Supporting Information

Stereoselective and Regioselective Intramolecular Friedel-Crafts Reaction of Aziridinium Ions for Synthesis of 4-Substituted Tetrahydroisoquinolines

Hyun-Soon Chong* and Yunwei Chen

Chemistry Division, Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL.

Table of Contents

General Information S2
General Experimental procedure for Friedel-Crafts reaction S2
Synthesis and characterization of THIQ analogues 5 (Table 1) S3-S5
Synthesis and characterization of THIQ analogues 5 (Table 2) S6-S8
Synthesis and characterization of THIQ analogues 5 (Table 3) S9-S11
Synthesis and characterization of THIQ analogues 5 (Table 4) S11-S21
Synthesis and characterization of THIQ analogue $\mathbf{5 h}$ (Scheme 4) S21-S22
Synthesis of (R)-7a and (R)-7b from debenzylation of 5 (Scheme 1) S22-S23
Synthesis and characterization of β-haloamines 1, 2, $\mathbf{3}$ (Scheme 2) S23-S35
Synthesis and characterization of aziridinium ions 9 (Scheme 2) S35-S39
Synthesis and characterization of compound $\mathbf{1 1}$ (Scheme 3) S40-S42
Synthesis and characterization of β-amino alcohols 8 (Scheme 2) S42-S52
NMR spectra of THIQ analogues 5 S53-S56
NMR spectra of THIQ analogues 7 S57
NMR spectra of β-haloamines $\mathbf{1 , 2 , 3 , 1 0}$ and $\mathbf{1 1}$ S58-S65
NMR spectra of aziridnium ions 9 S66-S72
NMR spectra of β-amino alcohols $\mathbf{8}$ S73-S76
Chiral HPLC chromatograms of THIQ analogues 5 S77-S94
References S94-95

General Information: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained using a Bruker 300 instrument and chemical shifts are reported in ppm on the δ scale relative to TMS or solvent. Electrospray iodization (ESI) high resolution mass spectra (HRMS) were obtained on JEOL double sector JMS-AX505HA mass spectrometer (University of Notre Dame, IN). Analytical chiral HPLC was performed on an Agilent 1200 (Agilent, Santa Clara, CA) equipped with a diode array detector and a chiralpak column ($4.6 \times 150 \mathrm{~mm}$, $80 \AA$). Optical rotation was determined using JASCO P-2000 polarimeter. All reagents were purchased from Sigma-Aldrich (St. Louis, MO) and used as received unless otherwise noted. All solvents for chromatography were purchased from VWR (Radnor, PA).

General procedure for Friedel-Crafts reaction: To the suspension of AlCl_{3} (2.2 equiv) in toluene (1 mL), secondary β-amino halide $\mathbf{1}, \mathbf{2}$, or $\mathbf{3}$ (1 equiv) in toluene (2 mL) was added dropwise over 10 to 20 min at $0^{\circ} \mathrm{C}$. The resulting reaction mixture was gradually warmed to room temperature over 2 h and then heated to reflux for 2 h while monitored by TLC. After completion of the reaction, the mixture was cooled to room temperature and quenched by $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The reaction mixture was extracted with ethyl acetate (2 $\times 10 \mathrm{~mL}$). The organic layer was dried over MgSO_{4} and concentrated in vacuo. The residue was purified by column chromatography on silica gel (60-230 mesh) with 1% 1.5% ethyl acetate in hexanes to afford the desired product 5 . Enatiomeric excess of 5 (50 $\mu \mathrm{L}, 1 \mathrm{mg}$ of sample in 10 mL of hexanes) was determined by chiral HPLC (Chiralpak® AD-H, isocratic, $230 \mathrm{~nm}, 22{ }^{\circ} \mathrm{C}$) using the following chromatographic conditions: method A $(3 / 97=i-\mathrm{PrOH} / H e x a n e s$ at a flow rate of $1 \mathrm{~mL} / \mathrm{min}) ;$ method $\mathrm{B}(1 / 99=i$ $\mathrm{PrOH} / \mathrm{Hexanes}$ at a flow rate of $1 \mathrm{~mL} / \mathrm{min})$; method $\mathrm{C}(1 / 99=i-\mathrm{PrOH} /$ Hexanes at a flow rate of $0.5 \mathrm{~mL} / \mathrm{min})$; method $\mathrm{D}(0.4 / 99.6=i-\mathrm{PrOH} / \mathrm{Hexanes}$ at a flow rate of $1 \mathrm{~mL} / \mathrm{min})$.

Table 1. Synthesis of THIQ analogues (R)-5a and (R)-5b

(R)-5a

(Table 1, entry 1)

(4R)-2-Benzyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline((R)-5a). To the suspension of $\mathrm{AlCl}_{3}(38.6 \mathrm{mg}, 0.29 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL}),(\mathbf{R})-1 \mathbf{1 a}(50 \mathrm{mg}, 0.13 \mathrm{mmol})$ in toluene (2 mL) was added dropwise over 15 min at $0^{\circ} \mathrm{C}$. The reaction was complete after addition of (R)-1a. After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) with 1.5% ethyl acetate in hexanes to afford pure (R)-5a (31.5 $\mathrm{mg}, 81.0 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.70(\mathrm{dd}, J=11.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=$ $11.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{dd}, J=18.3,15.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{dd}, J=6.6,6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.92(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.33(\mathrm{~m}, 14 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 45.9(\mathrm{~d})$, 56.5 (t), 59.3 (t$), 62.6$ (t$), 126.0$ (d), 126.3 (d), 126.4 (d), 127.1 (d), 128.2 (d), 128.3 (d), 128.9 (d), 129.2 (d), 129.6 (d), 135.4 (s), 137.6 (s), 138.3 (s), 145.0 ($s) \cdot[\alpha]^{26}{ }_{D}=-29.5^{\circ}$ $\left(c=2.3, \mathrm{CHCl}_{3}\right)$. HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 300.1747$. Found: $[\mathrm{M}+$ $\mathrm{H}]^{+} m / z 300.1738$. HPLC $($ method A$), \mathrm{t}_{\mathrm{R}}=3.0 \mathrm{~min}(\mathrm{R}$, major $)$ and $2.3 \mathrm{~min}(\mathrm{~S}$, minor $)$, 71% ee.

