<Supporting Information>

Solvent-induced Assembly of Octacyanometalates-Based Coordination Polymers with Unique cjq Topology and Magnetic Properties

Jun Qian,^a Jingchun Hu,^a Jinfang Zhang,^a Hirofumi Yoshikawa,^{b,*} Kunio Awaga,^b Chi Zhang^{a,*}

 ^a China-Australia Joint Research Center for Functional Molecular Materials, Scientific Research Academy, Jiangsu University, Zhenjiang 212013, P. R. China
 ^b Research Center for Materials Science, Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan

Corresponding Authors:

Professor Dr. Chi Zhang

Fax: +86-511-88797815, E-mail: chizhang@ujs.edu.cn

Professor Dr. Hirofumi Yoshikawa

Fax: +81-52-789-5106, E-mail: voshikawah@mbox.chem.nagoya-u.ac.jp

Supplementary Index

Topological analysis of polymers 1 and 2	53
Figures S1 (Parking structure of 1 and 2 along <i>a</i> axis)	54
Figures S2 (Parking structure of 1 and 2 along 101 face)	5
Figures S3 (TGA analysis for 1) S	56
Figures S3 (TGA analysis for 2)	S7
CIF file of 1	8
CIF file of 2	8
CIF file of 3	28

1. Topological analysis

The topologies of polymers **1** and **2** were both analyzed by program $OLEX^{S1}$ and TOPOS^{S2} with the CIF files. The topological cell of OLEX shows that the short (Schläfli) symbol of the net for $\{4^{11}.6^{12}.8^5\}$ $\{4^{17}.6^{10}.8\}$ $\{4^5.6\}_4$, which is consistent with the result of TOPOS.

References:

- S1. O. V. Dolomanov, A. J. Blake, N. R. Champness and M. Schröder, *J. Appl. Cryst.*2003, 36, 1283.
- S2. C. Bonneau, O. Delgado-Friederichs, M. O'Keeffe and O. M. Yaghi, *Acta Cryst.*A. 2004, 60, 517.

Figure S1. The packing structure of **1** and **2** viewed along *a* axis (W, Mo green, Mn cyan, C gray, N blue). Carbon, oxygen and nitrogen atoms in MeOH and water molecules and counter ions have been omitted for clarity.

Figure S2. The packing structure of **1** and **2** viewed from 101 face (W, Mo green, Mn cyan, C gray, N blue, O red). All the hydrogen atoms and solvent MeOH and counter-ions have been omitted for clarity.

Figure S3. TG curve of polymer 1. The TG curve shows that polymer 1 releases a methanol molecule and two water molecules per formula unit below 280°C.

Figure S4. TG curve of polymer **2**. The TG curve shows that polymer **2** releases a methanol molecule and two water molecules per formula unit below 280°C.

data_1

database code depnum ccdc archive 'CCDC 901718' audit creation method SHELXL-97 _chemical_name_systematic ; ? ? _chemical_name_common ? _chemical_melting_point _chemical_formula_moiety 'C9H8Mn2N8O3W,CH4O' chemical formula sum 'C10 H12 Mn2 N8 O4 W' _chemical_formula_weight 602.00 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag atom type scat source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Mn' 'Mn' 0.3368 0.7283 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'W' 'W' -0.8490 6.8722 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting monoclinic _symmetry_space_group_name_Hall '-C 2yc ' _symmetry_space_group_name_H-M C2/c

loop_

_symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y, -z+1/2' 'x+1/2, y+1/2, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z'

```
'x, -y, z-1/2'
'-x+1/2, -y+1/2, -z'
'x+1/2, -y+1/2, z-1/2'
```

_cell_length_a	17.127(3)
_cell_length_b	21.794(4)
_cell_length_c	13.130(3)
_cell_angle_alpha	90.00
_cell_angle_beta	127.91(3)
_cell_angle_gamma	90.00
_cell_volume	3866.8(13)
_cell_formula_units_Z	8
_cell_measurement_temperature	293(2)
_cell_measurement_reflns_used	?
_cell_measurement_theta_min	2.71
_cell_measurement_theta_max	26.37
exptl crystal description	'nrism'

'prism'
'yellow'
0.18
0.16
0.13
?
2.068
'not measured'
2271
7.251
multi-scan
0.6203
0.7197
'SADABS(Bruker, 2002)'

_exptl_special_details

```
;
?
```

```
;
```

_diffrn_ambient_temperature293(2)_diffrn_radiation_wavelength0.71073_diffrn_radiation_typeMoK\a_diffrn_radiation_source'fine-focus sealed tube'_diffrn_radiation_monochromatorgraphite_diffrn_measurement_device_type'CCD area detector'_diffrn_measurement_method'phi and omega scans'

_diffrn_detector_area_resol_mean	?
_diffrn_standards_number	?
_diffrn_standards_interval_count	?
_diffrn_standards_interval_time	?
_diffrn_standards_decay_%	?
_diffrn_reflns_number	11391
_diffrn_reflns_av_R_equivalents	0.0487
_diffrn_reflns_av_sigmaI/netI	0.0390
_diffrn_reflns_limit_h_min	-21
_diffrn_reflns_limit_h_max	18
_diffrn_reflns_limit_k_min	-27
_diffrn_reflns_limit_k_max	18
_diffrn_reflns_limit_l_min	-15
_diffrn_reflns_limit_l_max	16
_diffrn_reflns_theta_min	2.71
_diffrn_reflns_theta_max	26.37
_reflns_number_total	3961
_reflns_number_gt	3783
_reflns_threshold_expression	>2sigma(I)
_computing_data_collection	'CrystalClear
_computing_cell_refinement	'CrystalClear

_computing_data_collection	'CrystalClear (Rigaku Corp., 2000)'
_computing_cell_refinement	'CrystalClear (Rigaku Corp., 2000)'
_computing_data_reduction	'CrystalClear (Rigaku Corp., 2000)'
_computing_structure_solution	'SHELXS-97 (Sheldrick, 1990)'
_computing_structure_refinement	'SHELXL-97 (Sheldrick, 1997)'
_computing_molecular_graphics	SHELXTL
_computing_publication_material	SHELXTL

_refine_special_details

Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger.

;

_refine_ls_structure_factor_coef Fsqd

_refine_ls_matrix_type full

_refine_ls_weighting_scheme calc

'calc w=1/[\s^2^(Fo^2^)+(0.0413P)^2^+31.2308P] where P=(Fo^2^+2Fc^2^)/3'

_refine_ls_weighting_details

direct
difmap
geom
constr
none
?
3873
171
0
0.0330
0.0323
0.0847
0.0842
1.112
1.112
0.000
0.000

loop_

_atom_site_label _atom_site_type_symbol _atom_site_fract_x atom site fract y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly atom site disorder group W1 W 0.5000 -0.021044(12) 1.2500 0.01339(9) Uani 1 2 d S . . W2 W 0.0000 0.129067(11) 0.7500 0.01197(9) Uani 1 2 d S . . Mn1 Mn 0.62747(6) 0.17727(3) 1.57184(7) 0.01626(17) Uani 1 1 d ... Mn2 Mn 0.20550(5) -0.06477(3) 0.75565(7) 0.01714(16) Uani 1 1 d . . . O1 O 0.3065(3) -0.15403(18) 0.7850(4) 0.081(2) Uani 1 1 d . . . H1A H 0.2787 -0.1715 0.8373 0.121 Uiso 1 1 d R ... O2 O 0.1099(3) -0.13565(18) 0.7524(4) 0.0411(11) Uani 1 1 d R . . H2A H 0.1258 -0.1698 0.7445 0.062 Uiso 1 1 calc R ... H2B H 0.0789 -0.1006 0.7664 0.062 Uiso 1 1 d R ... O3 O 0.67619(9) 0.24767(6) 1.72414(11) 0.0661(17) Uani 1 1 d ... H3A H 0.6453 0.2666 1.7190 0.099 Uiso 1 1 d R ... H3B H 0.7255 0.2761 1.7130 0.099 Uiso 1 1 d R . .

