10	5	8	5	Pass	Pass	0.87	PV3877/34554
MAP3K11 (MLK3)	9	10	10	2	Pass	Pass	0.88	PV3788/625672
MAP3K14 (NIK)	4	6	5	2	Pass	Pass	0.73	PV4902/840992
MAP3K2 (MEKK2)	10	11	10	1	Pass	Pass	0.66	PV3822/34361

MAP3K3 (MEKK3)	17	-6	5	23	Pass	Pass	0.64	PV3876/702480
MAP3K5 (ASK1)	7	17	12	10	Pass	Pass	0.66	PV3809/666419
MAP3K7/MAP3K7IP1 (TAK1-TAB1)	15	3	9	12	Pass	Pass	0.80	PV4394/452618
MKNK2 (MNK2)	5	8	6	3	Pass	Pass	0.69	PV5607/811381
MLCK (MLCK2)	19	11	15	8	Pass	Pass	0.78	PV3835/34028
MYLK (MLCK)	20	21	21	0	Pass	Pass	0.86	PV4339/36152
NLK	16	3	9	13	Pass	Pass	0.75	PV4309/35323
RIPK2	7	0	4	7	Pass	Pass	0.92	PV4213/35334
SLK	7	5	6	3	Pass	Pass	0.84	PV3830/34390
STK16 (PKL12)	9	13	11	4	Pass	Pass	0.62	PV4311/36847
STK17A (DRAK1)	16	17	16	1	Pass	Pass	0.83	PV3783/33789
STK33	14	7	10	7	Pass	Pass	0.86	PV4343/708765
TAOK3 (JIK)	7	10	8	3	Pass	Pass	0.59	PV3652/32935
TEC	6	3	4	4	Pass	Pass	0.79	PV3269/29194
TGFBR1 (ALK5)	4	2	3	2	Pass	Pass	0.83	PV5837/562479
TNK2 (ACK)	10	10	10	0	Pass	Pass	0.89	PV4807/407338
TTK	6	-2	2	7	Pass	Pass	0.78	PV3792/759947
WEE1	11	3	7	8	Pass	Pass	0.58	PV3817/722460
WNK2	9	2	6	8	Pass	Pass	0.71	PV4341/35976
ZAK	3	1	2	2	Pass	Pass	0.87	PV3882/34603

SSKB-Z'-Lyte Screen

100	AXL	35	35	35	1	Pass	Pass	Pass	0.84	PV3971/748353
100	BLK	1	7	4	7	Pass	Pass	Pass	0.86	PV3683/33635
100	BMX	-3	0	-2	3	Pass	Pass	Pass	0.92	PV3371/953336
100	BRAF	-20	3	-8	23	Pass	Pass	Pass	0.76	PV3848/34486
100	$\begin{aligned} & \text { BRAF } \\ & \text { V599E } \end{aligned}$	-14	-7	-10	7	Pass	Pass	Pass	0.83	PV3849/910409
100	BRSK1 (SAD1)	-9	3	-3	12	Pass	Pass	Pass	0.93	PV4333/36097
100	BTK	-3	-6	-5	3	Pass	Pass	Pass	0.81	PV3363/619547
100	CAMK1D (CaMKI delta)	-1	0	-1	1	Pass	Pass	Pass	0.61	PV3663/104298
100	CAMK2A (CaMKII alpha)	1	8	5	7	Pass	Pass	Pass	0.85	PV3142/28192
100	CAMK2B (CaMKII beta)	7	21	14	14	Pass	Pass	Pass	0.64	PV4205/35330
100	CAMK2D (CaMKII delta)	28	19	24	9	Pass	Pass	Pass	0.90	PV3373/31647
100	CAMK4 (CaMKIV)	-3	-18	-10	15	Pass	Pass	Pass	0.62	PV3310/980091
100	$\begin{gathered} \text { CDC42 } \\ \text { BPA } \\ \text { (MRCKA) } \end{gathered}$	6	11	9	5	Pass	Pass	Pass	0.78	PV4398/36844
100	$\begin{gathered} \text { CDC42 } \\ \text { BPB } \\ \text { (MRCKB) } \end{gathered}$	0	22	11	22	Pass	Pass	Pass	0.53	PV4399/36845
100	$\begin{gathered} \text { CDK1/cyclin } \\ \text { B } \end{gathered}$	-2	5	2	7	Pass	Pass	Pass	0.94	PV3292/873341
100	$\underset{\text { A }}{\substack{\text { CDK2/cyclin } \\ \hline}}$	9	1	5	8	Pass	Pass	Pass	0.75	PV3267/884904
100	CDK5/p25	-3	-3	-3	0	Pass	Pass	Pass	0.77	PV4676/474298
100	CDK5/p35	-1	4	2	5	Pass	Pass	Pass	0.86	PV3000/25348
100	CHEK1 (CHK1)	12	10	11	2	Pass	Pass	Pass	0.76	P3040/28702
100	CHEK2	6	7	7	1	Pass	Pass	Pass	0.87	PV3367/794466

	(CHK2)									
100	CLK1	3	7	5	4	Pass	Pass	Pass	0.88	PV3315/943590
100	CLK2	2	5	3	3	Pass	Pass	Pass	0.84	PV4201/271879
100	CLK3	4	4	4	0	Pass	Pass	Pass	0.90	PV3826/939820
100	CSF1R (FMS)	3	6	4	3	Pass	Pass	Pass	0.87	PV3249/66239
100	CSK	-15	-3	-9	12	Pass	Pass	Pass	0.83	P2927/933640
100	CSNK1A1 (CK1 alpha 1)	-13	0	-7	13	Pass	Pass	Pass	0.91	PV3850/784631
100	CSNK1D (CK1 delta)	-2	2	0	4	Pass	Pass	Pass	0.95	PV3665/843704
100	CSNK1E (CK1 epsilon)	-4	-3	-4	1	Pass	Pass	Pass	0.78	PV3500/807880
100	CSNK1G1 (CK1 gamma 1)	-7	8	0	15	Pass	Pass	Pass	0.91	PV3825/34360
100	CSNK1G2 (CK1 gamma 2)	2	6	4	4	Pass	Pass	Pass	0.96	PV3499/31770
100	CSNK1G3 (CK1 gamma 3)	-2	1	-1	3	Pass	Pass	Pass	0.94	PV3838/34380
100	CSNK2A1 (CK2 alpha 1)	-7	-3	-5	4	Pass	Pass	Pass	0.87	PV3248/29242
100	CSNK2A2 (CK2 alpha 2)	6	5	5	1	Pass	Pass	Pass	0.89	PV3624/32653
100	DAPK3 (ZIPK)	15	4	9	11	Pass	Pass	Pass	0.62	PV3686/827666
100	DCAMKL2 (DCK2)	-2	8	3	10	Pass	Pass	Pass	0.81	PV4297/869931
100	DNA-PK	-6	5	0	11	Pass	Pass	Pass	0.82	PV5864/628328
100	DYRK1A	6	5	6	1	Pass	Pass	Pass	0.86	PV3785/683159
100	DYRK1B	-1	4	2	5	Pass	Pass	Pass	0.69	PV4649/714104
100	DYRK3	-13	-9	-11	4	Pass	Pass	Pass	0.89	PV3837/290370

100	DYRK4	2	8	5	6	Pass	Pass	Pass	0.93	PV3871/37361
100	EEF2K	0	0	0	1	Pass	Pass	Pass	0.93	PV4559/104826
100	EGFR (ErbB1)	-7	-2	-5	5	Pass	Pass	Pass	0.61	PV3872/742577
100	EGFR (ErbB1) L858R	-15	-15	-15	0	Pass	Pass	Pass	0.73	PV4128/279551
100	EGFR (ErbB1) L861Q	-5	2	-1	7	Pass	Pass	Pass	0.67	PV3873/34562
100	EGFR (ErbB1) T790M	5	9	7	4	Pass	Pass	Pass	0.58	PV4803/552604
	EGFR (ErbB1) T790M									
100	L858R	9	6	7	3	Pass	Pass	Pass	0.89	PV4879/350247
100	EPHA1	0	1	0	2	Pass	Pass	Pass	0.89	PV3841/629216
100	EPHA2	-5	0	-2	5	Pass	Pass	Pass	0.95	PV3688/36904
100	EPHA4	-3	-1	-2	2	Pass	Pass	Pass	0.88	PV3651/32933
100	EPHA5	0	0	0	1	Pass	Pass	Pass	0.90	PV3840/34383
100	EPHA8	-8	-5	-6	4	Pass	Pass	Pass	0.94	PV3844/36870
100	EPHB1	-5	-4	-4	1	Pass	Pass	Pass	0.91	PV3786/34225
100	EPHB2	-2	-3	-2	2	Pass	Pass	Pass	0.92	PV3625/32656
100	EPHB3	1	-1	0	2	Pass	Pass	Pass	0.92	PV3658/33066
100	EPHB4	-7	-1	-4	7	Pass	Pass	Pass	0.95	PV3251/29241
100	$\begin{aligned} & \text { ERBB2 } \\ & \text { (HER2) } \end{aligned}$	-1	-8	-5	7	Pass	Pass	Pass	0.79	PV3366/100711
100	$\begin{aligned} & \text { ERBB4 } \\ & \text { (HER4) } \end{aligned}$	-8	4	-2	12	Pass	Pass	Pass	0.87	PV3626/32657
100	FER	-1	2	0	3	Pass	Pass	Pass	0.72	PV3806/38496
100	FES (FPS)	-1	13	6	14	Pass	Pass	Pass	0.86	PV3354/35734
100	FGFR1	1	8	5	8	Pass	Pass	Pass	0.70	PV3146/28427
100	FGFR2	-17	-23	-20	6	Pass	Pass	Pass	0.58	PV3368/31517
100	FGFR3	-9	12	1	21	Pass	Pass	Pass	0.69	PV3145/28459