(Table 1, entry 2)

To the suspension of $\mathrm{AlCl}_{3}(23.2 \mathrm{mg}, 0.17 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL}),(\mathbf{R})-\mathbf{1 a}(30 \mathrm{mg}, 0.079$ $\mathrm{mmol})$ in toluene (2 mL) was added dropwise over 10 min at $-70^{\circ} \mathrm{C}$. The reaction mixture was kept at $-70^{\circ} \mathrm{C}$ for 30 min . Then the reaction mixture was slowly warmed to
$-20^{\circ} \mathrm{C}$ over 15 min . The reaction was kept at $-20^{\circ} \mathrm{C}$ for 15 min . After the work-up, the residue was purified by column chromatography on silica gel ($60-230$ mesh) with 1.5% ethyl acetate in hexanes to afford pure (R)-5a ($11.7 \mathrm{mg}, \mathbf{4 9 . 5 \%}$).
$[\alpha]^{26}{ }_{\mathrm{D}}=-40.5^{\circ}\left(c=0.59, \mathrm{CHCl}_{3}\right)$. HPLC (method A$), 79 \%$ ee.

(Table 1, entry 3)

To the suspension of $\mathrm{AlCl}_{3}(19.5 \mathrm{mg}, 0.15 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL}),(\mathbf{R})-1 \mathbf{a}(25.2 \mathrm{mg}$, $0.066 \mathrm{mmol})$ in toluene (2 mL) was added dropwise over 10 min at $-20^{\circ} \mathrm{C}$. The reaction mixture was kept at $-20^{\circ} \mathrm{C}$ for 15 min . After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) with 1.5% ethyl acetate in hexanes to afford pure (R)-5a (10.8 mg, 54.7\%).
$[\alpha]^{26}{ }_{\mathrm{D}}=-38.8^{\circ}\left(c=0.54, \mathrm{CHCl}_{3}\right)$. HPLC (method A$), 70 \%$ ee.
(Table 1, entry 4)
To the suspension of $\mathrm{AlCl}_{3}(43.7 \mathrm{mg}, 0.33 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL}),(\mathbf{R}) \mathbf{- 2 a}(50 \mathrm{mg}, 0.15$ $\mathrm{mmol})$ in toluene (2 mL) was added dropwise over 10 min at $0^{\circ} \mathrm{C}$. The reaction was complete after addition of (R)-2a. After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) with 1.5% ethyl acetate in hexanes to afford pure (R)-5a (33.6 mg, 75\%).
$[\alpha]^{26}{ }_{D}=-30.2^{\circ}\left(c=1.03, \mathrm{CHCl}_{3}\right)$. HPLC (method A$), 63 \%$ ee.
(Table 1, entry 5)
To the suspension of $\mathrm{AlCl}_{3}(34.4 \mathrm{mg}, 0.26 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL}),(\mathbf{R}) \mathbf{- 3 a}(50 \mathrm{mg}, 0.12$ $\mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ was added dropwise over 10 min at $0^{\circ} \mathrm{C}$. The reaction was complete after addition of (R)-3a. After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) with 1.5% ethyl acetate in hexanes to afford
pure (R)-5a (25.9 mg, 72\%). $[\alpha]^{26}{ }_{\mathrm{D}}=-31.1^{\circ}\left(c=1.3, \mathrm{CHCl}_{3}\right)$.
HPLC (method A), 61\% ee.

(R)-5b

(Table 1, entry 7)

(4R)-2-benzyl-4-methyl-1,2,3,4-tetrahydroisoquinoline ((R)-5b). To the suspension of $\mathrm{AlCl}_{3}(35.2 \mathrm{mg}, 0.264 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL}),(\mathbf{R}) \mathbf{- 1 b}(38.2 \mathrm{mg}, 0.12 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ was added dropwise over 10 min at $0{ }^{\circ} \mathrm{C}$. The resulting reaction mixture was gradually warmed to room temperature over 2 h and then heated to reflux for 2 h . After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) with 1% ethyl acetate in hexanes to afford desired (R)-5b ($25.5 \mathrm{mg}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.33(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.45(\mathrm{dd}, J=11.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.82$ (dd, $J=11.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-3.09(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.75(\mathrm{~m}, 4 \mathrm{H}), 7.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.10-7.32 (m, 4H), $7.36(\mathrm{dd}, J=6.9,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 21.0(\mathrm{q}), 33.2(\mathrm{~d}), 56.9(\mathrm{t}), 58.1$ (t$), 62.9$ (t$), 125.6$ (d), 126.3 (d), 126.5 (d), 127.1 (d), 127.7 (d), 128.3 (d), 129.0 (d), 134.7 (s), 138.7 (s), 139,9 (s). $[\alpha]^{26}{ }_{D}$ $=+24.5^{\circ}\left(c=1.3, \mathrm{CHCl}_{3}\right)$. HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} m / z$ 238.1590. Found: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ 238.1601. HPLC $(\operatorname{method} \mathrm{A}), \mathrm{t}_{\mathrm{R}}=2.3 \mathrm{~min}(\mathrm{~S}$, minor $)$ and 3.1 min (R , major), 97.0% ee.