O4 O 0.12991(9) 0.08103(6) 0.52189(11) 0.188(6) Uani 1 1 d R ... H4A H 0.1860 0.0658 0.5048 0.281 Uiso 1 1 d R ... N1 N -0.05287(9) 0.25114(6) 0.56755(11) 0.0318(11) Uani 1 1 d R . . N2 N 0.12045(9) 0.00891(6) 0.75553(11) 0.0274(10) Uani 1 1 d R ... N3 N -0.22237(9) 0.16909(6) 0.64926(11) 0.0310(11) Uani 1 1 d R ... N4 N 0.11669(9) -0.08431(6) 0.55077(11) 0.0300(10) Uani 1 1 d R ... N5 N 0.57883(9) 0.09988(6) 1.44264(11) 0.0310(11) Uani 1 1 d R ... N6 N 0.43139(9) -0.13501(6) 1.34395(11) 0.0360(12) Uani 1 1 d R ... N7 N 0.30611(9) -0.06982(6) 0.96582(11) 0.0304(11) Uani 1 1 d R ... N8 N 0.31500(9) -0.02141(6) 0.74988(11) 0.0335(11) Uani 1 1 d R ... C1 C -0.03203(9) 0.20929(6) 0.63114(11) 0.0211(10) Uani 1 1 d R ... C2 C 0.07920(9) 0.05028(6) 0.75606(11) 0.0194(10) Uani 1 1 d R ... C3 C -0.14389(9) 0.15678(6) 0.68642(11) 0.0209(10) Uani 1 1 d R ... C4 C 0.07614(9) -0.09950(6) 0.44648(11) 0.0183(10) Uani 1 1 d R ... C5 C 0.55298(9) 0.05664(6) 1.37898(11) 0.0222(10) Uani 1 1 d R ... C6 C 0.45591(9) -0.09638(6) 1.30970(11) 0.0229(10) Uani 1 1 d R . . C7 C 0.37310(9) -0.05333(6) 1.06430(11) 0.0215(10) Uani 1 1 d R ... C8 C 0.37976(9) -0.00771(6) 0.74963(11) 0.0217(10) Uani 1 1 d R ... C9 C 0.32464(9) -0.16750(6) 0.69640(11) 0.058(2) Uani 1 1 d R ... H9A H 0.3643 -0.2039 0.7233 0.087 Uiso 1 1 calc R ... H9B H 0.3592 -0.1338 0.6931 0.087 Uiso 1 1 calc R ... H9C H 0.2629 -0.1739 0.6124 0.087 Uiso 1 1 calc R ... C10 C 0.0896(6) 0.1348(5) 0.4408(8) 0.065(3) Uani 1 1 d . . . H10A H 0.1047 0.1704 0.4930 0.098 Uiso 1 1 calc R ... H10B H 0.0191 0.1305 0.3784 0.098 Uiso 1 1 calc R . . H10C H 0.1180 0.1391 0.3970 0.098 Uiso 1 1 calc R . .

loop_

```
atom site aniso label
 _atom_site_aniso_U_11
 atom site aniso U 22
 atom site aniso U 33
 atom site aniso U 23
 atom site aniso U 13
 atom site aniso U 12
W1 0.01332(15) 0.01531(14) 0.01062(14) 0.000 0.00688(11) 0.000
W2 0.01144(15) 0.01203(14) 0.00881(13) 0.000 0.00438(11) 0.000
Mn1 0.0166(4) 0.0147(4) 0.0164(4) 0.0021(2) 0.0096(3) 0.0005(2)
Mn2 0.0163(4) 0.0200(4) 0.0121(3) -0.0023(3) 0.0072(3) -0.0019(3)
O1 0.131(7) 0.058(4) 0.073(4) 0.019(3) 0.072(5) 0.022(4)
O2 0.040(3) 0.038(2) 0.047(3) -0.005(2) 0.027(2) -0.010(2)
O3 0.097(5) 0.050(3) 0.060(3) -0.024(3) 0.052(4) -0.008(3)
O4 0.180(12) 0.238(16) 0.225(14) 0.105(13) 0.165(12) 0.081(11)
N1 0.036(3) 0.024(2) 0.025(2) 0.008(2) 0.013(2) 0.002(2)
```

N2 0.027(2) 0.024(2) 0.030(2) -0.0052(19) 0.017(2) 0.0027(19) N3 0.019(3) 0.028(3) 0.038(3) -0.004(2) 0.013(2) -0.0003(18) N4 0.032(3) 0.034(3) 0.018(2) -0.0020(19) 0.012(2) 0.000(2) N5 0.035(3) 0.025(2) 0.032(3) -0.011(2) 0.020(2) -0.004(2) N6 0.045(3) 0.037(3) 0.040(3) 0.004(2) 0.034(3) -0.006(2) N7 0.027(3) 0.034(3) 0.020(2) -0.0042(19) 0.010(2) -0.003(2) N8 0.028(3) 0.042(3) 0.039(3) 0.000(2) 0.025(2) -0.002(2) C1 0.022(3) 0.020(2) 0.014(2) 0.0021(19) 0.008(2) -0.001(2) C2 0.017(2) 0.021(2) 0.017(2) -0.0006(18) 0.008(2) 0.0010(19) C3 0.021(3) 0.016(2) 0.023(2) 0.000(2) 0.012(2) 0.000(2) C4 0.021(2) 0.016(2) 0.012(2) -0.0002(17) 0.008(2) 0.0016(18) C5 0.025(3) 0.024(3) 0.020(2) -0.001(2) 0.015(2) -0.001(2) C6 0.021(3) 0.026(3) 0.022(2) 0.002(2) 0.014(2) -0.001(2) C7 0.019(2) 0.023(2) 0.013(2) 0.0010(18) 0.005(2) 0.000(2) C8 0.018(3) 0.026(3) 0.020(2) -0.001(2) 0.010(2) 0.002(2) C9 0.066(6) 0.047(4) 0.084(7) -0.006(4) 0.058(6) 0.001(4) C10 0.041(4) 0.116(8) 0.039(4) 0.009(5) 0.025(4) 0.004(5)

_geom_special_details

;

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

loop

;

_geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag W1 C6 2.1466(13) 2_657 ? W1 C6 2.1466(13) . ? W1 C8 2.1497(13) 5_657 ? W1 C8 2.1497(13) 6_556 ? W1 C7 2.1568(16) 2_657 ? W1 C7 2.1568(16) 2_657 ? W1 C5 2.1608(13) . ? W1 C5 2.1608(13) 2_657 ? W2 C3 2.1464(14) 2_556 ? W2 C3 2.1464(14) . ?