	FGFR3									
100	K650E	3	7	5	4	Pass	Pass	Pass	0.84	PV4392/36445
100	FGFR4	0	3	1	2	Pass	Pass	Pass	0.65	P3054/26967
100	FGR	-1	1	0	2	Pass	Pass	Pass	0.91	P3041/26670
100	FLT1 (VEGFR1)	-16	2	-7	18	Pass	Pass	Pass	0.64	PV3666/33924
100	FLT3	39	44	41	5	Pass	Pass	Pass	0.90	PV3182/101290
100	$\begin{gathered} \text { FLT3 } \\ \text { D835Y } \end{gathered}$	48	61	55	13	Pass	Pass	Pass	0.74	PV3967/308809
100	FLT4 (VEGFR3)	-5	-3	-4	2	Pass	Pass	Pass	0.81	PV4129/38454
100	$\begin{aligned} & \text { FRAP1 } \\ & \text { (mTOR) } \end{aligned}$	-10	-3	-6	8	Pass	Pass	Pass	0.84	PV4753/873345
100	FRK (PTK5)	-5	0	-3	5	Pass	Pass	Pass	0.87	PV3874/34553
100	FYN	-3	6	1	9	Pass	Pass	Pass	0.85	P3042/1046027
100	GRK4	10	7	8	3	Pass	Pass	Pass	0.72	PV3807/618977
100	GRK5	-3	6	2	9	Pass	Pass	Pass	0.90	PV3824/879275
100	GRK6	-1	9	4	11	Pass	Pass	Pass	0.81	PV3661/37437
100	GRK7	-3	0	-2	3	Pass	Pass	Pass	0.83	PV3823/34013
100	GSK3A (GSK3 alpha)	-4	-1	-2	3	Pass	Pass	Pass	0.81	PV6126/862449
100	GSK3B (GSK3 beta)	14	15	14	2	Pass	Pass	Pass	0.90	PV3365/371501
100	HCK	-6	5	0	11	Pass	Pass	Pass	0.85	PV6128/862448
100	HIPK1 (Myak)	-2	-2	-2	0	Pass	Pass	Pass	0.81	PV4561/725394
100	HIPK2	-4	3	0	6	Pass	Pass	Pass	0.95	PV5275/452552
100	$\begin{aligned} & \text { HIPK3 } \\ & \text { (YAK1) } \end{aligned}$	-6	5	-1	11	Pass	Pass	Pass	0.87	PV4209/35332
100	HIPK4	-2	3	1	6	Pass	Pass	Pass	0.75	PV3852/719847
100	IGF1R	-7	-2	-5	5	Pass	Pass	Pass	0.91	PV3250/924345
100	$\begin{aligned} & \text { IKBKB (IKK } \\ & \text { beta) } \end{aligned}$	3	4	3	1	Pass	Pass	Pass	0.93	PV3836/38273

100	IKBKE (IKK epsilon)	6	3	5	2	Pass	Pass	Pass	0.80	PV4875/853377
100	INSR	0	3	1	4	Pass	Pass	Pass	0.89	PV3781/34033
100	INSRR (IRR)	8	9	8	1	Pass	Pass	Pass	0.86	PV3808/34272
100	IRAK4	9	23	16	13	Pass	Pass	Pass	0.70	PV3362/788123
100	ITK	-4	-3	-4	1	Pass	Pass	Pass	0.88	PV3875/919688
100	JAK1	-5	-2	-4	3	Pass	Pass	Pass	0.95	PV4774/877058
100	JAK2	-2	-3	-3	2	Pass	Pass	Pass	0.87	PV4210/565233
100	$\begin{gathered} \text { JAK2 JH1 } \\ \text { JH2 } \end{gathered}$	12	11	11	1	Pass	Pass	Pass	0.72	PV4393/311662
100	$\begin{aligned} & \text { JAK2 JH1 } \\ & \text { JH2 V617F } \end{aligned}$	2	-1	0	3	Pass	Pass	Pass	0.81	PV4336/463344
100	JAK3	6	1	4	6	Pass	Pass	Pass	0.89	PV3855/101796:
100	KDR (VEGFR2)	-6	-4	-5	2	Pass	Pass	Pass	0.89	PV3660/36431
100	KIT	4	2	3	1	Pass	Pass	Pass	0.82	P3081/401941
100	KIT T6701	1	3	2	2	Pass	Pass	Pass	0.83	PV3869/34504
100	LCK	-3	-1	-2	2	Pass	Pass	Pass	0.91	P3043/850070
100	LTK (TYK1)	-1	-3	-2	2	Pass	Pass	Pass	0.92	PV4651/538791
100	LYN A	0	0	0	0	Pass	Pass	Pass	0.89	P2906/469157
100	LYN B	-2	0	-1	2	Pass	Pass	Pass	0.88	P2907/21076
100	MAP2K1 (MEK1)	12	21	17	9	Pass	Pass	Pass	0.81	PV3303/814863
100	MAP2K2 (MEK2)	6	13	10	7	Pass	Pass	Pass	0.78	PV3615/32519
100	MAP2K6 (MKK6)	-4	4	0	7	Pass	Pass	Pass	0.69	PV3318/884909
100	MAP3K8 (COT)	13	13	13	1	Pass	Pass	Pass	0.81	PV4313/103375i
100	MAP3K9 (MLK1)	24	31	27	6	Pass	Pass	Pass	0.81	PV3787/762486
100	$\begin{gathered} \text { MAP4K2 } \\ \text { (GCK) } \end{gathered}$	18	6	12	12	Pass	Pass	Pass	0.75	PV4211/685403
100	MAP4K4	2	2	2	1	Pass	Pass	Pass	0.86	PV3687/792773

	(HGK)									
100	$\begin{gathered} \text { MAP4K5 } \\ \text { (KHS1) } \end{gathered}$	-6	3	-2	9	Pass	Pass	Pass	0.77	PV3682/33456
100	MAPK1 (ERK2)	8	13	10	5	Pass	Pass	Pass	0.91	PV3313/648841
100	MAPK10 (JNK3)	18	30	24	13	Pass	Pass	Pass	0.84	PV4563/939823
100	MAPK11 (p38 beta)	-1	0	0	1	Pass	Pass	Pass	0.79	PV3679/36343
100	MAPK12 (p38 gamma)	-2	0	-1	2	Pass	Pass	Pass	0.74	PV3654/904349
100	MAPK13 (p38 delta)	5	7	6	2	Pass	Pass	Pass	0.58	PV3656/36817
100	MAPK14 (p38 alpha)	-8	-2	-5	6	Pass	Pass	Pass	0.90	PV3304/37819
100	MAPK14 (p38 alpha) Direct	-5	-6	-5	0	Pass	Pass	Pass	0.91	PV3304/37819
100	MAPK3 (ERK1)	8	14	11	6	Pass	Pass	Pass	0.78	PV3311/35296
100	MAPK8 (JNK1)	0	5	2	4	Pass	Pass	Pass	0.77	PV3319/762483
100	MAPK9 (JNK2)	3	5	4	2	Pass	Pass	Pass	0.89	PV3620/32388
100	MAPKAPK2	5	-1	2	6	Pass	Pass	Pass	0.63	PV3317/36559
100	MAPKAPK3	7	11	9	4	Pass	Pass	Pass	0.86	PV3299/38895
100	MAPKAPK5 (PRAK)	-3	2	-1	5	Pass	Pass	Pass	0.80	PV3301/880117
100	MARK1 (MARK)	6	11	9	5	Pass	Pass	Pass	0.82	PV4395/877060
100	MARK2	2	-6	-2	8	Pass	Pass	Pass	0.82	PV3878/877056
100	MARK3	-6	1	-2	7	Pass	Pass	Pass	0.87	PV4819/423469
100	MARK4	7	19	13	13	Pass	Pass	Pass	0.83	PV3851/304213
100	MATK (HYL)	-7	-2	-5	4	Pass	Pass	Pass	0.94	PV3370/31553
100	MELK	29	25	27	4	Pass	Pass	Pass	0.88	PV4823/315179

100	MERTK (cMER)	2	0	1	2	Pass	Pass	Pass	0.92	PV3627/32658
100	MET (cMet)	21	9	15	12	Pass	Pass	Pass	0.77	PV3143/625156
100	$\begin{gathered} \text { MET } \\ \text { M1250T } \end{gathered}$	-3	-1	-2	3	Pass	Pass	Pass	0.85	PV3968/34718
100	MINK1	4	3	4	1	Pass	Pass	Pass	0.93	PV3810/100710
100	MKNK1 (MNK1)	6	8	7	2	Pass	Pass	Pass	0.74	PV6023/652363
100	MST1R (RON)	-4	-1	-2	2	Pass	Pass	Pass	0.93	PV4314/765277
100	MST4	17	20	19	3	Pass	Pass	Pass	0.79	PV3690/33785
100	MUSK	11	5	8	6	Pass	Pass	Pass	0.64	PV3834/36795
100	$\begin{gathered} \text { MYLK2 } \\ \text { (skMLCK) } \end{gathered}$	18	12	15	6	Pass	Pass	Pass	0.60	PV3757/36606
100	NEK1	-1	3	1	4	Pass	Pass	Pass	0.72	PV4202/735797
100	NEK2	4	0	2	5	Pass	Pass	Pass	0.65	PV3360/549845
100	NEK4	6	2	4	3	Pass	Pass	Pass	0.89	PV4315/924342
100	NEK6	4	6	5	2	Pass	Pass	Pass	0.78	PV3353/30778
100	NEK7	-5	-1	-3	4	Pass	Pass	Pass	0.73	PV3833/34387
100	NEK9	8	2	5	6	Pass	Pass	Pass	0.86	PV4653/38162
100	NTRK1 (TRKA)	-2	10	4	12	Pass	Pass	Pass	0.65	PV3144/792772
100	NTRK2 (TRKB)	3	9	6	6	Pass	Pass	Pass	0.95	PV3616/35706
100	NTRK3 (TRKC)	9	26	17	17	Pass	Pass	Pass	0.86	PV3617/708766
100	PAK1	0	3	1	3	Pass	Pass	Pass	0.83	PV3820/35463
100	$\begin{gathered} \text { PAK2 } \\ \text { (PAK65) } \end{gathered}$	7	5	6	2	Pass	Pass	Pass	0.84	PV4565/545403
100	PAK3	25	7	16	18	Pass	Pass	Pass	0.61	PV3789/34118
100	PAK4	-3	-5	-4	1	Pass	Pass	Pass	0.83	PV4212/35324
100	PAK6	14	10	12	4	Pass	Pass	Pass	0.76	PV3502/31794
100	PAK7 (KIAA1264)	0	1	1	1	Pass	Pass	Pass	0.59	PV4405/36846