Effect of Catalyst on the formation of (R)-5a and (S)-5b (Table 2)

(R)-5a

(Table 2, entry 1)

See the result described above (Table 1, entry 1)
(Table 2, entry 2)
To the suspension of $\mathrm{FeBr}_{3}(85.6 \mathrm{mg}, 0.29 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL}),(\mathbf{R})-1 \mathbf{1 a}(50 \mathrm{mg}, 0.13$ $\mathrm{mmol})$ in toluene (2 mL) was added dropwise over 10 min at $0^{\circ} \mathrm{C}$. The reaction was complete after addition of (R)-1a. After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) with 1.5% ethyl acetate in hexanes to afford (R)-5a (23 mg, 59.2\%). $[\alpha]^{26}{ }_{\mathrm{D}}=-32.1^{\circ}\left(c=1.4, \mathrm{CHCl}_{3}\right)$. HPLC (method A$), 83 \%$ ee.
(Table 2, entry 3)
To the suspension of $\mathrm{InCl}_{3}(63.3 \mathrm{mg}, 0.29 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL}),(\mathbf{R})-1 \mathbf{1 a}(50 \mathrm{mg}, 0.13$ $\mathrm{mmol})$ in toluene (2 mL) was added dropwise over 10 min at $0^{\circ} \mathrm{C}$. The reaction was stirred at room temperature for 20 h and quenched by $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) with 1.5% ethyl acetate in hexanes to afford pure product ($\mathbf{(R) - 5 a}(30.2 \mathrm{mg}, 77.7 \%)$.
$[\alpha]^{26}{ }_{\mathrm{D}}=-40.1^{\mathrm{o}}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. HPLC (method A$), 77.0 \%$ ee.
(Table 2, entry 4)
To the solution of $\mathrm{TiCl}_{4}(290 \mu \mathrm{~L}, 0.29 \mathrm{mmol}, 1 \mathrm{M}$ solution in toluene) in toluene (1 mL), $(\mathbf{R})-1 \mathbf{a}(50 \mathrm{mg}, 0.13 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ was added dropwise over 10 min at $0{ }^{\circ} \mathrm{C}$.

The reaction was stirred at room temperature for 15 h and quenched by $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. After the work-up, the residue was purified by column chromatography on silica gel (60230 mesh) with 1.5% ethyl acetate in hexanes to afford pure product (R)-5a (28 mg , $72 \%) .[\alpha]^{26}{ }_{\mathrm{D}}=-42.5^{\circ}\left(c=0.7, \mathrm{CHCl}_{3}\right)$. HPLC (method A$), 81 \%$ ee.
(Table 2, entry 5)
To the suspension of $\mathrm{SnCl}_{4}(75.5 \mathrm{mg}, 0.29 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL}),(\mathbf{R}) \mathbf{- 1 a}(50 \mathrm{mg}, 0.13$ $\mathrm{mmol})$ in toluene (2 mL) was added dropwise over 10 min at $0^{\circ} \mathrm{C}$. The reaction mixture was slowly warmed to room temperature. The reaction was complete after 2.5 h stirring at room temperature and quenched by $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) with 1.5% ethyl acetate in hexanes to afford pure product (R)-5a (11.2 mg, 29\%).
$[\alpha]^{26}{ }_{D}=-51.4^{\circ}\left(c=0.8, \mathrm{CHCl}_{3}\right)$. HPLC (method A$), 81 \%$ ee.

(S)-5b

(Table 2, entry 6)

(4S)-2-Benzyl-4-methyl-1,2,3,4-tetrahydroisoquinoline ((S)-5b). To the suspension of $\mathrm{AlCl}_{3}(46.9 \mathrm{mg}, 0.35 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL})$, secondary β-amino bromide $(\mathbf{S})-\mathbf{1 b}$ (50 $\mathrm{mg}, 0.16 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ was added dropwise over 10 min at $0^{\circ} \mathrm{C}$. The resulting reaction mixture was gradually warmed to room temperature over 2 h and then heated to reflux for 2 h . After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) with 1% ethyl acetate in hexanes to afford desired (S)-5b (35.2 $\mathrm{mg}, 93 \%) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data are identical to (R)-5b.
$[\alpha]^{26}{ }_{\mathrm{D}}=-15.8^{\circ}\left(c=1.26, \mathrm{CHCl}_{3}\right)$. HPLC $(\operatorname{method} \mathrm{A}), \mathrm{t}_{\mathrm{R}}=2.2 \mathrm{~min}(\mathrm{~S}$, major) and 2.7 $\min (\mathrm{R}$, minor), 96.9% ee.

(S)-5b

(Table 2, entry 7)

To the suspension of $\mathrm{FeBr}_{3}(103 \mathrm{mg}, 0.35 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL})$ and molecular sieves (4 beads), (\mathbf{S})-1b ($50 \mathrm{mg}, 0.16 \mathrm{mmol}$) in toluene (2 mL) was added dropwise over 5 min at $0^{\circ} \mathrm{C}$. The resulting reaction mixture was gradually warmed to room temperature over 2 h and then heated to reflux overnight. After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) with 1.0% ethyl acetate in hexanes to afford (S)-5b ($9.6 \mathrm{mg}, \mathbf{2 5 . 3 \%}$).
$[\alpha]^{26}{ }_{\mathrm{D}}=-13.8^{\mathrm{o}}\left(c=0.3, \mathrm{CHCl}_{3}\right)$. HPLC (method A$), 85 \%$ ee.
(Table 2, entry 8)
To the suspension of $\mathrm{InCl}_{3}(77.4 \mathrm{mg}, 0.35 \mathrm{mmol})$ in toluene (1 mL) and molecular sieves (4 beads), $(\mathbf{S})-\mathbf{1 b}(50 \mathrm{mg}, 0.16 \mathrm{mmol})$ in toluene (2 mL) was added dropwise over 15 min at $0^{\circ} \mathrm{C}$. The resulting reaction mixture was gradually warmed to room temperature over 2 h and then heated to reflux for 4 days. After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) with 1.0% ethyl acetate in hexanes and then was purified by prep-TLC with 5% ethyl acetate in hexanes to afford pure product (S)-5b ($8.5 \mathrm{mg}, 22.4 \%$).
$[\alpha]^{26}{ }_{\mathrm{D}}=-15.3^{\circ}\left(c=0.6, \mathrm{CHCl}_{3}\right)$. HPLC (method A$), 97 \%$ ee.