W2 C4 2.1534(14) 5_556 ? W2 C4 2.1534(14) 6 556 ? W2 C2 2.1591(13) 2 556? W2 C2 2.1591(13) . ? W2 C1 2.1775(13) 2 556 ? W2 C1 2.1775(13) . ? Mn1 N6 2.1111(15) 5 658 ? Mn1 N3 2.1135(16) 1_656 ? Mn1 N1 2.1314(15) 7 557? Mn1 N5 2.1633(15) . ? Mn1 O3 2.2357(15) . ? Mn2 N8 2.1425(15) . ? Mn2 N2 2.1673(15) . ? Mn2 N4 2.1688(16) . ? Mn2 N7 2.1802(17) . ? Mn2 O2 2.232(4) . ? Mn2 O1 2.471(4) . ? O1 C9 1.408(4) . ? O4 C10 1.441(10) . ? N1 C1 1.1359.? N1 Mn1 2.1314(15) 7_557 ? N2 C2 1.1481 . ? N3 C3 1.1449 . ? N3 Mn1 2.1135(16) 1_454 ? N4 C4 1.1394 . ? N5 C5 1.1524 . ? N6 C6 1.1487 . ? N6 Mn1 2.1111(15) 5_658 ? N7 C7 1.1377 .? N8 C8 1.1506 . ? C4 W2 2.1534(14) 5_556 ? C8 W1 2.1497(13) 5 657 ?

loop_

_geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C6 W1 C6 80.20(7) 2_657 . ? C6 W1 C8 70.88(6) 2_657 5_657 ? C6 W1 C8 140.7 . 5_657 ?

C6 W1 C8 140.7 2_657 6_556 ? C6 W1 C8 70.88(6) . 6 556? C8 W1 C8 146.11(7) 5 657 6 556? C6 W1 C7 70.97(6) 2_657 .? C6 W1 C7 80.0 . . ? C8 W1 C7 113.3 5_657 .? C8 W1 C7 78.1 6 556.? C6 W1 C7 80.0 2 657 2 657 ? C6 W1 C7 70.97(6) . 2 657 ? C8 W1 C7 78.1 5_657 2_657 ? C8 W1 C7 113.3 6 556 2 657 ? C7 W1 C7 141.92(7) . 2_657 ? C6 W1 C5 144.4 2_657 .? C6 W1 C5 112.69(5) . . ? C8 W1 C5 80.2 5_657 . ? C8 W1 C5 73.4 6 556.? C7 W1 C5 141.98(6) . . ? C7 W1 C5 73.9 2 657 .? C6 W1 C5 112.69(5) 2_657 2_657 ? C6 W1 C5 144.4 . 2 657 ? C8 W1 C5 73.4 5_657 2_657 ? C8 W1 C5 80.2 6_556 2_657 ? C7 W1 C5 73.9 . 2 657 ? C7 W1 C5 141.98(6) 2_657 2_657 ? C5 W1 C5 76.84(7) . 2 657 ? C3 W2 C3 147.31(7) 2 556.? C3 W2 C4 104.81(6) 2 556 5 556 ? C3 W2 C4 85.0 . 5_556? C3 W2 C4 85.0 2 556 6 556 ? C3 W2 C4 104.81(6) . 6_556 ? C4 W2 C4 145.18(7) 5_556 6_556 ? C3 W2 C2 141.57(6) 2 556 2 556 ? C3 W2 C2 70.4 . 2_556 ? C4 W2 C2 79.3 5 556 2 556 ? C4 W2 C2 73.17(6) 6_556 2_556 ? C3 W2 C2 70.4 2_556 . ? C3 W2 C2 141.57(6) . . ? C4 W2 C2 73.17(6) 5 556.? C4 W2 C2 79.3 6_556 . ? C2 W2 C2 74.64(7) 2 556.? C3 W2 C1 76.8 2 556 2 556 ? C3 W2 C1 77.07(6) . 2_556 ? C4 W2 C1 143.1 5 556 2 556 ? C4 W2 C1 71.41(6) 6_556 2_556 ?

C2 W2 C1 122.74(6) 2_556 2_556 ? C2 W2 C1 137.4 . 2 556 ? C3 W2 C1 77.07(6) 2 556.? C3 W2 C1 76.8 . . ? C4 W2 C1 71.41(5) 5 556.? C4 W2 C1 143.1 6_556 . ? C2 W2 C1 137.4 2 556 . ? C2 W2 C1 122.74(6) . . ? C1 W2 C1 73.17(7) 2 556.? N6 Mn1 N3 122.9 5_658 1_656 ? N6 Mn1 N1 122.81(7) 5 658 7 557? N3 Mn1 N1 112.6 1_656 7_557 ? N6 Mn1 N5 89.60(5) 5_658.? N3 Mn1 N5 94.58(6) 1 656 . ? N1 Mn1 N5 99.12(6) 7_557.? N6 Mn1 O3 82.35(6) 5 658.? N3 Mn1 O3 87.28(6) 1 656.? N1 Mn1 O3 87.88(6) 7_557 . ? N5 Mn1 O3 171.38(7) . . ? N8 Mn2 N2 106.01(6) . . ? N8 Mn2 N4 90.27(6) . . ? N2 Mn2 N4 100.71(6) . . ? N8 Mn2 N7 92.22(6) . . ? N2 Mn2 N7 92.67(6) . . ? N4 Mn2 N7 165.15(8) . . ? N8 Mn2 O2 162.21(12) . . ? N2 Mn2 O2 91.61(12) . . ? N4 Mn2 O2 83.88(11) . . ? N7 Mn2 O2 89.38(11) . . ? N8 Mn2 O1 78.97(10) . . ? N2 Mn2 O1 171.55(10) . . ? N4 Mn2 O1 85.93(10) . . ? N7 Mn2 O1 80.19(10) . . ? O2 Mn2 O1 83.85(13) . . ? C9 O1 Mn2 121.6(2) . . ? C1 N1 Mn1 166.1 . 7 557? C2 N2 Mn2 176.0 . . ? C3 N3 Mn1 171.0 . 1 454? C4 N4 Mn2 173.1 . . ? C5 N5 Mn1 176.0 . . ? C6 N6 Mn1 158.7 . 5 658? C7 N7 Mn2 152.1 . . ? C8 N8 Mn2 168.8 . . ? N1 C1 W2 177.0 . . ?

N2 C2 W2 177.8 . . ? N3 C3 W2 176.8 . . ? N4 C4 W2 179.5 . 5_556 ? N5 C5 W1 176.7 . . ? N6 C6 W1 177.2 . . ? N7 C7 W1 179.3 . . ? N8 C8 W1 178.1 . 5_657 ?

_diffrn_measured_fraction_theta_max0.978_diffrn_reflns_theta_full26.37_diffrn_measured_fraction_theta_full0.978_refine_diff_density_max1.376_refine_diff_density_min-1.703_refine_diff_density_rms0.173

data_2

database code depnum ccdc archive 'CCDC 901719' audit creation method SHELXL-97 _chemical_name_systematic ; ? ? _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety chemical formula sum 'C9 H8 Mn2 Mo N8 O3' _chemical_formula_weight 482.05 loop_ _atom_type_symbol _atom_type_description

_atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag atom type scat source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Mn' 'Mn' 0.3368 0.7283 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Mo' 'Mo' -1.6832 0.6857 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' '0' '0' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting monoclinic _symmetry_space_group_name_Hall '-C 2yc ' _symmetry_space_group_name_H-M C2/c

loop_

_symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y, -z+1/2' 'x+1/2, y+1/2, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z'

```
'x, -y, z-1/2'
'-x+1/2, -y+1/2, -z'
'x+1/2, -y+1/2, z-1/2'
```

17.0077(12)
21.9812(15)
13.0699(9)
90.00
127.521(3)
90.00
3875.4(5)
8
293(2)
?
1.77
27.60
'prism'
'yellow'
0.18
0.16

_exptl_crystal_size_mid	0.16
_exptl_crystal_size_min	0.13
_exptl_crystal_density_meas	?
_exptl_crystal_density_diffrn	1.652
_exptl_crystal_density_method	'not measured'
_exptl_crystal_F_000	1871
_exptl_absorpt_coefficient_mu	1.941
_exptl_absorpt_correction_type	multi-scan
_exptl_absorpt_correction_T_min	0.6203
_exptl_absorpt_correction_T_max	0.7197
_exptl_absorpt_process_details	'SADABS(Bruker, 2002)'