100	PASK	14	2	8	12	Pass	Pass	Pass	0.80	PV3972/762487
100	PDGFRA (PDGFR alpha)	15	12	14	3	Pass	Pass	Pass	0.82	PV3811/682476
100	PDGFRA D842V	-1	10	4	11	Pass	Pass	Pass	0.86	PV4203/269691
100	$\begin{aligned} & \text { PDGFRA } \\ & \text { T674I } \end{aligned}$	26	12	19	13	Pass	Pass	Pass	0.63	PV3847/35891
100	PDGFRA V561D	11	15	13	4	Pass	Pass	Pass	0.79	PV4680/38719
100	PDGFRB (PDGFR beta)	-1	-2	-2	2	Pass	Pass	Pass	0.76	P3082/27567
100	PDK1	8	18	13	10	Pass	Pass	Pass	0.81	P3001/35371
100	PDK1 Direct	9	6	8	2	Pass	Pass	Pass	0.73	P3001/35371
100	PHKG1	16	14	15	2	Pass	Pass	Pass	0.79	PV3853/555813
100	PHKG2	-7	6	0	13	Pass	Pass	Pass	0.71	PV4555/37321
100	PIM1	60	60	60	1	Pass	Pass	Pass	0.73	PV3503/811382
100	PIM2	9	5	7	4	Pass	Pass	Pass	0.84	PV3649/32930
100	PKN1 (PRK1)	20	19	19	1	Pass	Pass	Pass	0.76	PV3790/356552
100	PLK1	-6	-5	-5	2	Pass	Pass	Pass	0.80	PV3501/39441
100	PLK2	-2	10	4	12	Pass	Pass	Pass	0.84	PV4204/38798
100	PLK3	0	-11	-6	11	Pass	Pass	Pass	0.61	PV3812/38812
100	PRKACA (PKA)	-3	-2	-2	1	Pass	Pass	Pass	0.76	P2912/37377
100	PRKCA (PKC alpha)	-3	0	-1	3	Pass	Pass	Pass	0.82	P2232/38479
100	PRKCB1 (PKC beta I)	6	13	10	7	Pass	Pass	Pass	0.80	P2291/299686
100	PRKCB2 (PKC beta II)	-1	8	4	9	Pass	Pass	Pass	0.84	P2251/306499
100	PRKCD (PKC delta)	-1	0	-1	1	Pass	Pass	Pass	0.91	P2293/39038

	PRKCE (PKC epsilon) 100	-13	-9	-11	3	Pass	Pass	Pass	0.79	P2292/37717
	PRKCG (PKC gamma)	6	8	7	3					

100	ROS1	-2	0	-1	2	Pass	Pass	Pass	0.87	PV3814/479684
100	$\begin{gathered} \text { RPS6KA1 } \\ \text { (RSK1) } \end{gathered}$	5	12	9	7	Pass	Pass	Pass	0.86	PV3680/880119
100	$\begin{aligned} & \text { RPS6KA2 } \\ & \text { (RSK3) } \end{aligned}$	19	21	20	1	Pass	Pass	Pass	0.84	PV3846/34468
100	$\begin{aligned} & \text { RPS6KA3 } \\ & \text { (RSK2) } \end{aligned}$	24	22	23	2	Pass	Pass	Pass	0.72	PV3323/378153
100	RPS6KA4 (MSK2)	9	8	8	1	Pass	Pass	Pass	0.80	PV3782/990109
100	RPS6KA5 (MSK1)	-3	7	2	10	Pass	Pass	Pass	0.71	PV3681/33702
100	RPS6KA6 (RSK4)	31	35	33	4	Pass	Pass	Pass	0.58	PV4557/37496
100	RPS6KB1 (p70S6K)	5	5	5	1	Pass	Pass	Pass	0.88	PV3815/38944
100	$\begin{gathered} \text { SGK } \\ \text { (SGK1) } \end{gathered}$	-12	-21	-17	8	Pass	Pass	Pass	0.76	PV3818/34366
100	SGK2	6	11	9	5	Pass	Pass	Pass	0.84	PV3858/34433
100	$\begin{gathered} \text { SGKL } \\ \text { (SGK3) } \end{gathered}$	-10	9	0	18	Pass	Pass	Pass	0.82	PV3859/38954
100	SNF1LK2	-1	18	9	20	Pass	Pass	Pass	0.70	PV4792/719848
100	SRC	9	10	10	1	Pass	Pass	Pass	0.85	P3044/26726
100	SRC N1	-4	0	-2	4	Pass	Pass	Pass	0.85	P2904/21068
100	SRMS (Srm)	9	3	6	5	Pass	Pass	Pass	0.85	PV4214/860773
100	SRPK1	19	18	18	0	Pass	Pass	Pass	0.59	PV4215/35335
100	SRPK2	15	20	18	4	Pass	Pass	Pass	0.70	PV3829/725393
100	STK22B (TSSK2)	1	5	3	4	Pass	Pass	Pass	0.66	PV3622/32396
100	STK22D (TSSK1)	2	2	2	0	Pass	Pass	Pass	0.87	PV3505/947248
100	STK23 (MSSK1)	-11	-11	-11	1	Pass	Pass	Pass	0.74	PV3880/889510
100	STK24 (MST3)	-3	-8	-6	6	Pass	Pass	Pass	0.56	PV3650/32932
100	$\begin{aligned} & \text { STK25 } \\ & \text { (YSK1) } \end{aligned}$	-6	-5	-5	0	Pass	Pass	Pass	0.85	PV3657/33163

100	STK3 (MST2)	-2	2	0	4	Pass	Pass	Pass	0.82	PV4805/371195
100	STK4 (MST1)	-1	-1	-1	1	Pass	Pass	Pass	0.85	PV3854/38395
100	SYK	2	2	2	0	Pass	Pass	Pass	0.93	PV3857/756818
100	TAOK2 (TAO1)	0	-3	-2	3	Pass	Pass	Pass	0.79	PV3760/759946
100	TBK1	-5	-2	-4	3	Pass	Pass	Pass	0.92	PV3504/857011
100	TEK (Tie2)	2	4	3	2	Pass	Pass	Pass	0.89	PV3628/34398
100	TXK	0	-4	-2	3	Pass	Pass	Pass	0.73	PV5860/750657
100	TYK2	-7	-5	-6	2	Pass	Pass	Pass	0.57	PV4790/884908
100	TYRO3 (RSE)	15	16	16	1	Pass	Pass	Pass	0.89	PV3828/68475
100	YES1	-2	5	1	8	Pass	Pass	Pass	0.87	P3078/27228
100	ZAP70	-3	9	3	12	Pass	Pass	Pass	0.95	P2782/843705

Table S2. Kinase Inhibitor Profiling Data. 1 $\mu \mathrm{M}$ Star 12 was analyzed for inhibitory activity against 308 human kinases using SelectScreen® Profiling Services from Life Technologies. The inhibitor was tested against each kinase in duplicate and average values were plotted in Figure 4. The LanthaScreen Binding Assay was used if there was not an activity assay (Z'Lyte or Adapta Screens) available for a particular kinase. Experimental details for each kinase and each assay can be found at http://www.lifetechnologies.com/us/en/home/products-and-services/services/custom-services/screening-and-profiling-services/selectscreen-profiling-service/selectscreen-kinase-profiling-service.html.

Supplemental Schemes

Scheme S1. Synthetic approach ${ }^{2}$ for construction of staralog derivatives. Diazolactam derivatives are synthesized form appropriate commercially available L-amino acid methylesters. Biindole is prepared in two steps from 2-alkynyl aniline. Indolocarbazole is formed via a rhodium catalyzed coupling of the diazolactam and biindole building blocks.

minor isomer
major:minor ~ 5:1 (25-50\% combined yield)

Scheme S2. Synthetic approach ${ }^{3}$ for installing N12 and N13 substituents. Major product is alkylation at N12 and minor product is alkylation at N13. 3,4-dimethoxybenzyl group as well as other Y-protecting groups (Boc, etc.) were removed with TFA in methylene chloride and scavenger dimethoxy benzene. Regiochemistry of the alkylations were determined by 1 H NMR (described in ref. 3) and relative shift by liquid chromatography where the major isomer (N12-alkylated) migrated more quickly than the minor isomer (N13-alkylated). Finally, the regiochemistry was further confirmed by X-ray cocrystallography of Star 12 (Figure 3) and Star 16 (unpublished data) bound to Src-AS1.

Supplemental Methods

In Vitro Kinases Assays:

Src Kinase. 6xHis-tagged Src (257-533), Src-AS1 (T338G), and Src-AS2 (T338A) were expressed in BL-21 E. coli cells as previously described ${ }^{4}$. Kinase activity was assayed under the following conditions: 2 nM Src kinase, 50 mM TRIS (pH 8.0), $10 \mathrm{mM} \mathrm{MgCl}{ }_{2}$, $100 \mu \mathrm{M} \mathrm{Src}$ peptide substrate (IYGEFKKK), $100 \mu \mathrm{M}$ ATP, $0.5 \mu \mathrm{Ci}^{32} \mathrm{P}-\mathrm{ATP}, 2 \% \mathrm{DMSO}$, and variable concentrations of inhibitors ($5 \mu \mathrm{M}$ to 1.2 nM). $2 \mu \mathrm{~L}$ of the reaction mixture was placed onto P81 paper at various time points and evaporated under a heat lamp for 5 min. The P81 paper was washed with 1% phosphoric acid, dried, and exposed to phosphor-imaging screen. Radioactivity was measured using a Typhoon fluorescence imager (Molecular Dynamics) and IC_{50} values were determined by fitting the data to a sigmoid function in Prism 4.0 (GraphPad Software).

CK1 δ and CK1ع. Casein Kinase 1δ (catalog \# PV3665) and Casein Kinase 1ε (catalog \# PV3500) were purchased from Life Technologies and assayed under the following conditions: 50 mM TRIS (pH 8.0), $10 \mathrm{mM} \mathrm{MgCl} 2,0.4 \mathrm{mg} / \mathrm{mL}$ casein, 2.5 mM DTT, 2% DMSO, 5 nM kinase, $100 \mu \mathrm{M}$ ATP, $0.1 \mathrm{mg} / \mathrm{mL}$ BSA, $1 \mu \mathrm{Ci}^{32} \mathrm{P}$-ATP and various concentrations of inhibitors ($5 \mu \mathrm{M}$ to 1.2 nM). $2 \mu \mathrm{~L}$ of the reaction mixture was placed onto P81 paper at various time points and evaporated under a heat lamp for 5 min . The P81 paper was washed with 1% phosphoric acid, dried, and exposed to phosphor-imaging screen. Radioactivity was measured using a Typhoon fluorescence imager (Molecular Dynamics) and IC_{50} values were determined by fitting the data to a sigmoid function in Prism 4.0 (GraphPad Software).

PKD1 and PKD2. PKD1 (catalog \# PV3791) and PKD2 (catalog \# PV3758) were purchased from Life Technologies and assayed under the following conditions: 50 mM TRIS (pH 8.0), 10 mM MgCl 2 , 2 mM DTT, 2% DTT, $0.1 \mathrm{mg} / \mathrm{mL}$ BSA, $100 \mu \mathrm{M}$ ATP, 3 $\mu \mathrm{Ci}{ }^{32} \mathrm{P}$-ATP, 7 nM kinase and various concentrations of inhibitors ($5 \mu \mathrm{M}$ to 1.2 nM). 2 $\mu \mathrm{L}$ of the reaction mixture was placed onto P81 paper at various time points and evaporated under a heat lamp for 5 min . The P81 paper was washed with 1% phosphoric
acid, dried, and exposed to phosphor-imaging screen. Radioactivity was measured using a Typhoon fluorescence imager (Molecular Dynamics) and IC_{50} values were determined by fitting the data to a sigmoid function in Prism 4.0 (GraphPad Software).