Effect of solvents on the formation of THIQ analogues (R)-5a and (S)-5b (Table 3)

(R)-5a

(Table 3, entry 1)

See the result described above (Table 1, entry 1)
(Table 3, entry 2)
To the suspension of $\mathrm{AlCl}_{3}(38 \mathrm{mg}, 0.29 \mathrm{mmol})$ in benzene $(1 \mathrm{~mL}),(\mathbf{R}) \mathbf{- 1 a}(50 \mathrm{mg}, 0.13$ $\mathrm{mmol})$ in benzene (2 mL) was added dropwise over 10 min at $0{ }^{\circ} \mathrm{C}$. The reaction was complete after addition of (R)-1a. After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) with 1.5% ethyl acetate in hexanes to afford pure product (\mathbf{R})-5a ($31.6 \mathrm{mg}, 81.3 \%$).
$[\alpha]^{26}{ }_{D}=-26.5^{\circ}\left(c=1.3, \mathrm{CHCl}_{3}\right)$. HPLC (method A$), 58.9 \%$ ee.
(Table 3, entry 3)
To the suspension of $\mathrm{AlCl}_{3}(38.6 \mathrm{mg}, 0.29 \mathrm{mmol})$ in p-xylene $(1 \mathrm{~mL}),(\mathbf{R})-\mathbf{1 a}(50 \mathrm{mg}$, 0.13 mmol) in p-xylene (2 mL) was added dropwise over 10 min at $0^{\circ} \mathrm{C}$ and then warmed to room temperature The reaction was complete after warming up to room temperature ($\sim 10 \mathrm{~min}$). After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) with 1.5% ethyl acetate in hexanes to afford pure product (R)-5a (26.8 mg, 70\%). $[\alpha]^{26}{ }_{\mathrm{D}}=-39.0^{\circ}\left(c=1.1, \mathrm{CHCl}_{3}\right)$. HPLC (method A), 69% ee.
(Table 3, entry 4)

To the suspension of $\mathrm{AlCl}_{3}(38.6 \mathrm{mg}, 0.29 \mathrm{mmol})$ in 1,2-dichloroethane (1 mL), (\mathbf{R})-1a $(50 \mathrm{mg}, 0.13 \mathrm{mmol})$ in 1,2 -dichloroethane $(2 \mathrm{~mL})$ was added dropwise over 15 min at 0 ${ }^{\circ} \mathrm{C}$. The reaction was complete after addition of (\mathbf{R})-1a. After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) with 1.5% ethyl acetate in hexanes to afford pure product (\mathbf{R})-5a $(37 \mathrm{mg}, \mathbf{9 5 . 2 \%})$.
$[\alpha]^{26}{ }_{\mathrm{D}}=-34.6^{\circ}\left(c=1.1, \mathrm{CHCl}_{3}\right)$. HPLC (method A $), 77.9 \%$ ee.
(Table 3, entry 5)
To the suspension of $\mathrm{AlCl}_{3}(23 \mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL}),(\mathbf{R})-\mathbf{1 a}(30 \mathrm{mg}, 0.079$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added dropwise over 10 min at $0{ }^{\circ} \mathrm{C}$. The reaction was complete after addition of (R)-1a. After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) with 1.5% ethyl acetate in hexanes to afford pure pure product ($\mathbf{(R) - 5 a}(21.4 \mathrm{mg}, 90.6 \%)$.
$[\alpha]^{26}{ }_{\mathrm{D}}=-34.4^{\mathrm{o}}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. HPLC (method A$), 75 \%$ ee.
(Table 3, entry 6)
To the suspension of $\mathrm{AlCl}_{3}(23 \mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1 \mathrm{~mL}),(\mathbf{R}) \mathbf{- 1 a}(30 \mathrm{mg}, 0.079$ $\mathrm{mmol})$ in $\mathrm{CHCl}_{3}(2 \mathrm{~mL})$ was added dropwise over 10 min at $0{ }^{\circ} \mathrm{C}$. The reaction was complete after addition of (R)-1a. After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) with 1.5% ethyl acetate in hexanes to afford pure pure product (R)-5a ($22.2 \mathrm{mg}, \mathbf{9 4 \%}$).
$[\alpha]^{26}{ }_{\mathrm{D}}=-32.5^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. HPLC $($ method A$), 62 \%$ ee.

(S)-5b

(Table 3, entry 10)

See the result in (Table 2, entry 6).