_exptl_special_details

```
;
?
```

```
;
```

_diffrn_ambient_temperature293(2)_diffrn_radiation_wavelength0.71073_diffrn_radiation_typeMoK\a_diffrn_radiation_source'fine-focus sealed tube'_diffrn_radiation_monochromatorgraphite_diffrn_measurement_device_type'CCD area detector'_diffrn_measurement_method'phi and omega scans'

_diffrn_detector_area_resol_mean	?
_diffrn_standards_number	?
_diffrn_standards_interval_count	?
_diffrn_standards_interval_time	?
_diffrn_standards_decay_%	?
_diffrn_reflns_number	18086
_diffrn_reflns_av_R_equivalents	0.0614
_diffrn_reflns_av_sigmaI/netI	0.0524
_diffrn_reflns_limit_h_min	-21
_diffrn_reflns_limit_h_max	22
_diffrn_reflns_limit_k_min	-26
_diffrn_reflns_limit_k_max	28
_diffrn_refIns_limit_l_min	-16
_diffrn_reflns_limit_l_max	15
_diffrn_reflns_theta_min	1.77
_diffrn_reflns_theta_max	27.60
_reflns_number_total	4493
_reflns_number_gt	3517
_reflns_threshold_expression	>2sigma(I)
_computing_data_collection	'CrystalClear (Rigaku
_computing_cell_refinement	'CrystalClear (Rigaku
_computing_data_reduction	'CrystalClear (Rigaku
_computing_structure_solution	'SHELXS-97 (Sheldrick
_computing_structure_refinement	'SHELXL-97 (Sheldrich
_computing_molecular_graphics	SHELXTL

Corp., 2000)' Corp., 2000)' Corp., 2000)' k, 1990)' k, 1997)' SHELXTL SHELXTL

_refine_special_details

_computing_publication_material

:

Refinement of F^2^ against ALL reflections. The weighted R-factor wR

and

goodness of fit S are based on F^2^, conventional R-factors R are

based

on F, with F set to zero for negative $F^2^$. The threshold expression

of

 $F^2 > 2$ sigma($F^2^$) is used only for calculating R-factors(gt) etc.

and is

not relevant to the choice of reflections for refinement. R-factors

based

on F² are statistically about twice as large as those based on F,

and Rfactors based on ALL data will be even larger.

;

_refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0704P)^2^+1.8411P] where P=

(Fo^2^+2Fc^2^)/3'

_atom_sites_solution_primary	direct
_atom_sites_solution_secondary	difmap
_atom_sites_solution_hydrogens	geom
_refine_ls_hydrogen_treatment	mixed
_refine_ls_extinction_method	SHELXL
_refine_ls_extinction_coef	0.00000(9)
_refine_ls_extinction_expression	
'Fc^*^=kFc[1+0.001xFc^2^\l^3	/sin(2\q)]^-1/4^'
_refine_ls_number_reflns	4425
_refine_ls_number_parameters	186
_refine_ls_number_restraints	0
_refine_ls_R_factor_all	0.0551
_refine_ls_R_factor_gt	0.0458
_refine_ls_wR_factor_ref	0.1287
_refine_ls_wR_factor_gt	0.1247
_refine_ls_goodness_of_fit_ref	1.065
_refine_ls_restrained_S_all	1.065
_refine_ls_shift/su_max	1.714
_refine_ls_shift/su_mean	0.009

loop_

_atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity

atom site calc flag atom site refinement flags atom site disorder assembly _atom_site_disorder_group Mo1 Mo 0.5000 -0.01917(2) 0.7500 0.02040(15) Uani 1 2 d S ... Mo2 Mo 0.0000 0.12929(2) 0.2500 0.01858(15) Uani 1 2 d S . . Mn1 Mn 0.37427(5) 0.17740(3) 0.42916(6) 0.02447(18) Uani 1 1 d ... Mn2 Mn 0.20409(5) -0.06562(3) 0.25638(5) 0.02413(18) Uani 1 1 d ... C8 C 0.3228(6) -0.1699(3) 0.1961(8) 0.070(2) Uani 1 1 d . . . H8A H 0.3566 -0.2084 0.2210 0.105 Uiso 1 1 calc R . . H8B H 0.3664 -0.1385 0.2067 0.105 Uiso 1 1 calc R ... H8C H 0.2653 -0.1717 0.1074 0.105 Uiso 1 1 calc R ... C9 C 0.0751(3) -0.1000(2) -0.0542(4) 0.0271(9) Uani 1 1 d . . . C7 C 0.3801(4) -0.0102(2) 0.2503(4) 0.0333(10) Uani 1 1 d ... C4 C -0.0329(3) 0.20845(19) 0.1315(4) 0.0271(9) Uani 1 1 d . . . C1 C 0.5438(3) -0.0941(2) 0.6901(4) 0.0302(9) Uani 1 1 d . . . C2 C 0.3728(3) -0.0510(2) 0.5653(4) 0.0306(10) Uani 1 1 d ... C3 C 0.4470(3) 0.0579(2) 0.6222(4) 0.0305(10) Uani 1 1 d . . . C5 C 0.0789(3) 0.05077(19) 0.2558(4) 0.0263(9) Uani 1 1 d . . . C6 C 0.1437(3) 0.1570(2) 0.3114(4) 0.0278(9) Uani 1 1 d . . . N1 N 0.5669(4) -0.1325(2) 0.6553(4) 0.0475(11) Uani 1 1 d . . . N4 N -0.0550(3) 0.25038(18) 0.0673(4) 0.0387(10) Uani 1 1 d . . . O1 O 0.29125(11) -0.15608(7) 0.28029(13) 0.0891(17) Uani 1 1 d ... H1A H 0.2592 -0.1742 0.3216 0.134 Uiso 1 1 d R ... N5 N 0.12023(11) 0.01030(7) 0.25418(13) 0.0371(9) Uani 1 1 d R ... N3 N 0.42133(11) 0.10117(7) 0.55882(13) 0.0394(10) Uani 1 1 d R ... O2 O 0.10763(11) -0.13238(7) 0.25929(13) 0.0796(15) Uani 1 1 d R . . H2A H 0.0388 -0.1134 0.2239 0.119 Uiso 1 1 d R . . H2B H 0.1296 -0.1588 0.3388 0.119 Uiso 1 1 d R . . N6 N 0.22272(11) 0.17035(7) 0.34859(13) 0.0386(10) Uani 1 1 d R ... N2 N 0.30517(11) -0.06748(7) 0.46676(13) 0.0414(10) Uani 1 1 d R . . N9 N 0.11231(11) -0.08519(7) 0.04964(13) 0.0413(10) Uani 1 1 d R . . N7 N 0.31385(11) -0.02320(7) 0.24857(13) 0.0420(10) Uani 1 1 d R . . O3 O 0.33202(11) 0.24747(7) 0.27748(13) 0.0816(15) Uani 1 1 d R ... H3A H 0.3975 0.2515 0.3251 0.122 Uiso 1 1 d R . . H3B H 0.3060 0.2677 0.3018 0.122 Uiso 1 1 d R . .