RET and ACK. RET (catalog \# PV3819) and ACK (catalog \# PV4807) were purchased from Life Technologies and assayed under the following conditions: 50 mM TRIS (pH 8.0), $10 \mathrm{mM} \mathrm{MgCl} 2,2 \mathrm{mM}$ DTT, $0.1 \mathrm{mg} / \mathrm{mL}$ BSA, 2% DMSO, $200 \mu \mathrm{M}$ Abltide, 10 nM kinase, $100 \mu \mathrm{M}$ ATP, $1 \mu \mathrm{Ci}{ }^{32} \mathrm{P}$-ATP and variable concentrations of inhibitors ($5 \mu \mathrm{M}$ to 1.2 nM). $2 \mu \mathrm{~L}$ of the reaction mixture was placed onto P 81 paper at various time points and evaporated under a heat lamp for 5 min . The P81 paper was washed with 1% phosphoric acid, dried, and exposed to phosphor-imaging screen. Radioactivity was measured using a Typhoon fluorescence imager (Molecular Dynamics) and IC_{50} values were determined by fitting the data to a sigmoid function in Prism 4.0 (GraphPad Software).

EPHA1 and PTK6. EPHA1 (catalog \# 3841) and PTK6 (catalog \# 3291) were purchased from Life Technologies and assayed under the following conditions: 50 mM TRIS (pH 8.0), $10 \mathrm{mM} \mathrm{MgCl} 2,2.5 \mathrm{mM}$ DTT, $0.1 \mathrm{mg} / \mathrm{mL} \mathrm{BSA}, 2 \% \mathrm{DMSO}, 0.2 \mathrm{mg} / \mathrm{mL}$ poly[Glu, Tyr] 4:1, 2 nM kinase, $100 \mu \mathrm{M}$ ATP, $1 \mu \mathrm{Ci}^{32} \mathrm{P}$-ATP and variable concentrations of inhibitors ($5 \mu \mathrm{M}$ to 1.2 nM). $2 \mu \mathrm{~L}$ of the reaction mixture was placed onto P81 paper at various time points and evaporated under a heat lamp for 5 min . The P81 paper was washed with 1% phosphoric acid, dried, and exposed to phosphor-imaging screen. Radioactivity was measured using a Typhoon fluorescence imager (Molecular Dynamics) and IC_{50} values were determined by fitting the data to a sigmoid function in Prism 4.0 (GraphPad Software).

Cellular Kinases Assays:

v-Src-WT and v-Src-AS1

NIH-3T3 cell lines transformed with v-Src gatekeeper variants were prepared using the procedure of Bishop et al. ${ }^{5} .5 \times 10^{5}$ cells were seeded in each well of a 6 -well dish and grown overnight at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$ in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% Fetal Bovine Serum (FBS). The next day the medium was
removed and replaced with 1.5 ml of fresh DMEM ($+10 \%$ FBS) containing inhibitor and a final concentration of 1% DMSO. The cells were incubated with drug medium for 1.5 hours, washed with cold PBS, and lysed with $150 \mu \mathrm{~L}$ buffer (50 mM Tris (pH 7.4), 150 $\mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ EDTA, 1 mM EGTA, $1 \mathrm{mM} \mathrm{Na} 3 \mathrm{VO}_{4}, 10 \mathrm{mM}$ sodium- β glycerophosphate, 1% triton, $50 \mathrm{mM} \mathrm{NaF}, 5 \mathrm{mM}$ sodium pyrophosphate, 0.27 M sucrose, 50 mM benzamidine, 1 complete mini protease inhibitor tablet (Roche), 1 mM PMSF, 1 PhosSTOP (Roche) phosphatase inhibitor tablet, $0.1 \mathrm{mg} / \mathrm{ml}$ RNAse A, and $0.1 \mathrm{mg} / \mathrm{ml}$ DNAse I), normalized for concentration and analyzed by Western blot for global phosphotyrosine levels (4G10, Millipore, 1:5000) and β-actin (β-actin Antibody, Cell Signaling, 1:1000).

EphA4-WT and EphA4-AS1

3×10^{5} HEK-293T cells were seeded into each well of a six-well tissue culture plate and grown in 2 mL DMEM ($+10 \% \mathrm{FBS}$) at $37^{\circ} \mathrm{C}$ under $5 \% \mathrm{CO}_{2}$ for $12-18 \mathrm{hrs}$. pCS2+ plasmids containing full length EphA4-WT or EphA4-AS1(T640G) were transfected into HEK 293 T cells using Lipofectamine ${ }^{\circledR}$, LTX and PLUS reagent (Life Technologies) and the cells returned to $37^{\circ} \mathrm{C} 5 \% \mathrm{CO}_{2}$ incubator for $12-18 \mathrm{hrs}$. The next day the medium was removed and replaced with 1.5 ml of fresh DMEM ($+10 \%$ FBS) containing inhibitor and a final concentration of 1% DMSO. The cells were incubated with drug medium for 1.5 hours, washed with cold PBS, and lysed with $150 \mu \mathrm{~L}$ buffer (50 mM Tris (pH 7.4), 150 $\mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ EDTA, 1 mM EGTA, $1 \mathrm{mM} \mathrm{Na} 3 \mathrm{VO}_{4}, 10 \mathrm{mM}$ sodium- β glycerophosphate, 1% triton, $50 \mathrm{mM} \mathrm{NaF}, 5 \mathrm{mM}$ sodium pyrophosphate, 0.27 M sucrose, 50 mM benzamidine, 1 complete mini protease inhibitor tablet (Roche), 1 mM PMSF, 1 PhosSTOP (Roche) phosphatase inhibitor tablet, $0.1 \mathrm{mg} / \mathrm{ml}$ RNAse A, and $0.1 \mathrm{mg} / \mathrm{ml}$ DNAse I), normalized for concentration and the proteins were separated by SDS-PAGE. Next, the proteins were transferred to nitrocellulose and probed with pEph (provided by Greenberg Lab ${ }^{6}, 1: 1000$) and total EphA4 (anti-EphA4, Santa Cruz Biotechnology, 1:1000) primary antibodies, and fluorescent secondary antibodies (LICOR, anti-rabbit IgG, 800 nm). Phospho-Eph and total EphA4 were imaged and quantified using a LI-COR Odyssey Quantitative Quantitative Imaging System. The ratio of phospho-Eph/Total Eph
was plotted as a function of drug concentration and the error represents the standard error from the mean (SEM) for three experiments.

Pkd1-WT, Pkd1-AS1, and Pkd1-AS2

3×10^{5} HEK-293T cells were seeded into each well of a six-well tissue culture plate and grown in 2 mL DMEM ($+10 \% \mathrm{FBS}$) at $37^{\circ} \mathrm{C}$ under $5 \% \mathrm{CO}_{2}$ for $12-18 \mathrm{hrs}$. Venus-Pkd1WT, Venus-Pkd1-AS1 (M665G), or Venus-Pkd1-AS2 (M665A) ${ }^{7}$ were transfected into HEK 293 T cells using Lipofectamine ${ }^{\circledR}$, LTX and PLUS reagent (Life Technologies) and the cells returned to $37^{\circ} \mathrm{C} 5 \% \mathrm{CO}_{2}$ incubator for $12-18 \mathrm{hrs}$. The next day the medium was removed and replaced with 1.5 ml of fresh DMEM ($+10 \%$ FBS) containing inhibitor and a final concentration of 1% DMSO. The cells were incubated with drug medium for 1.5 hours, washed with cold PBS, and lysed with $150 \mu \mathrm{~L}$ buffer (50 mM Tris (pH 7.4), 150 $\mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ EDTA, 1 mM EGTA, $1 \mathrm{mM} \mathrm{Na} 3 \mathrm{VO}_{4}, 10 \mathrm{mM}$ sodium- β glycerophosphate, 1% triton, $50 \mathrm{mM} \mathrm{NaF}, 5 \mathrm{mM}$ sodium pyrophosphate, 0.27 M sucrose, 50 mM benzamidine, 1 complete mini protease inhibitor tablet (Roche), 1 mM PMSF, 1 PhosSTOP (Roche) phosphatase inhibitor tablet, $0.1 \mathrm{mg} / \mathrm{ml}$ RNAse A, and $0.1 \mathrm{mg} / \mathrm{ml}$ DNAse I), normalized for concentration and analyzed by Western blot for pS916 Pkd1 (Cell Signaling \# 2051, 1:1000) and total Pkd1 (Cell Signaling \# 2052, 1:1000).

Kif5b-Ret-WT and Kif5b-Ret-AS2

The KIF5B-RET WT cDNA was cloned into pBABE-Puro vectors using SLIC-cloning ${ }^{8}$ and the V804A-AS mutation was introduced by site-directed mutagenesis. Replicationincompetent retroviruses were produced in Phoenix-Eco HEK 293T cells. Supernatant was filtered and used at 1:2 dilutions for transduction of NIH3T3 cells that were selected with puromycin $(1.0 \mu \mathrm{~g} / \mathrm{ml}) .5 \times 10^{5}$ cells were seeded in each well of a 6 -well dish and grown overnight at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$ in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% Fetal Bovine Serum (FBS) and puromycin. The next day the medium was removed and replaced with 1.5 ml of fresh DMEM $(+10 \%$ FBS, $+1 \mu / \mathrm{mL}$
puromycin) containing inhibitor and a final concentration of 1% DMSO. The cells were incubated with drug medium for 1.5 hours, washed with cold PBS, and lysed with $150 \mu \mathrm{~L}$ buffer (50 mM Tris (pH 7.4), $150 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ EDTA, 1 mM EGTA, 1 mM $\mathrm{Na}_{3} \mathrm{VO}_{4}, 10 \mathrm{mM}$ sodium- β-glycerophosphate, 1% triton, $50 \mathrm{mM} \mathrm{NaF}, 5 \mathrm{mM}$ sodium pyrophosphate, 0.27 M sucrose, 50 mM benzamidine, 1 complete mini protease inhibitor tablet (Roche), 1 mM PMSF, 1 PhosSTOP (Roche) phosphatase inhibitor tablet, 0.1 $\mathrm{mg} / \mathrm{ml}$ RNAse A, and $0.1 \mathrm{mg} / \mathrm{ml}$ DNAse I), normalized for concentration and analyzed by Western blot for Ret autophosphorylation (anti-pY905, Cell Signaling \# 3221, 1:1000) and total Ret (anti-Ret, Cell Signaling \# 3220, 1:1000).