(Table 3, entry 11)

To the suspension of $\mathrm{AlCl}_{3}(46.9 \mathrm{mg}, 0.35 \mathrm{mmol})$ in benzene $(1 \mathrm{~mL}), \mathbf{(S)} \mathbf{- 1 b}(50 \mathrm{mg}, 0.16$ $\mathrm{mmol})$ in benzene $(2 \mathrm{~mL})$ was added dropwise over 10 min at $0^{\circ} \mathrm{C}$. The resulting reaction mixture was gradually warmed to room temperature over 2 h and then heated to reflux for 2 h . After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) with 1% ethyl acetate in hexanes to afford pure product pure product (S)$\mathbf{5 b}(33.1 \mathrm{mg}, 87.3 \%) \cdot[\alpha]^{26}{ }_{\mathrm{D}}=-19.2^{\circ}\left(c=0.9, \mathrm{CHCl}_{3}\right) . \mathrm{HPLC}(\operatorname{method} \mathrm{A}),>99 \%$ ee.
(Table 3, entry 12)
To the suspension of $\mathrm{AlCl}_{3}(46.7 \mathrm{mg}, 0.35 \mathrm{mmol})$ in p-xylene $(1 \mathrm{~mL})$ and molecular sieves (4 beads), (\mathbf{S})-1b ($50 \mathrm{mg}, 0.16 \mathrm{mmol}$) in p-xylene (2 mL) was added dropwise over 15 min at room temperature and kept stirring for 2 h and then heated to reflux for 40 min . After the work-up, the residue was purified by column chromatography on silica gel (60230 mesh) with 1% ethyl acetate in hexanes pure product (S)-5b (27.8 mg, 73\%).
$[\alpha]^{26}{ }_{\mathrm{D}}=-22.9^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. HPLC $(\operatorname{method} \mathrm{A}), 98.3 \%$ ee.

Table 4. Substrate scope for the synthesis of various THIQ analogues 5

(R)-5a

(Table 4, entry 1)

See the result described above (Table 1, entry 1)

(4S)-2-Benzyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline ((S)-5a). To the suspension of $\mathrm{AlCl}_{3}(38.6 \mathrm{mg}, 0.29 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL}),(\mathbf{S}) \mathbf{- 1 a}(50 \mathrm{mg}, 0.13 \mathrm{mmol})$ in toluene (2 mL) was added dropwise over 10 min at $0^{\circ} \mathrm{C}$. The reaction was complete after addition of (S)-1a. After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) with 1.5% ethyl acetate in hexanes to afford pure product (S)-5a $(30.8 \mathrm{mg}, 79.2 \%) \cdot[\alpha]^{26}{ }_{\mathrm{D}}=+38.6^{\circ}\left(c=2.1, \mathrm{CHCl}_{3}\right)$. HPLC (method A$), 76 \% \mathrm{ee}$.

2-Benzyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline((rac)-5a). To the suspension of $\mathrm{AlCl}_{3}(38.6 \mathrm{mg}, 0.29 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL})$, (rac)-1a $(50 \mathrm{mg}, 0.13 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ was added dropwise over 15 min at $0^{\circ} \mathrm{C}$. The reaction was complete after addition of (rac)-1a. After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) with 1.5% ethyl acetate in hexanes to afford pure (rac)-5a (30.7 mg, 79\%). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data are identical to (R)-5a.

(R)-5b

(Table 4, entry 2)

See the result described above (Table 1, entry 7)

(S)-5b

See the result described above (Table 2, entry 6)

2-benzyl-4-methyl-1,2,3,4-tetrahydroisoquinoline (rac-5b). To the suspension of AlCl_{3} $(46.9 \mathrm{mg}, 0.35 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL}),(\mathbf{r a c})-\mathbf{1 b}(50 \mathrm{mg}, 0.16 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ was added dropwise over 15 min at $0^{\circ} \mathrm{C}$. The resulting reaction mixture was gradually warmed to room temperature over 2 h and then heated to reflux for 2 h . After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) with 1% ethyl acetate in hexanes to afford desired (rac)-5b (27.4 mg, 72\%). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data are identical to $(\mathbf{R})-5 \mathbf{b}$.

(Table 4, entry 3)
(4R)-2-Benzyl-4-propyl-1,2,3,4-tetrahydroisoquinoline ((R)-5c). To the suspension of $\mathrm{AlCl}_{3}(42.4 \mathrm{mg}, 0.32 \mathrm{mmol})$ in toluene (1 mL), (\mathbf{R})-1c ($50 \mathrm{mg}, 0.144 \mathrm{mmol}$) in toluene (2 mL) was added dropwise over 15 min at $0{ }^{\circ} \mathrm{C}$. The resulting reaction mixture was gradually warmed to room temperature over 2 h and then heated to reflux for 2 h . After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) with 1.0% ethyl acetate in hexanes to afford desired (R)-5c (30 mg, 78.5\%). ${ }^{1} \mathrm{H}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.82(\mathrm{~m}$, $3 \mathrm{H}), 2.61(\mathrm{dd}, J=11.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=11.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.83(\mathrm{~m}, 1 \mathrm{H})$, $3.51(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J$ $=7.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) ;$. HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$ m / z 266.1903. Found: $[\mathrm{M}+\mathrm{H}]^{+} m / z$ 266.1905. $[\alpha]^{26}{ }_{\mathrm{D}}=+12.7^{\circ}\left(c=0.8, \mathrm{CHCl}_{3}\right) . \mathrm{HPLC}$ $(\operatorname{method} \mathrm{A}), \mathrm{t}_{\mathrm{R}}=2.1 \mathrm{~min}(\mathrm{~S}$, minor$)$ and $2.6 \min (\mathrm{R}$, major $),>99 \%$ ee.

(4S)-2-Benzyl-4-propyl-1,2,3,4-tetrahydroisoquinoline ((S)-5c). To the suspension of $\mathrm{AlCl}_{3}(42.4 \mathrm{mg}, 0.32 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL}),(\mathbf{S}) \mathbf{- 1 c}(50 \mathrm{mg}, 0.144 \mathrm{mmol})$ in toluene (2 mL) was added dropwise over 10 min at $0^{\circ} \mathrm{C}$. The resulting reaction mixture was gradually warmed to room temperature over 2 h and then heated to reflux for 2 h . After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) with 1.0% ethyl acetate in hexanes to afford desired (S)-5c ($25 \mathrm{mg}, 65.5 \%$). ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR are identical to those of (R)-5c. $[\alpha]^{26}{ }_{\mathrm{D}}=-12.9^{\circ}\left(c=1.2, \mathrm{CHCl}_{3}\right)$.
$H P L C(\operatorname{method} A), t_{R}=2.2 \min (S$, major $)$ and $2.6 \min (R$, minor $),>99 \%$ ee.