loop_

_atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12

Mo1 0.0193(3) 0.0244(3) 0.0145(2) 0.000 0.00867(19) 0.000 Mo2 0.0168(2) 0.0199(3) 0.0122(2) 0.000 0.00529(18) 0.000 Mn1 0.0252(3) 0.0238(4) 0.0208(3) -0.0018(2) 0.0121(3) 0.0004(2) Mn2 0.0219(3) 0.0287(4) 0.0160(3) -0.0024(2) 0.0085(2) -0.0015(3) C8 0.075(5) 0.059(4) 0.092(5) 0.001(4) 0.059(4) 0.009(3) C9 0.024(2) 0.030(2) 0.0168(17) 0.0032(15) 0.0069(16) 0.0039(17) C7 0.037(3) 0.033(2) 0.031(2) 0.0004(18) 0.021(2) 0.000(2) C4 0.028(2) 0.025(2) 0.0192(17) -0.0017(15) 0.0096(16) -0.0021(17) $C1\ 0.031(2)\ 0.031(2)\ 0.031(2)\ -0.0010(17)\ 0.0197(19)\ 0.0014(19)$ C2 0.029(2) 0.034(2) 0.0212(19) 0.0002(17) 0.0110(18) 0.0011(19) C3 0.030(2) 0.030(2) 0.0259(19) 0.0027(17) 0.0139(18) 0.0005(19) C5 0.024(2) 0.027(2) 0.0223(18) 0.0003(16) 0.0113(17) 0.0066(17) C6 0.025(2) 0.023(2) 0.0274(19) 0.0013(16) 0.0116(17) 0.0000(18) N1 0.058(3) 0.045(3) 0.052(3) 0.000(2) 0.040(2) 0.007(2) N4 0.041(2) 0.031(2) 0.0335(19) 0.0091(17) 0.0171(18) 0.0049(18) O1 0.131(5) 0.059(3) 0.072(3) 0.009(3) 0.059(4) 0.019(3) N5 0.035(2) 0.037(2) 0.034(2) -0.0019(16) 0.0185(18) 0.0044(18) N3 0.045(2) 0.037(2) 0.035(2) 0.0082(17) 0.0240(19) 0.0059(19) $O2\ 0.068(3)\ 0.089(4)\ 0.078(3)\ -0.007(3)\ 0.043(3)\ -0.039(3)$ N6 0.027(2) 0.032(2) 0.048(2) -0.0004(17) 0.0187(19) -0.0045(16) N2 0.040(2) 0.048(3) 0.0209(17) -0.0035(16) 0.0106(17) -0.0003(19) N9 0.041(2) 0.047(3) 0.0189(16) -0.0059(16) 0.0097(16) -0.0005(19) N7 0.035(2) 0.050(3) 0.047(2) 0.0012(19) 0.028(2) -0.008(2) O3 0.131(5) 0.053(3) 0.073(3) 0.019(2) 0.069(3) 0.016(3)

_geom_special_details

;

All esds (except the esd in the dihedral angle between two l.s.

planes)

are estimated using the full covariance matrix. The cell esds are

taken

into account individually in the estimation of esds in distances,

angles

and torsion angles; correlations between esds in cell parameters are

only

used when they are defined by crystal symmetry. An approximate

(isotropic)

treatment of cell esds is used for estimating esds involving l.s.

planes.

;

loop_

_geom_bond_atom_site_label_1 $_geom_bond_atom_site_label_2$ _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Mo1 C7 2.141(5) 6_556 ? Mo1 C7 2.141(5) 5_656 ? Mo1 C1 2.142(5) 2_656 ? Mo1 C1 2.142(5) . ? Mo1 C2 2.152(4) . ? Mo1 C2 2.152(4) 2_656 ? Mo1 C3 2.155(4) 2_656 ? Mo1 C3 2.155(4) . ? Mo2 C6 2.144(4) 2 ? Mo2 C6 2.144(4) . ? Mo2 C9 2.147(4) 6_556 ? Mo2 C9 2.147(4) 5 ? Mo2 C5 2.159(4) 2 ? Mo2 C5 2.159(4) . ? Mo2 C4 2.164(4) 2 ? Mo2 C4 2.164(4) . ? Mn1 N6 2.1142(16) . ? Mn1 N1 2.131(5) 5_656 ? Mn1 N4 2.140(4) 8 556? Mn1 N3 2.1604(15) . ? Mn1 O3 2.2548(15) . ? Mn2 N7 2.1439(16) . ? Mn2 N2 2.1817(14) . ? Mn2 N5 2.1840(17) . ? Mn2 N9 2.1875(14) . ? Mn2 O2 2.2187(16) . ? Mn2 O1 2.3843(16) . ? C8 O1 1.520(7) . ? C9 N9 1.142(4) . ? C9 Mo2 2.147(4) 5 ? C7 N7 1.149(5).? C7 Mol 2.141(5) 5_656 ? C4 N4 1.145(5).? C1 N1 1.136(6) . ?

C2 N2 1.145(4) . ? C3 N3 1.157(4) . ? C5 N5 1.142(4) . ? C6 N6 1.155(5) . ? N1 Mn1 2.131(4) 5_656 ? N4 Mn1 2.140(4) 8_455 ?

loop_

geom angle atom site label 1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 geom angle site symmetry 3 _geom_angle_publ_flag C7 Mo1 C7 144.9(3) 6 556 5 656? C7 Mo1 C1 71.78(18) 6 556 2 656 ? C7 Mo1 C1 140.87(18) 5_656 2_656 ? C7 Mo1 C1 140.87(18) 6_556 . ? C7 Mo1 C1 71.78(18) 5 656.? C1 Mo1 C1 79.6(2) 2_656 . ? C7 Mo1 C2 78.01(17) 6 556.? C7 Mo1 C2 113.79(17) 5 656 .? C1 Mo1 C2 79.92(17) 2_656 . ? C1 Mo1 C2 71.10(17) . . ? C7 Mo1 C2 113.79(17) 6 556 2 656 ? C7 Mo1 C2 78.01(17) 5 656 2 656 ? C1 Mo1 C2 71.10(17) 2_656 2_656 ? C1 Mo1 C2 79.92(17) . 2 656 ? C2 Mo1 C2 142.1(2) . 2_656 ? C7 Mo1 C3 73.19(18) 6_556 2_656 ? C7 Mo1 C3 79.36(18) 5 656 2 656 ? C1 Mo1 C3 113.30(17) 2_656 2_656 ? C1 Mo1 C3 144.46(17) . 2 656? C2 Mo1 C3 141.72(17) . 2 656? C2 Mo1 C3 74.08(17) 2 656 2 656 ? C7 Mo1 C3 79.36(18) 6_556 . ? C7 Mo1 C3 73.19(18) 5 656.? C1 Mo1 C3 144.46(17) 2_656 . ? C1 Mo1 C3 113.30(17) . . ? C2 Mo1 C3 74.08(17) ...? C2 Mo1 C3 141.72(17) 2_656 .? C3 Mo1 C3 76.2(2) 2 656 .? C6 Mo2 C6 147.0(2) 2 . ?

C6 Mo2 C9 104.28(17) 2 6_556? C6 Mo2 C9 85.62(16) . 6 556 ? C6 Mo2 C9 85.62(16) 2 5 ? C6 Mo2 C9 104.28(17) . 5 ? C9 Mo2 C9 145.1(2) 6 556 5 ? C6 Mo2 C5 70.84(16) 2 2 ? C6 Mo2 C5 141.51(16) . 2 ? C9 Mo2 C5 73.05(15) 6_556 2 ? C9 Mo2 C5 79.21(16) 5 2 ? C6 Mo2 C5 141.51(16) 2 . ? C6 Mo2 C5 70.84(16) . . ? C9 Mo2 C5 79.21(16) 6_556.? C9 Mo2 C5 73.05(15) 5 . ? C5 Mo2 C5 73.9(2) 2.? C6 Mo2 C4 77.21(16) 2 2 ? C6 Mo2 C4 76.35(17) . 2 ? C9 Mo2 C4 71.41(15) 6 556 2 ? C9 Mo2 C4 143.17(15) 5 2 ? C5 Mo2 C4 123.53(16) 2 2 ? C5 Mo2 C4 137.14(15) . 2 ? C6 Mo2 C4 76.35(17) 2 . ? C6 Mo2 C4 77.21(16) . . ? C9 Mo2 C4 143.17(15) 6 556 .? C9 Mo2 C4 71.41(15) 5 . ? C5 Mo2 C4 137.14(15) 2 . ? C5 Mo2 C4 123.53(16) . . ? C4 Mo2 C4 73.0(2) 2 . ? N6 Mn1 N1 121.51(14) . 5_656? N6 Mn1 N4 111.29(13) . 8 556? N1 Mn1 N4 125.49(18) 5_656 8_556 ? N6 Mn1 N3 95.21(6) . . ? N1 Mn1 N3 88.86(13) 5 656 .? N4 Mn1 N3 99.46(12) 8_556 . ? N6 Mn1 O3 88.46(6) . . ? N1 Mn1 O3 81.95(13) 5 656.? N4 Mn1 O3 87.09(12) 8 556.? N3 Mn1 O3 170.71(8) . . ? N7 Mn2 N2 91.58(6) . . ? N7 Mn2 N5 104.34(7) . . ? N2 Mn2 N5 92.17(6) . . ? N7 Mn2 N9 90.79(6) . . ? N2 Mn2 N9 167.13(8) . . ? N5 Mn2 N9 99.50(6) . . ? N7 Mn2 O2 164.33(9) . . ?