Crystalization and Data Collection

Prior to crystallization, purified c-Src-AS1 was applied to a S200 gel filtration column. Pooled fractions were concentrated to $3-10 \mathrm{mg} / \mathrm{mL}$ and mixed with Star 12 (1:1.3 ratio of protein:inhibitor) in $100 \mathrm{mM} \mathrm{NaCl}, 50 \mathrm{mM}$ Tris [pH 8.0], 5% glycerol, 1 mM DTT, and 4% DMSO. Hanging drops containing $1 \mu \mathrm{~L}$ of kinase-inhibitor complexes were mixed with equal volume of well buffer containing 8% PEG $4 \mathrm{~K}, 50 \mathrm{mM} \mathrm{NaAc}, 100 \mathrm{mM}$ MES [pH 6.5] and grown at $14^{\circ} \mathrm{C}$ to yield c-Src-AS1-Star 12 crystals. Crystals were cryoprotected in well buffer supplemented with 20% glycerol and flash frozen in liquid nitrogen. Diffraction data were collected at $-170^{\circ} \mathrm{C}$ and processing was carried out using HKL2000 (HKL Research Inc.). The structure was solved by molecular replacement using $1 \mathrm{YOJ}^{9}$ lacking the activation segment, helix $\alpha \mathrm{C}$, and ligands as the search model in the program PHASER ${ }^{10}$. Molecular replacement solutions were modified and refined with alternate cycles of manual fitting and building into $|2 \mathrm{Fo}-\mathrm{Fc}|$ and composite omit electron density maps using Coot ${ }^{11}$. Refinement of the structures was carried out using Phenix ${ }^{12}$. Data collection and refinement statistics are shown in supplementary Table S1. All structural figures were prepared with PYMOL (The PyMOL Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC). Structure has been deposited in the Protein Data Bank under ID code 4 MCV .

Chemical Synthesis

General Methods: Reactions were performed in flame-dried flasks under argon with magnetic stirring. All ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian Innova 400 spectrometer and referenced to solvent peaks.chemical shifts are reported in $\delta(\mathrm{ppm})$ as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) or br (broad). Low resolution mass spectra (LC/ESI-MS) were recorded on a Waters Micromass ZQ equipped with a Waters 2695 Separations Module and a XTerra MS C18 3.5 mm column (Waters).

Pinacolone was freshly distilled before use and all other commercial reagents were used without further purification. All RP-HPLC were performed on a Varian ProStar solvent delivery system equipped with a Zorbax $300-\mathrm{SB} \mathrm{C} 18$ column using $\mathrm{H}_{2} \mathrm{O}+0.1 \%$ formic acid and $\mathrm{CH} 3 \mathrm{CN}+0.1 \%$ formic acid ($1-100 \%$ gradient) and monitoring at 260 nm .

Compound Characterization

2,2'-(buta-1,3-diyne-1,4-diyl)dianiline ${ }^{1} \mathrm{H}$ NMR (d_{6} DMSO, 400 MHz) $\delta 5.60$ (s, 2H), $6.48(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 6.68(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.07(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.19(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{d}_{6} \mathrm{DMSO}, 400 \mathrm{MHz}$) $\delta 79.79,81.53,104.83,115.30,117.07,131.95,133.78$, 152.80; LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=233.10$, found $=233.22$.

$\mathbf{1 H} \boldsymbol{H}, \mathbf{1} \boldsymbol{H}-\mathbf{2}, \mathbf{2}^{\prime}$-biindole ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{d}_{6} \mathrm{DMSO}, 400 \mathrm{MHz}\right) \delta 6.89$ (s, 2H), 6.98 (t, 2H, $J=$ $8 \mathrm{~Hz}), 7.08(\mathrm{t}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 7.37(\mathrm{~d}, 2 \mathrm{H}, J=4 \mathrm{~Hz}), 7.53(\mathrm{~d}, 2 \mathrm{H}, J=4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{d}_{6} \mathrm{DMSO}, 400 \mathrm{MHz}\right) \delta 99.05,111.69,120.04,120.67,122.33,129.08,132.05,137.55$; LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=233.10$, found $=233.18$.

(S)-methyl 2-((3,4-dimethoxybenzyl)amino)-4-methylpentanoate (Star 1a) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{d}_{6} \mathrm{DMSO}, 400 \mathrm{MHz}\right) \delta 0.75(\mathrm{~d}, 3 \mathrm{H}, J=2 \mathrm{~Hz}), 0.82(\mathrm{~d}, 3 \mathrm{H}, J=2 \mathrm{~Hz}), 1.30-1.38(\mathrm{~m}$, $2 \mathrm{H}), 1.66-1.76(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 2 \mathrm{H}), 3.13(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 3.43(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}), 3.62$ (d, 1H, $J=16 \mathrm{~Hz}$), $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 6.75(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 6.82(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz})$, $6.89(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{d}_{6} \mathrm{DMSO}, 400 \mathrm{MHz}\right) \delta 22.58,23.34,25.02,42.68,50.30,51.33$, $55.92,58.82,112.11,112.18,112.32,120.55,133.39,148.34,149.28,176.31$; LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=296.18$, found $=296.33$.

(S)-methyl 2-(N-(3,4-dimethoxybenzyl)-3-ethoxy-3-oxopropanamido)-4methylpentanoate (Star 1b) ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{d}_{6} \mathrm{DMSO}, 400 \mathrm{MHz}\right) \delta 0.71(\mathrm{~d}, 3 \mathrm{H}, J=4 \mathrm{~Hz})$, $0.77(\mathrm{~d}, 3 \mathrm{H}, J=4 \mathrm{~Hz}), 1.13-1.20(3 \mathrm{H}), 1.46-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.75(\mathrm{~m}, 1 \mathrm{H}), 3.50$ $(\mathrm{s}, 3 \mathrm{H}), 3.67(\mathrm{~d}, 2 \mathrm{H}, J=4 \mathrm{~Hz}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 4.01-4.12(\mathrm{~m}, 2 \mathrm{H}), 6.73-6.95$ $(\mathrm{m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{d}_{6} \mathrm{DMSO}, 400 \mathrm{MHz}\right) 14.58,14.62,22.72,23.17,25.09,38.56,41.77$, $51.19,52.40,55.54,56.04,56.18,61.25,111.75,112.32,129.73,148.81,149.32,167.59$, $167.99,171.72$; LCMS: calculated $[\mathrm{M}+\mathrm{Na}]^{+}=432.20$, found $=432.33$.

(S)-3-diazo-1-(3,4-dimethoxybenzyl)-5-isobutylpyrrolidine-2,4-dione (Star 1c) ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.80(\mathrm{~d}, 3 \mathrm{H}, J=8 \mathrm{~Hz}), 0.85(\mathrm{~d}, 3 \mathrm{H}, J=8 \mathrm{~Hz}), 1.57-1.64(\mathrm{~m}$, $2 \mathrm{H}), 1.78-1.88(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}), 5.12(\mathrm{~d}, 1 \mathrm{H}, J=$ $16 \mathrm{~Hz}), 6.72-6.77(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.17,38.25,44.46,56.10$, $56.15,62.16,111.36,111.55,120.92,128.17,149.13,149.63,161.92,189.72$; LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=331.15$, found $=331.34$.

(S)-7-isobutyl-6,7,12,13-tetrahydro-5H-indolo[2,3-a]pyrrolo[3,4-c]carbazol-5-one (Star 1) ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{d}_{6} \mathrm{DMSO}, 400 \mathrm{MHz}\right) \delta 0.79(\mathrm{~d}, 3 \mathrm{H}, J=8 \mathrm{~Hz}), 1.19(\mathrm{~d}, 3 \mathrm{H}, J=8 \mathrm{~Hz})$, $1.23-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{t}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 5.22(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz})$, $7.18(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.28(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.38(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.43(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz})$ $7.67(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.75(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 8.80(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 8.73(\mathrm{~s}, 1 \mathrm{H}), 9.18(\mathrm{~d}$, $1 \mathrm{H}, J=8 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{d}_{6} \mathrm{DMSO}, 400 \mathrm{MHz}$) $\delta 22.39$, 24.68, 25.84, 44.77, 55.44, $112.00,112.77,114.17,116.18,119.09,119.57,120.52,122.19,122.73,123.47,125.53$, $125.72,125.98,126.26,128.90,138.42,139.93,140.14,164.72,172.39$; LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=368.17$, found $=367.98$.

(S)-methyl 2-((3,4-dimethoxybenzyl)amino)-3-phenylpropanoate (Star 2a) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{d}_{6} \mathrm{DMSO}, 400 \mathrm{MHz}\right) \delta 2.38(\mathrm{~s}, 1 \mathrm{H}), 2.84(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 3.37(\mathrm{~s}, 1 \mathrm{H}), 3.45(\mathrm{~d}, 1 \mathrm{H}, J=$ $16 \mathrm{~Hz}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 6.68(\mathrm{~d}, 1 \mathrm{H}, J=$ $8 \mathrm{~Hz}), 6.79(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 7.14-7.25(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{d}_{6} \mathrm{DMSO}, 400 \mathrm{MHz}\right) \delta$ $51.09,51.90,55.89,56.61,62.24,112.11,112.13,120.37,126.92,128.71,129.84$, 133.20, 138.61, 148.26, 149.26, 175.11; LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=330.16$, found $=$ 329.95.

(S)-ethyl 3-((3,4-dimethoxybenzyl)(1-methoxy-1-oxo-3-phenylpropan-2-yl)amino)-3oxopropanoate (Star 2b) ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{d}_{6} \mathrm{DMSO}, 400 \mathrm{MHz}\right) \delta 1.26(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}$), 1.52 (s, 3H), $3.20-3.44(\mathrm{~m}, 4 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~d}, 1 \mathrm{H}, J=16.8 \mathrm{~Hz}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.83$ (s, $3 \mathrm{H}), 4.17(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 4.24(\mathrm{q}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}), 4.35(\mathrm{~d}, 1 \mathrm{H}, J=16.8 \mathrm{~Hz}), 6.57(\mathrm{dd}$, $1 \mathrm{H}, J=2 \mathrm{~Hz}, J=8 \mathrm{~Hz}), 6.73(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.76(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz}), 7.13-7.29(\mathrm{~m}$, $5 \mathrm{H})$; LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=444.19$, found $=444.00$.

(S)-5-benzyl-3-diazo-1-(3,4-dimethoxybenzyl)pyrrolidine-2,4-dione (Star 2c) ${ }^{1} \mathrm{H}$ NMR (CDCl3, 400 MHz$) \delta 3.05(\mathrm{dd}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}, J=14.4 \mathrm{~Hz}), 3.17(\mathrm{dd}, 1 \mathrm{H}, J=4 \mathrm{~Hz}$, $J=14.4 \mathrm{~Hz}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 5.20(\mathrm{t}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}), 5.18(\mathrm{~d}, 1 \mathrm{H}, J=14.8 \mathrm{~Hz})$, $6.58-6.62(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.08-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.29(\mathrm{~m}, 3 \mathrm{H})$.