2-Benzyl-4-propyl-1,2,3,4-tetrahydroisoquinoline ((rac)-5c). To the suspension of $\mathrm{AlCl}_{3}(42.2 \mathrm{mg}, 0.32 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL}),(\mathbf{r a c})-1 \mathrm{c}(50 \mathrm{mg}, 0.144 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ was added dropwise over 10 min at $0^{\circ} \mathrm{C}$. The resulting reaction mixture was gradually warmed to room temperature over 2 h and then heated to reflux for 2 h . After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) with 1.0% ethyl acetate in hexanes to afford desired (rac)-5c ($23.5 \mathrm{mg}, 61 \%$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data are identical to those of $(\mathbf{R})-5 \mathbf{c}$.

(Table 4, entry 4)

(1R)-1-Methyl-3-(naphthalen-2-ylmethyl)-1H,2H,3H,4H-benzo[f]isoquinoline ((R)5d). To the suspension of $\mathrm{AlCl}_{3}(35.2 \mathrm{mg}, 0.264 \mathrm{mmol})$ in toluene (1 mL), (R)-1d (50 $\mathrm{mg}, 0.12 \mathrm{mmol})$ in toluene (2 mL) was added dropwise over 10 min at $0^{\circ} \mathrm{C}$. The resulting reaction mixture was gradually warmed to room temperature over 2 h and then heated to reflux for 2 h . After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) with 0.5% ethyl acetate in hexanes to afford desired (R)-5d $(19.6 \mathrm{mg}, 48.6 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.56(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.66(\mathrm{dd}, J=$ $11.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.83(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.65(\mathrm{dd}, J=9.3,9.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.81-7.88(\mathrm{~m}, 5 \mathrm{H}), 8.02$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 21.7(\mathrm{q}), 30.7(\mathrm{~d}), 57.1(\mathrm{t}), 57.3(\mathrm{t})$, 123.3 (d), 124.8 (d), 125.3 (d), 125.6 (d), 125.9 (d), 126.0 (d), 126.2 (d), 127.3 (d), 127.4 (d), 127.7 (d), 127.8 (d), 128.7 (d), 131.5 (s), 131.6 (s), 132.7 (s), 132.9 (s), 133.4 (s), $135.0(\mathrm{~s}), 136.6(\mathrm{~s}) \cdot[\alpha]^{26}{ }_{\mathrm{D}}=+84.2^{\circ}\left(c=0.6, \mathrm{CHCl}_{3}\right)$. HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}$ $[\mathrm{M}+\mathrm{H}]^{+} m / z 338.1903$. Found: $[\mathrm{M}+\mathrm{H}]^{+} m / z 338.1920$. HPLC $(\operatorname{method} \mathrm{B}), \mathrm{t}_{\mathrm{R}}=6.9 \mathrm{~min}$ (S, minor) and $6.0 \mathrm{~min}(\mathrm{R}$, major), $>99 \%$ ee.

(S)-5d
(1S)-1-Methyl-3-(naphthalen-2-ylmethyl)-1H,2H,3H,4H-benzo[f]isoquinoline ((S)-
$\mathbf{5 d})$. To the suspension of $\mathrm{AlCl}_{3}(35 \mathrm{mg}, 0.26 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL}),(\mathbf{S}) \mathbf{- 1 d}(50 \mathrm{mg}$, $0.120 \mathrm{mmol})$ in toluene (2 mL) was added dropwise over 10 min at $0{ }^{\circ} \mathrm{C}$. The resulting reaction mixture was gradually warmed to room temperature over 2 h and then heated to reflux for 2 h . After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) with 0.5% ethyl acetate in hexanes to afford desired (S)-5d (21.5 $\mathrm{mg}, 53.1 \%) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data are identical to those of (R)-5d. $[\alpha]^{26}{ }_{\mathrm{D}}=-93.1^{\circ}(c=$ $\left.0.9, \mathrm{CHCl}_{3}\right) . \mathrm{HPLC}(\operatorname{method} \mathrm{B}), \mathrm{t}_{\mathrm{R}}=6.9 \mathrm{~min}(\mathrm{~S}$, major $)$ and $6.0 \mathrm{~min}(\mathrm{R}$, minor $),>99 \%$ ee.

1-Methyl-3-(naphthalen-2-ylmethyl)-1H,2H,3H,4H-benzo[f]isoquinoline ((rac)-5d).

To the suspension of $\mathrm{AlCl}_{3}(35.4 \mathrm{mg}, 0.26 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL})$, ($\mathbf{r a c}$)-1d (50 mg , $0.12 \mathrm{mmol})$ in toluene (2 mL) was added dropwise over 10 min at $0{ }^{\circ} \mathrm{C}$. The resulting reaction mixture was gradually warmed to room temperature over 2 h and then heated to reflux for 2 h . After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) with 0.5% ethyl acetate in hexanes to afford desired (rac)-5d ($28.4 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data are identical to those of (R)-5d.