N2 Mn2 O2 89.39(5) . . ? N5 Mn2 O2 91.25(6) . . ? N9 Mn2 O2 84.97(5) . . ? N7 Mn2 O1 83.06(6) . . ? N2 Mn2 O1 82.50(5) . . ? N5 Mn2 O1 171.06(8) . . ? N9 Mn2 O1 85.23(5) . . ? O2 Mn2 O1 81.57(5) . . ? N9 C9 Mo2 177.6(4) . 5 ? N7 C7 Mo1 176.8(4) . 5_656? N4 C4 Mo2 176.6(4) . . ? N1 C1 Mo1 177.6(4) . . ? N2 C2 Mo1 179.5(4) . . ? N3 C3 Mo1 176.6(4) . . ? N5 C5 Mo2 176.9(3) . . ? N6 C6 Mo2 177.3(3) . . ? C1 N1 Mn1 159.7(4) . 5_656? C4 N4 Mn1 168.6(4) . 8_455 ? C8 O1 Mn2 122.5(3) . . ? C5 N5 Mn2 178.0(2) . . ? C3 N3 Mn1 175.1(3) . . ? C6 N6 Mn1 169.1(2) . . ? C2 N2 Mn2 153.3(3) . . ? C9 N9 Mn2 170.7(2) . . ? C7 N7 Mn2 168.2(3) . . ?

_diffrn_measured_fraction_theta_max0.984_diffrn_reflns_theta_full27.60_diffrn_measured_fraction_theta_full0.984_refine_diff_density_max1.556_refine_diff_density_min-1.192_refine_diff_density_rms0.131

data_3

database code depnum ccdc archive 'CCDC 927965' audit creation method SHELXL-97 _chemical_name_systematic ; ? ? _chemical_name_common ? _chemical_melting_point _chemical_formula_moiety ? chemical formula sum 'C32 H56 Cl Mn2 N16 O12 W' _chemical_formula_weight 1186.10

loop_

_atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Cl' 'Cl' 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Mn' 'Mn' 0.3368 0.7283 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' '0' '0' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'W' 'W' -0.8490 6.8722 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting tetragonal _symmetry_space_group_name_H-M ' P 42/m'

loop_

_symmetry_equiv_pos_as_xyz 'x, y, z' '-y, x, z+1/2' '-x, -y, z' 'y, -x, z+1/2' '-x, -y, -z' 'y, -x, -z-1/2' 'x, y, -z' '-y, x, -z-1/2'

_cell_length_a	12.429(3)
_cell_length_b	12.429(3)
_cell_length_c	16.976(3)
_cell_angle_alpha	90.00
_cell_angle_beta	90.00
_cell_angle_gamma	90.00
_cell_volume	2622.5(10)
_cell_formula_units_Z	2
_cell_measurement_temperature	293(2)
_cell_measurement_reflns_used	?
_cell_measurement_theta_min	3.34
_cell_measurement_theta_max	25.00

_exptl_crystal_description	'block'
_exptl_crystal_colour	'yellow'
_exptl_crystal_size_max	0.3
_exptl_crystal_size_mid	0.25
_exptl_crystal_size_min	0.2
_exptl_crystal_density_meas	?
_exptl_crystal_density_diffrn	1.502
_exptl_crystal_density_method	'not measured'
_exptl_crystal_F_000	1194
_exptl_absorpt_coefficient_mu	2.778
_exptl_absorpt_correction_type	multi-scan
_exptl_absorpt_correction_T_min	0.439
_exptl_absorpt_correction_T_max	0.574
_exptl_absorpt_process_details	'SADABS(Bruker, 2002)'

_exptl_special_details

```
;
?
```

```
;
```

_diffrn_ambient_temperature	293(2)
_diffrn_radiation_wavelength	0.71073
_diffrn_radiation_type	MoK\a
_diffrn_radiation_source	'fine-focus sealed tube'
_diffrn_radiation_monochromator	graphite
_diffrn_measurement_device_type	'CCD area detector'

_diffrn_measurement_method	'phi and omega scans'
_diffrn_detector_area_resol_mean	?
_diffrn_standards_number	?
_diffrn_standards_interval_count	?
_diffrn_standards_interval_time	?
_diffrn_standards_decay_%	?
_diffrn_reflns_number	5460
_diffrn_reflns_av_R_equivalents	0.0186
_diffrn_reflns_av_sigmaI/netI	0.0283
_diffrn_reflns_limit_h_min	-10
_diffrn_reflns_limit_h_max	14
_diffrn_reflns_limit_k_min	-14
_diffrn_reflns_limit_k_max	9
_diffrn_reflns_limit_l_min	-20
_diffrn_reflns_limit_l_max	13
_diffrn_reflns_theta_min	3.34
_diffrn_reflns_theta_max	25.00
_reflns_number_total	2314
_reflns_number_gt	2083
_reflns_threshold_expression	>2sigma(I)
_computing_data_collection	'CrystalClear (Rigaku Corp., 2000)'
_computing_cell_refinement	'CrystalClear (Rigaku Corp., 2000)'
_computing_data_reduction	'CrystalClear (Rigaku Corp., 2000)'
_computing_structure_solution	'SHELXS-97 (Sheldrick, 1990)'
_computing_structure_refinement	'SHELXL-97 (Sheldrick, 1997)'
_computing_molecular_graphics	SHELXTL
_computing_publication_material	SHELXTL

_refine_special_details

;

Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of $F^2^{-2} > 2$ sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

;

_refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[$s^2^{(Fo^2^)+(0.0294P)^2+1.0631P}$] where P=(Fo^2^+2Fc^2)/3'

_atom_sites_solution_primary	direct
_atom_sites_solution_secondary	difmap
_atom_sites_solution_hydrogens	geom
_refine_ls_hydrogen_treatment	constr
_refine_ls_extinction_method	SHELXL
_refine_ls_extinction_coef	0.0001(3)
_refine_ls_extinction_expression	
'Fc^*^=kFc[1+0.001xFc^2^\l^3	^/sin(2\q)]^-1/4^'
_refine_ls_number_reflns	2314
_refine_ls_number_parameters	162
_refine_ls_number_restraints	0
_refine_ls_R_factor_all	0.0270
_refine_ls_R_factor_gt	0.0231
_refine_ls_wR_factor_ref	0.0566
_refine_ls_wR_factor_gt	0.0546
_refine_ls_goodness_of_fit_ref	1.025
_refine_ls_restrained_S_all	1.025
_refine_ls_shift/su_max	0.002
_refine_ls_shift/su_mean	0.000

loop_

atom site label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y atom site fract z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity atom site calc flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group W1 W 0.0000 0.0000 0.2500 0.01985(11) Uani 1 4 d S . . Mn1 Mn 0.27026(4) 0.00757(4) 0.0000 0.02361(15) Uani 1 2 d S . . O1 O 0.37479(14) 0.06922(15) 0.09186(12) 0.0350(5) Uani 1 1 d ... O2 O 0.1946(2) 0.1672(2) 0.0000 0.0356(7) Uani 1 2 d S . . O3 O 0.3317(2) -0.1518(2) 0.0000 0.0360(7) Uani 1 2 d S . . N1 N 0.15094(18) -0.03783(18) 0.09223(14) 0.0303(5) Uani 1 1 d ... N2 N -0.0598(2) -0.24746(19) 0.19274(15) 0.0411(6) Uani 1 1 d . . . N3 N 0.0535(3) 0.2821(3) 0.0000 0.0394(9) Uani 1 2 d S ... N4 N 0.4007(2) 0.15591(19) 0.20796(16) 0.0398(6) Uani 1 1 d . . .