(S)-7-benzyl-6,7,12,13-tetrahydro-5H-indolo[2,3-a]pyrrolo[3,4-c]carbazol-5-one (Star 2) ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{d}_{6} \mathrm{DMSO}, 400 \mathrm{MHz}\right) \delta 3.02-3.08(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{dd}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}, J$ $=13.6 \mathrm{~Hz}), 5.55(\mathrm{t}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}), 6.86-6.98(\mathrm{~m}, 5 \mathrm{H}), 7.12(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.34(\mathrm{~m}$, $2 \mathrm{H}), 7.47(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.64(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.78(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 8.29(\mathrm{~d}, 1 \mathrm{H}, J$ $=7.6), 8.45(\mathrm{~s}, 1 \mathrm{H}), 9.04(\mathrm{~d}, 1 \mathrm{H}, J=7.6), 11.26(\mathrm{~s}, 1 \mathrm{H}), 11.56(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{d}_{6}\right.$ DMSO, 600 MHz$) \delta 39.03,57.15,111.76,112.62$, 114.36, 115.75, 119.29, 119.84, $120.45,122.28,122.66,123.17,125.44,125.47,125.76,126.08,126.59,128.08,128.61$, $130.01,136.25,136.91,139.66,140.04,171.99$; LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=402.15$, found $=401.97$.

(S)-methyl 2-((3,4-dimethoxybenzyl)amino)pentanoate (Star 3a) ${ }^{1} \mathrm{H}$ NMR (d_{6} DMSO, $400 \mathrm{MHz}) \delta 0.80(\mathrm{t}, 3 \mathrm{H}, J=8 \mathrm{~Hz}), 1.23-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.52(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 1 \mathrm{H})$, $3.10(\mathrm{t}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 3.42(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 3.69$ $(\mathrm{s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 6.75(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 6.82(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 6.88(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\mathrm{d}_{6} \mathrm{DMSO}, 400 \mathrm{MHz}$) $\delta 14.35,19.32,35.57,51.33,51.90,55.97,56.15,60.15,112.17$, 112.33, 120.50, 133.42, 148.30, 149.28, 176.02; LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=282.16$, found $=282.32$.

(S)-methyl 2-(N-(3,4-dimethoxybenzyl)-3-ethoxy-3-oxopropanamido)pentanoate (Star 3b) ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{d}_{6} \mathrm{DMSO}, 400 \mathrm{MHz}\right) \delta 0.66-0.79(\mathrm{~m}, 3 \mathrm{H}), 1.12-1.17(\mathrm{~m}, 5 \mathrm{H})$, $1.63-1.81(\mathrm{~m}, 2 \mathrm{H}), 3.32-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.99-$ $4.11(\mathrm{~m}, 2 \mathrm{H}), 4.23-4.29(\mathrm{~m}, 1 \mathrm{H}), 4.42-4.56(2 \mathrm{H}), 6.76-6.97(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (d $\left.{ }_{6} \mathrm{DMSO}, 400 \mathrm{MHz}\right) \delta 14.41,14.49,19.73,41.72,51.80,52.33,56.03,56.17,59.01$, $61.25,111.74,112.29,120.03,129.78,148.76,149.40,167.41,168.00,171.51 ;$ LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=396.19$, found $=396.32$.

(S)-3-diazo-1-(3,4-dimethoxybenzyl)-5-propylpyrrolidine-2,4-dione (Star 3c) ${ }^{1} \mathrm{H}$ NMR (d_{6} DMSO, 400 MHz) $\delta 0.73(\mathrm{t}, 3 \mathrm{H}, J=8 \mathrm{~Hz}), 1.09-1.14(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.70(\mathrm{~m}$, $2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 4.18(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}), 4.72(\mathrm{~d}, 1 \mathrm{H}$, $J=16 \mathrm{~Hz}), 6.81-6.89(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{d}_{6} \mathrm{DMSO}, 400 \mathrm{MHz}\right) \delta 14.34,14.73,16.62$, $30.85,44.37,56.15,64.26,65.56,112.42,112.51,121.00,129.47,148.96,149.49$, 162.16, 189.97; LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=318.14$, found $=318.22$.

(S)-7-propyl-6,7,12,13-tetrahydro-5H-indolo[2,3-a]pyrrolo[3,4-c]carbazol-5-one (Star 3) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{MeOH}, 400 \mathrm{MHz}\right) \delta 0.89(\mathrm{t}, 3 \mathrm{H}, J=8 \mathrm{~Hz}), 1.28-1.32(\mathrm{~m}, 1 \mathrm{H})$, $1.50-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.68(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{t}, 1 \mathrm{H}, J=4 \mathrm{~Hz}), 4.95(\mathrm{dd}, 1 \mathrm{H}, J=4 \mathrm{~Hz}, J=$ $4 \mathrm{~Hz}), 7.21(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.28(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.35(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.43(\mathrm{t}, 2 \mathrm{H}, J=$ $8 \mathrm{~Hz}), 7.59(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.91(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{MeOH}, 400 \mathrm{MHz}\right)$ $\delta 13.64,18.74,36.03,57.32,110.79,111.57,114.20,116.30,119.34,120.07,121.69$, $122.77,123.23,125.08,125.35,125.38,125.80,128.88,138.04,139.75,139.93,174.30$; LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=354.14$, found $=354.2$.

(S)-methyl 2-((3,4-dimethoxybenzyl)amino)hexanoate (Star 4a) ${ }^{1} \mathrm{H}$ NMR (d_{6} DMSO, $400 \mathrm{MHz}) \delta 0.81(\mathrm{t}, 3 \mathrm{H}, J=8 \mathrm{~Hz}), 1.15-1.26(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.52(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 1 \mathrm{H})$, $3.08(\mathrm{~s}, 1 \mathrm{H}), 3.41(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 3.69(\mathrm{~s}, 3 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 6.75(\mathrm{dd}, 1 \mathrm{H}, J=4 \mathrm{~Hz}, J=8 \mathrm{~Hz}), 6.82(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 6.88(\mathrm{~d}, 1 \mathrm{H}, J=$ 4 Hz); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{d}_{6} \mathrm{DMSO}, 400 \mathrm{MHz}$) $\delta 14.47,22.59,28.27,33.11,51.32,51.92,55.97$, $56.17,60.38,112.18,112.32,120.50,133.43,148.29,149.27,176.01$; LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=296.18$, found $=296.33$.

(S)-methyl 2-(N-(3,4-dimethoxybenzyl)-3-ethoxy-3-oxopropanamido)hexanoate (Star 4b) ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{d}_{6} \mathrm{DMSO}, 400 \mathrm{MHz}\right) \delta 0.65-0.75(\mathrm{~m}, 3 \mathrm{H}), 1.10-1.18(\mathrm{~m}, 6 \mathrm{H})$, $1.63-1.67(\mathrm{~m}, 1 \mathrm{H}), 1,69-1.81(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~d}$, $1 \mathrm{H}, J=16 \mathrm{~Hz}$), $3.66-3.72(\mathrm{~m} \mathrm{6H}), 3.99-4.07(\mathrm{~m}, 2 \mathrm{H}), 4.20-4.27(\mathrm{~m}, 1 \mathrm{H}), 4.43-4.58$ $(\mathrm{m}, 2 \mathrm{H}), 6.75-6.97(3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{d}_{6} \mathrm{DMSO}, 400 \mathrm{MHz}\right) \delta 14.44,14.60,22.65,28.66$, 29.19, 52.34, 56.03, 56.19, 59.27, 61.25, 111.77, 112.31, 120.08, 129.80, 131.36, 148.79, $149.41,167.40,168.00,168.13,171.52$; LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=410.21$, found $=$ 410.32 .

(S)-5-butyl-3-diazo-1-(3,4-dimethoxybenzyl)pyrrolidine-2,4-dione (Star 4c) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{d}_{6} \mathrm{DMSO}, 400 \mathrm{MHz}\right) \delta 0.73(\mathrm{t}, 3 \mathrm{H}, J=8 \mathrm{~Hz}), 0.98-1.16(\mathrm{~m}, 4 \mathrm{H}), 1.67-1.71(\mathrm{~m}, 2 \mathrm{H})$, $3.71(\mathrm{~s}, 6 \mathrm{H}), 3.85(\mathrm{t}, 1 \mathrm{H}, J=4 \mathrm{~Hz}), 4.21(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}), 4.68(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}), 6.82$ $(\mathrm{d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 6.87-6.89(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{d}_{6} \mathrm{DMSO}, 400 \mathrm{MHz}\right) \delta 14.34,14.74$, 21.40, 22.61, 25.17, 28.48, 44.47, 56.14, 56.19, 60.41, 64.44, 65.61, 112.44, 112.54, $121.04,129.55,148.97,149.48,162.21,189.98$; LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=332.15$, found $=332.26$.

(S)-7-butyl-6,7,12,13-tetrahydro-5H-indolo[2,3-a]pyrrolo[3,4-c]carbazol-5-one (Star 4) ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3} / \mathrm{MeOH}, 400 \mathrm{MHz}\right) \delta 0.73(\mathrm{t}, 3 \mathrm{H}, J=8 \mathrm{~Hz}), 1.07-1.29(\mathrm{~m}, 5 \mathrm{H}), 1.39-$ $1.46(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.16(\mathrm{t}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 7.22-7.26(\mathrm{~m}$, $2 \mathrm{H}), 7.38(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.50(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.72(\mathrm{~d}, 1 \mathrm{H}, 8 \mathrm{~Hz}), 9.02(\mathrm{~d}, 1 \mathrm{H}, J=$ $8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{MeOH}, 400 \mathrm{MHz}\right) \delta 13.92,22.56,22.66,33.47,57.40,110.93$, $111.59,115.97,119.43,120.06,121.79,122.71,122.89,125.03,125.07,125.38,125.49$, 128.69, 137.92, 139.37, 139.62,174.25; LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=368.17$, found $=$ 368.24 .

(S)-methyl 3-cyclohexyl-2-((3,4-dimethoxybenzyl)amino)propanoate (Star 5a) ${ }^{1} \mathrm{H}$ NMR (d_{6} DMSO, 400 MHz) $\delta 0.68-0.87(\mathrm{~m}, 2 \mathrm{H}), 1.03-1.23(\mathrm{~m}, 3 \mathrm{H}), 1.32-1.60(\mathrm{~m}$, $8 \mathrm{H}), 2.27(\mathrm{~s}, 1 \mathrm{H}), 3.40(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}), 3.69(\mathrm{~s}$, $3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 6.73(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 6.81(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 6.88(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (d ${ }_{6}$ DMSO, 400 MHz) $\delta 26.32$, 26.48, 26.70, 32.80, 33.79, 34.31, 51.28, 51.92, 55.93, $56.17,57.99,112.10,112.26,120.56,133.42,148.31,149.28,176.40$; LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=336.21$, found $=336.69$.