(R)-5e

(Table 4, entry 5)

(4R)-5-Bromo-2-[(3-bromophenyl)methyl]-4-methyl-1,2,3,4-tetrahydroisoquinoline
$((\mathbf{R})-\mathbf{5 e})$. To the suspension of $\mathrm{AlCl}_{3}(30.9 \mathrm{mg}, 0.23 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL}),(\mathbf{R})-\mathbf{1 e}(50$ $\mathrm{mg}, 0.11 \mathrm{mmol})$ in toluene (2 mL) was added dropwise over 10 min at $0^{\circ} \mathrm{C}$. The resulting reaction mixture was gradually warmed to room temperature over 2 h and then heated to reflux for 2 h . After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) with 1.0% ethyl acetate in hexanes to afford desired (R)-5e (23.5 $\mathrm{mg}, 54 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.40(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.49(\mathrm{dd}, J=11.1,3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}$, $J=30.6,13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=$ $7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.42(\mathrm{~m}$, $1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 20.5(\mathrm{q}), 34.5(\mathrm{~d}), 56.2(\mathrm{t}), 57.0(\mathrm{t}), 62.1$ (t), 122.5 (s), 124.8 (s), 125.8 (d), 127.1 (d), 127.4 (d), 130.2 (d), 130.4 (d), 130.8 (d), 131.8 (d), 136.8 (s), 138.8 (s), 141.9 (s). HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$
m / z 393.9801. Found: $[\mathrm{M}+\mathrm{H}]^{+} m / z$ 393.9819. $[\alpha]^{26}{ }_{\mathrm{D}}=+27^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) . \mathrm{HPLC}$ $(\operatorname{method} C), \mathrm{t}_{\mathrm{R}}=4.5 \mathrm{~min}(\mathrm{~S}, \operatorname{minor})$ and $4.7 \mathrm{~min}(\mathrm{R}$, major $), 77.8 \%$ ee.

(S)-5e
(4S)-5-Bromo-2-[(3-bromophenyl)methyl]-4-methyl-1,2,3,4-tetrahydroisoquinoline
((S)-5e). To the suspension of $\mathrm{AlCl}_{3}(15.1 \mathrm{mg}, 0.11 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL}),(\mathbf{S})-\mathbf{1 e}$ $(24.5 \mathrm{mg}, 0.05 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ was added dropwise over 10 min at $0{ }^{\circ} \mathrm{C}$. The resulting reaction mixture was gradually warm to room temperature over 2 h and then was heated to reflux for 2 h . After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) with 1.0% ethyl acetate in hexanes to afford crude product which was further purified by prep-TLC with hexanes to provide pure product $(\mathbf{S})-5 \mathbf{e}(10.1 \mathrm{mg}, 51 \%) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data are identical to those of $(\mathbf{R})-5 \mathbf{e}$. $[\alpha]^{26}{ }_{D}=-35.5^{\circ}\left(c=0.5, \mathrm{CHCl}_{3}\right)$. HPLC (method C$), \mathrm{t}_{\mathrm{R}}=4.5 \mathrm{~min}(\mathrm{~S}$, major $)$ and 4.7 min (R, minor), 86.2% ee.

5-Bromo-2-[(3-bromophenyl)methyl]-4-methyl-1,2,3,4-tetrahydroisoquinoline ((rac)-

5e). To the suspension of $\mathrm{AlCl}_{3}(30.9 \mathrm{mg}, 0.23 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL})$, ($\mathbf{r a c}$) $\mathbf{- 1 e}(50 \mathrm{mg}$, $0.11 \mathrm{mmol})$ in toluene (2 mL) was added dropwise over 10 min at $0{ }^{\circ} \mathrm{C}$. The resulting reaction mixture was gradually warm to room temperature over 2 h and then was heated to reflux for 2 h . After the work-up, the residue was purified by column chromatography
on silica gel (60-230 mesh) with 1.0% ethyl acetate in hexanes to afford crude product which was further purified by prep-TLC with hexanes to provide pure product (rac)-5e ($19.4 \mathrm{mg}, 45 \%$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data are identical to those of (R)-5e.

(R)-5f

(Table 4, entry 6)

(4R)-4-phenyl-2-(prop-2-en-1-yl)-1,2,3,4-tetrahydroisoquinoline ((R)-5f). To the suspension of $\mathrm{AlCl}_{3}(44.5 \mathrm{mg}, 0.33 \mathrm{mmol})$ in DCE $(1 \mathrm{~mL})$, secondary β-amino bromide $(50 \mathrm{mg}, 0.15 \mathrm{mmol})$ in DCE (2 mL) was added dropwise over 15 min at $0^{\circ} \mathrm{C}$. The reaction was done after addition of the bromide and was quenched by $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and then extracted with ethyl acetate (10 mL X 2). The organic layer was dried over MgSO_{4} and concentrated in vacuo to provide crude product which was purified by column chromatography on silica gel (60-220mesh) with 5% ethyl acetate in hexanes to afford pure product $(15.4 \mathrm{mg}, 41 \%) .[\alpha]^{26}{ }_{\mathrm{D}}=-4.8^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. HPLC $(\operatorname{method} \mathrm{D}), \mathrm{t}_{\mathrm{R}}=3.8$ $\min (S$, minor $)$ and $4.6 \mathrm{~min}(\mathrm{R}$, major), 18.6% ee.