N5 N 0.4516(3) -0.2884(3) 0.0000 0.0452(10) Uani 1 2 d S ... C1 C 0.0980(2) -0.0267(2) 0.14686(16) 0.0242(6) Uani 1 1 d . . . C2 C -0.0395(2) -0.1617(2) 0.21277(16) 0.0283(6) Uani 1 1 d . . . C3 C 0.0960(3) 0.1867(3) 0.0000 0.0303(9) Uani 1 2 d S ... H3 H 0.0493 0.1282 0.0000 0.036 Uiso 1 2 calc SR . . C4 C 0.4255(3) -0.1869(3) 0.0000 0.0339(10) Uani 1 2 d S ... H4 H 0.4812 -0.1369 0.0000 0.041 Uiso 1 2 calc SR . . C5 C 0.3408(2) 0.1179(2) 0.15055(18) 0.0355(7) Uani 1 1 d . . . H5A H 0.2668 0.1283 0.1543 0.043 Uiso 1 1 calc R ... C6 C 0.3697(5) -0.3721(4) 0.0000 0.119(4) Uani 1 2 d S ... H6A H 0.2996 -0.3395 0.0000 0.179 Uiso 1 2 calc SR . . H6B H 0.3776 -0.4160 0.0462 0.179 Uiso 0.50 1 calc PR . . H6C H 0.3776 -0.4160 -0.0462 0.179 Uiso 0.50 1 calc PR . . C7 C 0.1225(5) 0.3762(4) 0.0000 0.118(3) Uani 1 2 d S ... H7A H 0.1965 0.3539 0.0000 0.178 Uiso 1 2 calc SR ... H7B H 0.1084 0.4185 0.0462 0.178 Uiso 0.50 1 calc PR . . H7C H 0.1084 0.4185 -0.0462 0.178 Uiso 0.50 1 calc PR . . C8 C 0.5173(3) 0.1466(3) 0.2068(3) 0.0695(12) Uani 1 1 d . . . H8A H 0.5394 0.1113 0.1592 0.104 Uiso 1 1 calc R ... H8B H 0.5406 0.1052 0.2514 0.104 Uiso 1 1 calc R ... H8C H 0.5488 0.2170 0.2091 0.104 Uiso 1 1 calc R ... C9 C 0.3511(3) 0.2077(3) 0.2763(2) 0.0606(10) Uani 1 1 d . . . H9A H 0.2743 0.2075 0.2702 0.091 Uiso 1 1 calc R ... H9B H 0.3762 0.2806 0.2802 0.091 Uiso 1 1 calc R ... H9C H 0.3702 0.1691 0.3232 0.091 Uiso 1 1 calc R ... C10 C -0.0609(4) 0.2994(4) 0.0000 0.0504(12) Uani 1 2 d S ... H10A H -0.0972 0.2312 0.0000 0.076 Uiso 1 2 calc SR . . H10B H -0.0809 0.3392 -0.0462 0.076 Uiso 0.50 1 calc PR . . H10C H -0.0809 0.3392 0.0462 0.076 Uiso 0.50 1 calc PR ... C11 C 0.5626(4) -0.3244(4) 0.0000 0.0629(16) Uani 1 2 d S ... H11A H 0.6095 -0.2631 0.0000 0.094 Uiso 1 2 calc SR . . H11B H 0.5759 -0.3670 -0.0462 0.094 Uiso 0.50 1 calc PR . . H11C H 0.5759 -0.3670 0.0462 0.094 Uiso 0.50 1 calc PR . . Cl1 Cl 0.5000 0.5000 0.2500 0.0774(8) Uani 1 4 d S ... O4 O 0.4199(4) 0.4533(3) 0.2011(3) 0.1321(15) Uani 1 1 d . . .

loop_

_atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12

```
W1 0.02084(12) 0.02084(12) 0.01787(14) 0.000 0.000 0.000
Mn1 0.0210(3) 0.0256(3) 0.0242(3) 0.000 0.000 0.0031(2)
01 0.0269(10) 0.0419(11) 0.0362(12) -0.0050(10) -0.0044(9) 0.0015(9)
O2 0.0310(16) 0.0285(15) 0.0474(18) 0.000 0.000 0.0078(12)
O3 0.0314(16) 0.0275(15) 0.0491(18) 0.000 0.000 0.0085(12)
N1 0.0295(12) 0.0330(13) 0.0285(13) -0.0008(11) 0.0004(11) 0.0017(10)
N2 0.0567(17) 0.0286(14) 0.0380(16) -0.0013(12) -0.0016(13) -0.0064(12)
N3 0.045(2) 0.0310(19) 0.042(2) 0.000 0.000 0.0108(16)
N4 0.0430(15) 0.0371(14) 0.0394(15) -0.0075(12) -0.0060(13) -0.0025(11)
N5 0.0265(19) 0.0279(19) 0.081(3) 0.000 0.000 0.0056(15)
C1 0.0258(14) 0.0231(13) 0.0237(14) -0.0001(12) -0.0028(12) -0.0001(11)
C2 0.0365(16) 0.0250(15) 0.0234(15) 0.0030(12) -0.0005(13) 0.0015(12)
C3 0.038(2) 0.026(2) 0.027(2) 0.000 0.000 0.0030(17)
C4 0.027(2) 0.028(2) 0.046(3) 0.000 0.000 -0.0018(17)
C5 0.0306(15) 0.0332(16) 0.0428(19) -0.0006(15) -0.0018(15) -0.0038(12)
C6 0.045(3) 0.035(3) 0.277(12) 0.000 0.000 -0.001(3)
C7 0.060(4) 0.022(3) 0.272(11) 0.000 0.000 0.001(3)
C8\ 0.048(2)\ 0.081(3)\ 0.079(3)\ -0.027(2)\ -0.028(2)\ 0.005(2)
C9\ 0.072(3)\ 0.060(2)\ 0.049(2)\ -0.021(2)\ 0.001(2)\ -0.016(2)
C10\ 0.048(3)\ 0.049(3)\ 0.053(3)\ 0.000\ 0.000\ 0.013(2)
C11 0.038(3) 0.039(3) 0.112(5) 0.000 0.000 0.015(2)
Cl1 0.0507(7) 0.0507(7) 0.131(2) 0.000 0.000 0.000
O4 0.133(3) 0.112(3) 0.152(4) -0.022(3) -0.027(3) -0.002(3)
```

_geom_special_details

;

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

;

loop_

_geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag W1 C1 2.158(3) 8_556 ? W1 C1 2.158(3) 6_556 ? W1 C1 2.158(3) 3 ? W1 C1 2.158(3) . ?