(S)-ethyl 3-((3-cyclohexyl-1-methoxy-1-oxopropan-2-yl)(3,4-dimethoxybenzyl) amino)-3-oxopropanoate (Star 5b) ${ }^{1} \mathrm{H}$ NMR (d_{6} DMSO, 400 MHz) $\delta 0.66-0.74$ (m, 2H), $0.94-1.11(\mathrm{~m}, 4 \mathrm{H}), 1.11-1.17(\mathrm{~m}, 3 \mathrm{H}), 1.35(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}), 1.43-1.64(\mathrm{~m}$, $5 \mathrm{H}), 1.70-1.77(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, $4.02-4.11(\mathrm{~m}, 2 \mathrm{H}), 4.39-4.70(\mathrm{~m}, 2 \mathrm{H}), 6.73-6.94(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{d}_{6} \mathrm{DMSO}, 400$ $\mathrm{MHz}) \delta 26.23,26.42,32.99,33.55,34.38,37.05,41.79,51.35,52.43,55.61,56.03$, $56.23,56.31,61.25,111.85,112.36,120.16,129.79,148.86,149.45,167.59,168.02$, 171.84; LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=450.24$, found $=450.33$.

(S)-5-(cyclohexylmethyl)-3-diazo-1-(3,4-dimethoxybenzyl)pyrrolidine-2,4-dione (Star 5c) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.67-0.77(\mathrm{~m}, 2 \mathrm{H}), 0.81-0.88(\mathrm{~m}, 3 \mathrm{H}), 1.33-$ $1.66(\mathrm{~m}, 8 \mathrm{H}), 3.63(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 3.83(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}), 5.03(\mathrm{~d}, 1 \mathrm{H}, J=$ $16 \mathrm{~Hz}), 6.66-6.72(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 26.10,26.23,26.31,33.44$, $33.46,36.80,44.50,56.05,56.08,61.86,65.23,111.34,111.52,120.85,128.24,149.06$, 149.56, 161.92, 189.65; LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=372.18$, found $=372.26$.

(S)-7-(cyclohexylmethyl)-6,7,12,13-tetrahydro-5H-indolo[2,3-a]pyrrolo[3,4-c]carbazol-5-one (Star 5) ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3} / \mathrm{MeOD}, 400 \mathrm{MHz}\right) \delta 0.76-0.84(\mathrm{~m}, 1 \mathrm{H})$, 0.98-1.29 (m, 6H), 1.35-1.41 (m, 2H), 1.52-1.60 (m, 2H), 1.73-1.77 (d, 1H, $J=16 \mathrm{~Hz}$), 1.96-2.05 (m, 1H), 2.08-2.22 (m, 1H), 4.37-4.69 (m, 1H), 7.10-7.17 (m, 2H), 7.19-7.22 $(\mathrm{m}, 1 \mathrm{H}), 7.25-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 9.00-$ $9.07(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{MeOD}, 400 \mathrm{MHz}\right) \delta 31.52,34.49,35.98,36.72,42.32$, 55.01, 59.51, 87.93, 110.90, 111.53, 113.76, 119.33, 120.05, 121.84, 122.63, 122.98, $124.92,125.17,125.29,125.45,138.65,139.39,139.61,163.24 ;$ LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=408.20$, found $=408.3$.

(S)-methyl 2-((3,4-dimethoxybenzyl)amino)-3-methylbutanoate (Star 6a) ${ }^{1} \mathrm{H}$ NMR (d ${ }_{6}$ DMSO, 400 MHz$) \delta 0.83(\mathrm{~d}, 3 \mathrm{H}, J=8 \mathrm{~Hz}), 0.88(\mathrm{~d}, 3 \mathrm{H}, J=8 \mathrm{~Hz}), 1.80(\mathrm{sep}, 1 \mathrm{H}, J=$ $8 \mathrm{~Hz}), 2.21(\mathrm{~s}, 1 \mathrm{H}), 2.85(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 3.40(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~d}$, $1 \mathrm{H}, J=16 \mathrm{~Hz}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 6.75(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 6.82(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz})$, $6.90(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{d}_{6} \mathrm{DMSO}, 400 \mathrm{MHz}\right) \delta 19.34,19.87,31.66,51.67,51.73,55.92$, $55.97,56.12,66.36,112.15,112.18,112.25,120.49,133.40,148.33,149.29,175.65$; LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=282.16$, found $=282.31$.

(S)-3-diazo-1-(3,4-dimethoxybenzyl)-5-isopropylpyrrolidine-2,4-dione (Star 6c) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.89(\mathrm{~d}, 3 \mathrm{H}, J=8 \mathrm{~Hz}), 1.06(\mathrm{~d}, 3 \mathrm{H}, J=8 \mathrm{~Hz}), 2.19-2.26(\mathrm{~m}$, $1 \mathrm{H}), 3.59(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~d}, 3 \mathrm{H}), 3.94(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}), 5.14(\mathrm{~d}$, $1 \mathrm{H}, 16 \mathrm{~Hz}), 6.73-6.80(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.19,16.14,18.08$, $28.92,44.55,56.12,56.19,68.02,111.36,111.50,120.85,128.19,149.10,149.65$, 162.41, 189.06; LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=318.14$, found $=318.26$.

(S)-7-isopropyl-6,7,12,13-tetrahydro-5H-indolo[2,3-a]pyrrolo[3,4-c]carbazol-5-one (Star 6) ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{d}_{6} \mathrm{DMSO}, 400 \mathrm{MHz}\right) \delta 0.24(\mathrm{~d}, 3 \mathrm{H}, J=8 \mathrm{~Hz}), 1.33(\mathrm{~d}, 3 \mathrm{H}, J=8 \mathrm{~Hz})$, $2.76-2.83(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.28(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.42$ (quin, J $=8 \mathrm{~Hz}), 7.69(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}) .7 .76(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 8.04(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 8.54(\mathrm{~s}, 1 \mathrm{H})$, $9.20(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 11.28(\mathrm{~s}, 1 \mathrm{H}), 11.54(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO, 400 MHz$) \delta$ 14.32, 21.83, 30.41, 62.00, 112.00, 112.71, 114.25, 115.97, 119.59, 119.80, 120.53, $122.40,122.83,123.42,125.54,125.74,126.00,126.17,128.85,137.04,139.87,140.08$, 173.13; LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=354.42$, found $=354.3$.

(S)-methyl 2-((3,4-dimethoxybenzyl)amino)-3,3-dimethylbutanoate (Star 7a) ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.93(\mathrm{~s}, 9 \mathrm{H}), 1.82(\mathrm{br}, 1 \mathrm{H}), 2.87(\mathrm{~s}, 1 \mathrm{H}), 3.45(\mathrm{~d}, 1 \mathrm{H}, J=$ $12 \mathrm{~Hz}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 6.77(\mathrm{~d}, 1 \mathrm{H}, J=$ $8 \mathrm{~Hz}), 6.80(\mathrm{dd}, 1 \mathrm{H}, J=8 \mathrm{~Hz}, J=4 \mathrm{~Hz}), 6.91(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 26.94,34.21,51.22,52.61,55.96,56.09,69.55,111.02,111.60,120.52,132.89$, $148.19,149.04,175.90$; LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=296.18$, found $=296.30$.

(S)-methyl 2-(N-(3,4-dimethoxybenzyl)-3-ethoxy-3-oxopropanamido)-3,3dimethylbutanoate (Star 7b) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.07(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}$ $=8 \mathrm{~Hz}), 3.22(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}), 3.40(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 4.10-$ $4.16(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}), 4.97(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}), 5.12(\mathrm{br}, 1 \mathrm{H}), 6.60-6.64$ $(\mathrm{m}, 2 \mathrm{H}), 6.78(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 14.29,27.63,37.06$, $42.21,50.61,51.64,56.01,56.12,61.62,63.37,108.95,111.50,117.64,129.93,148.37$, $149.53,167.68,168.65,170.16$; LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=410.21$, found $=410.29$.

(S)-5-(tert-butyl)-3-diazo-1- (3,4-dimethoxybenzyl)pyrrolidine-2,4-dione (Star 7c) ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl} 3,400 \mathrm{MHz}) \delta 1.05(\mathrm{~s}, 9 \mathrm{H}), 3.38(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.08(\mathrm{~d}$, $1 \mathrm{H}, J=16 \mathrm{~Hz}), 5.34(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}), 6.78(\mathrm{~d}, 1 \mathrm{H}, J$ $=8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $(\mathrm{CDCl} 3,400 \mathrm{MHz}) \delta 27.09,37.29,48.46,56.11,56.18,71.70,77.27$, 111.46, 111.47, 120.85, 128.45, 149.03, 149.63, 164.74, 189.54; LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=332.15$, found $=332.20$.

(S)-7-(tert-butyl)-6,7,12,13-tetrahydro-5H-indolo[2,3-a]pyrrolo[3,4-c]carbazol-5-one (Star 7) ${ }^{1} \mathrm{H}$ NMR (d_{6} DMSO, 400 MHz$) \delta 0.90(\mathrm{~s}, 9 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 7.18-7.22(\mathrm{~m}, 2 \mathrm{H})$, $7.37-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{t}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 8.30(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 8.46(\mathrm{~s}, 1 \mathrm{H}), 9.22(\mathrm{~d}, 1 \mathrm{H}$, $J=8 \mathrm{~Hz}), 11.27(\mathrm{~s}, 1 \mathrm{H}), 11.50(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO, 400 MHz$) \delta 27.64,39.55$, $65.65,111.96,112.35,116.05,116.18,119.59,119.65,120.88,123.40,123.81,123.95$, $125.43,125.82,126.22,126.56,128.90,135.79,140.03,140.09,172.93$; LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=368.17$, found $=368.3$.

(S)-methyl 2-(\boldsymbol{N}-(3,4-dimethoxybenzyl)-3-ethoxy-3-oxopropanamido)butanoate (Star 8b) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.80(\mathrm{t}, 3 \mathrm{H}, J=6 \mathrm{~Hz}), 1.21(\mathrm{t}, 3 \mathrm{H}, J=4 \mathrm{~Hz}), 1.77-$ $1.82(\mathrm{~m}, 1 \mathrm{H}), 1.95-2.00(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.79-3.86(\mathrm{~m}$, $6 \mathrm{H}), 4.10-4.16(\mathrm{~m}, 2 \mathrm{H}), 4.41-4.59(\mathrm{~m}, 3 \mathrm{H}), 6.70-6.86(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 10.93,11.31,14.22,41.78,42.20,46.39,51.03,52.20,52.45,56.03,61.66$, $61.78,62.24,110.03,110.86,111.42,111.74,119.05,120.50,128.85,148.74,149.53$, $167.58,171.41$; LCMS: $[\mathrm{M}+\mathrm{H}]^{+}=382.18$, found $=382.18$.