W1 C2 2.163(3) 8_556 ? W1 C2 2.163(3) . ? W1 C2 2.163(3) 3 ? W1 C2 2.163(3) 6_556 ? Mn1 O3 2.123(3) . ? Mn1 O1 2.1696(19) . ? Mn1 O1 2.1696(19) 7 ? Mn1 O2 2.196(3) . ? Mn1 N1 2.229(2) 7 ? Mn1 N1 2.229(2) . ? O1 C5 1.240(3).? O2 C3 1.249(5).? O3 C4 1.245(5).? N1 C1 1.146(3).? N2 C2 1.148(3) . ? N3 C3 1.299(5).? N3 C10 1.438(6) . ? N3 C7 1.450(6) . ? N4 C5 1.314(4).? N4 C8 1.454(4) . ? N4 C9 1.462(5).? N5 C4 1.303(5).? N5 C11 1.450(5).? N5 C6 1.456(6) . ? C3 H3 0.9300 . ? C4 H4 0.9300 . ? C5 H5A 0.9300 . ? C6 H6A 0.9600 . ? C6 H6B 0.9600 . ? C6 H6C 0.9600 . ? C7 H7A 0.9600 . ? C7 H7B 0.9600 . ? C7 H7C 0.9600.? C8 H8A 0.9600 . ? C8 H8B 0.9600 . ? C8 H8C 0.9600 . ? C9 H9A 0.9600 . ? C9 H9B 0.9600 .? C9 H9C 0.9600 . ? C10 H10A 0.9600 . ? C10 H10B 0.9600 . ? C10 H10C 0.9600 . ? C11 H11A 0.9600 . ? C11 H11B 0.9600 . ?

C11 H11C 0.9600 . ? Cl1 O4 1.420(4) 8_656 ? Cl1 O4 1.420(4) . ? Cl1 O4 1.420(4) 3_665 ? Cl1 O4 1.420(4) 6_566 ?

loop_

_geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 geom angle publ flag C1 W1 C1 71.56(13) 8_556 6_556 ? C1 W1 C1 131.16(8) 8 556 3 ? C1 W1 C1 131.16(8) 6_556 3 ? C1 W1 C1 131.16(8) 8_556.? C1 W1 C1 131.16(8) 6_556.? C1 W1 C1 71.56(13) 3 . ? C1 W1 C2 75.42(10) 8_556 8_556 ? C1 W1 C2 77.15(10) 6_556 8_556 ? C1 W1 C2 142.75(10) 3 8 556? C1 W1 C2 71.23(10) . 8_556 ? C1 W1 C2 142.75(10) 8 556.? C1 W1 C2 71.23(10) 6_556.? C1 W1 C2 77.15(10) 3 . ? C1 W1 C2 75.42(10) . . ? C2 W1 C2 94.90(4) 8 556.? C1 W1 C2 71.23(10) 8_556 3 ? C1 W1 C2 142.75(10) 6_556 3 ? C1 W1 C2 75.42(10) 3 3 ? C1 W1 C2 77.15(10) . 3 ? C2 W1 C2 94.90(4) 8 556 3 ? C2 W1 C2 146.02(15).3? C1 W1 C2 77.15(10) 8_556 6_556 ? C1 W1 C2 75.42(10) 6_556 6_556 ? C1 W1 C2 71.23(10) 3 6 556? C1 W1 C2 142.75(10) . 6_556 ? C2 W1 C2 146.02(15) 8_556 6_556 ? C2 W1 C2 94.90(4).6 556? C2 W1 C2 94.90(4) 3 6_556? O3 Mn1 O1 96.54(7) . . ? O3 Mn1 O1 96.54(7).7?

O1 Mn1 O1 91.91(11).7? O3 Mn1 O2 175.75(11) . . ? O1 Mn1 O2 86.40(7) . . ? O1 Mn1 O2 86.40(7) 7 . ? O3 Mn1 N1 90.19(8) . 7 ? O1 Mn1 N1 173.05(8) . 7 ? O1 Mn1 N1 89.02(8) 77? O2 Mn1 N1 86.79(8) . 7 ? O3 Mn1 N1 90.19(8) . . ? O1 Mn1 N1 89.02(8) . . ? O1 Mn1 N1 173.05(8) 7 . ? O2 Mn1 N1 86.79(8) . . ? N1 Mn1 N1 89.24(12) 7 . ? C5 O1 Mn1 123.06(18) ...? C3 O2 Mn1 126.5(2) . . ? C4 O3 Mn1 131.6(3) . . ? C1 N1 Mn1 157.0(2) . . ? C3 N3 C10 122.6(4) . . ? C3 N3 C7 119.8(4) . . ? C10 N3 C7 117.7(4) . . ? C5 N4 C8 121.8(3) . . ? C5 N4 C9 120.5(3) . . ? C8 N4 C9 117.7(3) . . ? C4 N5 C11 122.4(4) . . ? C4 N5 C6 121.2(4) . . ? C11 N5 C6 116.5(4) . . ? N1 C1 W1 178.0(2) . . ? N2 C2 W1 179.5(3) . . ? O2 C3 N3 125.1(4) . . ? O2 C3 H3 117.4 . . ? N3 C3 H3 117.4 . . ? O3 C4 N5 124.9(4) . . ? O3 C4 H4 117.5 . . ? N5 C4 H4 117.5 . . ? O1 C5 N4 125.3(3) . . ? O1 C5 H5A 117.3 . . ? N4 C5 H5A 117.3 . . ? N5 C6 H6A 109.5 . . ? N5 C6 H6B 109.5 . . ? H6A C6 H6B 109.5 . . ? N5 C6 H6C 109.5 . . ? H6A C6 H6C 109.5 . . ? H6B C6 H6C 109.5 . . ? N3 C7 H7A 109.5 . . ?

N3 C7 H7B 109.5 . . ? H7A C7 H7B 109.5 . . ? N3 C7 H7C 109.5 . . ? H7A C7 H7C 109.5 . . ? H7B C7 H7C 109.5 . . ? N4 C8 H8A 109.5 . . ? N4 C8 H8B 109.5 . . ? H8A C8 H8B 109.5 ...? N4 C8 H8C 109.5 . . ? H8A C8 H8C 109.5 . . ? H8B C8 H8C 109.5 ...? N4 C9 H9A 109.5 . . ? N4 C9 H9B 109.5 . . ? H9A C9 H9B 109.5 . . ? N4 C9 H9C 109.5 . . ? H9A C9 H9C 109.5 . . ? H9B C9 H9C 109.5 ...? N3 C10 H10A 109.5 ...? N3 C10 H10B 109.5 . . ? H10A C10 H10B 109.5 . . ? N3 C10 H10C 109.5 . . ? H10A C10 H10C 109.5 . . ? H10B C10 H10C 109.5 . . ? N5 C11 H11A 109.5 ...? N5 C11 H11B 109.5 ...? H11A C11 H11B 109.5 . . ? N5 C11 H11C 109.5 . . ? H11A C11 H11C 109.5 . . ? H11B C11 H11C 109.5 . . ? O4 Cl1 O4 110.0(2) 8_656 . ? O4 Cl1 O4 110.0(2) 8_656 3_665 ? O4 Cl1 O4 108.4(4) . 3_665 ? O4 Cl1 O4 108.4(4) 8_656 6_566 ? O4 Cl1 O4 110.0(2) . 6 566 ? O4 Cl1 O4 110.0(2) 3_665 6_566 ?

_diffrn_measured_fraction_theta_max	0.969
_diffrn_reflns_theta_full	25.00
_diffrn_measured_fraction_theta_full	0.969
_refine_diff_density_max 0.659	
_refine_diff_density_min -0.522	
_refine_diff_density_rms 0.066	