(S)-3-diazo-1-(3,4-dimethoxybenzyl)-5-ethylpyrrolidine-2,4-dione (Star 8c) ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{d}_{6} \mathrm{DMSO}, 400 \mathrm{MHz}\right) \delta 0.66(\mathrm{t}, 3 \mathrm{H}, J=8 \mathrm{~Hz}), 1.72-1.78(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H}), 3.83(\mathrm{t}$, $1 \mathrm{H}, J=4 \mathrm{~Hz}), 4.14(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}), 4.75(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}), 6.81-6.89(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO, 400 MHz$) \delta 1.81,7.68,21.75,44.25,56.16,64.86,112.42,112.50$, $120.98,129.40,148.93,149.47,162.30,189.92 ;$ LCMS: $[\mathrm{M}+\mathrm{H}]^{+}=304.12$, found $=$ 304.30 .

(S)-7-ethyl-6,7,12,13-tetrahydro-5H-indolo[2,3-a]pyrrolo[3,4-c] carbazol-5-one (Star 8) ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{d}_{6} \mathrm{DMSO}, 400 \mathrm{MHz}\right) \delta 0.83(\mathrm{t}, 3 \mathrm{H}, J=8 \mathrm{~Hz}), 1.74(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.36(\mathrm{~m}$, $1 \mathrm{H}), 5.20(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.20(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.28(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.38-7.46(\mathrm{~m}$, $2 \mathrm{H}), 7.68(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.75(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 8.08(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 9.21(\mathrm{~d}, 1 \mathrm{H}, J=$ $8 \mathrm{~Hz}), 11.36(\mathrm{~s}, 1 \mathrm{H}), 11.62(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (DMSO, 400 MHz$) \delta 9.89,27.23,57.91$, 111.97, 112.67, 114.35, 116.08, 119.58, 119.62, 120.55, 122.33, 122.81, 123.45, 125.57, $125.98,126.21,128.80,137.32,139.88,140.07,172.51$; LCMS: $[\mathrm{M}+\mathrm{H}]^{+}=340.14$, found $=340.18$.

(S)-12-(4-aminobutyl)-7-isobutyl-6,7,12,13-tetrahydro-5H-indolo[2,3-a]pyrrolo[3,4-c]carbazol-5-one (Star 12) ${ }^{1} \mathrm{H}$ NMR (d_{6} DMSO, 400 MHz$) \delta 0.81(\mathrm{~d}, 3 \mathrm{H}, J=8 \mathrm{~Hz}$), $1.21(\mathrm{~d}, 3 \mathrm{H}, J=4 \mathrm{~Hz}), 1.32(\mathrm{~s}, 1 \mathrm{H}), 1.49-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.90(\mathrm{~m}, 2 \mathrm{H}), 2.03-2.08$ $(\mathrm{m}, 1 \mathrm{H}), 2.21(\mathrm{t}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 2.66-2.75(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~b}, 2 \mathrm{H}), 5.25(\mathrm{~d}$, $1 \mathrm{H}, J=8 \mathrm{~Hz}$), $7.21(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.34(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.42(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.51$ $(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.70(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}), 7.82(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 8.03(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz})$, $.40(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{~s}, 1 \mathrm{H}), 9.32(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR (d $\left.{ }_{6} \mathrm{DMSO}, 400 \mathrm{MHz}\right) \delta 22.30$, 24.67, 25.60, 25.87, 28.13, 44.19, 44.79, 55.24, 110.90, 112.13, 114.30, 117.67, 119.18, 119.63, 120.62, 122.24, 122.31, 122.85, 125.50, 125.62, 125.85, 126.01, 129.40, 138.45, $140.80,172.16$; LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=439.24$, found $=439.32$.

(S)-13-(3-aminopropyl)-7-isobutyl-6,7,12,13-tetrahydro-5H-indolo[2,3-a]pyrrolo[3,4-c]carbazol-5-one (Star 16)) ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{d}_{6} \mathrm{DMSO}, 400 \mathrm{MHz}\right) \delta 0.81(\mathrm{~d}, 3 \mathrm{H}, J=4 \mathrm{~Hz})$, $1.21(\mathrm{~d}, 3 \mathrm{H}, J=4 \mathrm{~Hz}), 2.00-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{t}, 2 \mathrm{H}, J=6 \mathrm{~Hz})$, $4.94(\mathrm{t}, 2 \mathrm{H}, J=6 \mathrm{~Hz}), 5.26(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.24(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.32(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz})$, $7.45(\mathrm{t}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 7.75(\mathrm{t}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 8.03(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 8.80(\mathrm{~s}, 1 \mathrm{H}), 9.36(\mathrm{~d}$, $1 \mathrm{H}, J=8 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{d}_{6} \mathrm{DMSO}, 400 \mathrm{MHz}$) $\delta 22.32$, 24.69, 25.86, 30.81, 37.42, 44.74, $55.28,61.56,94.62,109.86,112.91,115.49,116.52,119.13,119.76,120.61,122.09$, $122.18,123.02,125.66,125.93,126.36,127.15,128.34,138.65,140.69,141.11,172.13$; LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=425.23$, found $=425.34$.

(S)-12-(3-aminopropyl)-7-isobutyl-6,7,12,13-tetrahydro-5H-indolo[2,3-a]pyrrolo[3,4-c]carbazol-5-one (Star 17) ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{d}_{6} \mathrm{DMSO}, 400 \mathrm{MHz}\right) \delta 0.80(\mathrm{~d}, 3 \mathrm{H}, J=4 \mathrm{~Hz}$), 1.21 $(\mathrm{d}, 3 \mathrm{H}, J=4 \mathrm{~Hz}), 1.99-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{t}$, $2 \mathrm{H}, J=6 \mathrm{~Hz}), 4.97(\mathrm{t}, 2 \mathrm{H}, J=6 \mathrm{~Hz}), 5.26(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.21(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.35(\mathrm{t}$, $1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.42(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.52(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.68(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.84(\mathrm{~d}$, $1 \mathrm{H}, J=8 \mathrm{~Hz}), 8.04(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 8.80(\mathrm{~s}, 1 \mathrm{H}), 9.32(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (${ }_{6}$ DMSO, 400 MHz) $\delta 22.32$, 24.67, 25.85, 30.82, 37.46, 42.01, 44.77, 55.26, 110.75, $112.08,114.27,117.73,119.27,119.65,120.75,122.27,122.36,122.96,125.71,125.75$, $125.88,126.06,129.61,138.45,140.86,140.91,172.15$; LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=$ 425.23 , found $=425.36$

(S)-12-(4-aminobutyl)-7-ethyl-6,7,12,13-tetrahydro-5H-indolo[2,3-a]pyrrolo[3,4-c]carbazol-5-one (Star 18) ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{d}_{6} \mathrm{DMSO}, 400 \mathrm{MHz}\right) \delta 0.84(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz})$, $1.53-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.34-2.40(\mathrm{~m}, 1 \mathrm{H})$, $2.70(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.69-3.72(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.30(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz})$, $7.40(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.51(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.71(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.81(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.4 \mathrm{~Hz}), 8.09(\mathrm{~d}, 1 \mathrm{H}, J=8.4), 8.65(\mathrm{~s}, 1 \mathrm{H}), 9.32(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}){ }^{13}{ }^{13} \mathrm{C}$ NMR ($\mathrm{d}_{6} \mathrm{DMSO}$, $400 \mathrm{MHz}) \delta 10.03,25.67,27.27,28.12,44.18,57.78,108.33,110.66,110.69,110.75$, $110.80,112.12,114.43,114.47,117.50,119.68,122.35,125.54,129.37,137.36,140.77$, $140.79,155.45,165.90,169.63,172.33$; LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=411.21$, found $=$ 411.32 .

(S)-12-(4-aminobutyl)-7-benzyl-6,7,12,13-tetrahydro-5H-indolo[2,3-a]pyrrolo[3,4-c]carbazol-5-one (Star 19) ${ }^{1} \mathrm{H}$ NMR (d_{6} DMSO, 400 MHz) $\delta 1.53-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.90$ $1.94(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.73(\mathrm{~m}, 2 \mathrm{H}), 3.20-3.24(\mathrm{~m}, 2 \mathrm{H}), 3.56-3.59(\mathrm{~m}, 2 \mathrm{H}), 4.93-4.98$ $(\mathrm{m}, 2 \mathrm{H}), 5.58(\mathrm{~s} 1 \mathrm{H}), 6.90(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 6.98-7.01(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz})$, $7.36-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.68(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.86(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz})$, $8.32(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 8,49(\mathrm{~s}, 1 \mathrm{H}), 9.18(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR ($\mathrm{d}_{6} \mathrm{DMSO}, 400$ MHz) $\delta 26.14,28.00,31.36,39.25,44.21,57.18,82.56,94.61,110.88,112.11,114.66$, $117.39,119.51,120.06,120.77,122.38,122.56,122.75,125.51,125.72,125.98,126.81$, 128.31, 129.29, 130.14, 136.53, 137.13, 140.76, 140.83, 166.36, 172.00; LCMS: calculated $[\mathrm{M}+\mathrm{H}]^{+}=473.23$, found $=473.30$.

References

1. Levinson, N. M., Seeliger, M. A., Cole, P. A. \& Kuriyan, J. Structural basis for the recognition of c-Src by its inactivator Csk. Cell 134, 124-134 (2008).
2. Wood, J. L., Petsch, D. T., Stoltz, B. M. \& Hawkins, E. M. Total synthesis and protein kinase activity of C (7) methyl derivatives of K252a. Synthesis SI, 15291533 (1999).
3. Kleinschroth, J., Hartenstein, J. \& Rudolph, C. Non-glycosidic/non-aminoalkylsubstituted indolocarbazoles as inhibitors of protein kinase C. Bioorg Med Chem Lett 3, 1959-1964 (1993).
4. Seeliger, M. A. et al. High yield bacterial expression of active c-Abl and c-Src tyrosine kinases. Protein Sci. 14, 3135-3139 (2005).
5. Bishop, A. C., Shah, K., Liu, Y., Witucki, L. \& Kung, C. Design of allele-specific inhibitors to probe protein kinase signaling. Curr Biol 8, 257-266 (1998).
6. Dalva, M. B. et al. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103, 945-956 (2000).
7. Zhang, C. et al. Structure-guided Inhibitor Design Expands the Scope of AnalogSensitive Kinase Technology. ACS Chem. Biol. 8, 1931-1938 (2013).
8. Li, M. Z. \& Elledge, S. J. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat. Methods 4, 251-256 (2007).
9. Breitenlechner, C. B. et al. Crystal structures of active SRC kinase domain complexes. J. Mol. Biol. 353, 222-231 (2005).
10. McCoy, A. J., Grosse-Kunstleve, R. W. \& Adams, P. D. Phaser crystallographic software. J. Appl. Cryst. 40, 658-674 (2007).
11. Emsley, P., Lohkamp, B. \& Scott, W. G. Features and development of Coot. Acta Cryst. D66, 486-501 (2010).
12. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Cryst. D66, 213-221 (2010).