(S)-5f
(4S)-4-Phenyl-2-(prop-2-en-1-yl)-1,2,3,4-tetrahydroisoquinoline ((S)-5f). To the suspension of $\mathrm{AlCl}_{3}(44.5 \mathrm{mg}, 0.33 \mathrm{mmol})$ in 1,2-dichloroethane $(1 \mathrm{~mL})$, ($\left.\mathbf{S}\right) \mathbf{- 1 f}(50 \mathrm{mg}$, 0.15 mmol) in 1,2-dichloroethane (2 mL) was added dropwise over 15 min at $0^{\circ} \mathrm{C}$. The
reaction was complete after addition of (S)-1f. After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) with 5% ethyl acetate in hexanes to afford (S)-5f(13.6 mg, 36\%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.60(\mathrm{dd}, J=$ $11.7,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.85(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.25(\mathrm{~m}, 2 \mathrm{H}), 5.85-5.98(\mathrm{~m}$, $1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.33(\mathrm{~m}, 8 \mathrm{H}){ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 45.9(\mathrm{~d})$, 56.5 (t), 59.5 (t), 61.2 (t$), 117.9$ (t$), 126.0$ (d), 126.3 (d), 126.4 (d), 126.5 (d), 128.3 (d), 129.2 (d), 135.1 (d), 135.2 (d), 137.6 (s), 144.7 (s). HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}[\mathrm{M}+$ $\mathrm{H}]^{+} m / z 250.1590$. Found: $[\mathrm{M}+\mathrm{H}]^{+} m / z 250.1582$.
$[\alpha]^{26}{ }_{\mathrm{D}}=+12.4^{\circ}\left(c=0.65, \mathrm{CHCl}_{3}\right)$. HPLC $(\operatorname{method} \mathrm{D}), \mathrm{t}_{\mathrm{R}}=3.8 \mathrm{~min}(\mathrm{~S}$, major $)$ and 4.6 $\min (R$, minor $), 46.9 \%$ ee.

(R) -5 g

(Table 4, entry 7)

(4R)-2-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline ((R)-5g). To the suspension of $\mathrm{AlCl}_{3}(29 \mathrm{mg}, 0.22 \mathrm{mmol})$ in DCE $(1 \mathrm{~mL})$, secondary β-amino bromide $\mathbf{1 g}(30 \mathrm{mg}, 0.1$ $\mathrm{mmol})$ in DCE $(1 \mathrm{~mL})$ was added dropwise over 10 min at $-20^{\circ} \mathrm{C}$. The reaction mixture was slowly warm to $-10{ }^{\circ} \mathrm{C}$ over 10 min . After which period, the reaction was done and was quenched by $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and then extracted with ethyl acetate ($10 \mathrm{~mL} \times 2$). The organic layer was dried over MgSO_{4} and concentrated in vacuo to provide pure (\mathbf{R})-5g $(15.1 \mathrm{mg}, 68 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{dd}, J=11.4,9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.09(\mathrm{dd}, J=12.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.32(\mathrm{dd}, J=6.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.36(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 45.7(\mathrm{q}), 45.8$ (d), 58.3 (t), 61.6 (t), 125.9 (d), 126.1 (d), 126.2 (d), 126.4 (d), 129.1 (d), 129.4 (d), 129.6 (d), 134.9 (s), 137.0 (s), 144.5 (s). HRMS (ESI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 224.1434$. Found: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 224.1387$.
$[\alpha]^{26}{ }_{\mathrm{D}}=-1.3^{\circ}\left(c=0.78, \mathrm{CHCl}_{3}\right) . \mathrm{HPLC}(\operatorname{method} \mathrm{B}), \mathrm{t}_{\mathrm{R}}=2.9 \mathrm{~min}(\mathrm{~S}$, minor$)$ and 3.2 min (R , major), 2.1% ee. (S)-5g was reported in the literature. ${ }^{1}[\alpha]^{26}{ }_{\mathrm{D}}=+17.2^{\circ}(c=0.80$, $\left.\mathrm{CHCl}_{3}\right)$.

(rac)-5h

(Scheme 4)

2-Benzyl-4-(3-phenylpropyl)-1,2,3,4-tetrahydroisoquinoline ((rac)-5h). To the suspension of $\mathrm{AlCl}_{3}(34.7 \mathrm{mg}, 0.26 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL}), \mathbf{1 h}(50 \mathrm{mg}, 0.118 \mathrm{mmol})$ in toluene (2 mL) was added dropwise over 15 min at $0{ }^{\circ} \mathrm{C}$. The resulting reaction mixture was gradually warmed to room temperature over 2 h and then heated to reflux for 2 h . After the work-up, the residue was purified by column chromatography on silica gel (60230 mesh) with 1.0% ethyl acetate in hexanes to afford pure product (rac)-5h (26.7 mg , $66.3 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.57-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.90(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.64$ $(\mathrm{m}, 3 \mathrm{H}), 2.69-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.84(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=17.7,13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.77$ $(\mathrm{dd}, J=15.0,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.22(\mathrm{~m}, 6 \mathrm{H}), 7.27-7.42(\mathrm{~m}$, $7 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 29.4(\mathrm{t}), 35.8(\mathrm{t}), 36.2(\mathrm{t}), 38.6(\mathrm{~d}), 54.2(\mathrm{t}), 56.8(\mathrm{t})$, 62.9 (t), 125.6 (d), 125.7 (d), 126.1 (d), 126.4 (d), 127.1 (d), 128.3 (d), 128.5 (d), 129.0
(d), 135.0 (s), 138.8 (s), 139.2 (s), 142.6 (s). HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$ $m / z 342.2216$. Found: $[\mathrm{M}+\mathrm{H}]^{+} m / z 342.2215$.

(R)-7a

Scheme 1

(4R)-4-phenyl-1,2,3,4-tetrahydroisoquinoline (7a). ${ }^{2}$ To a solution of (R)-5a (63 mg, 0.21 mmol) in anhydrous methanol (3 mL), $10 \% \mathrm{Pd} / \mathrm{C}(63 \mathrm{mg})$ and ammonia formate $(133 \mathrm{mg}, 2.1 \mathrm{mmol})$ were added sequentially. The reaction mixture was stirred at room temperature for 3 h and then heated to reflux for 10 min . The resulting mixture was filtered through celite and evaporated to dryness. The residue was treated with saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(2 \times 5 \mathrm{~mL})$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and evaporated to dryness. The residue was purified by prep-TLC using 10% ethyl acetate in hexane to give pure product (R)-7a $(15.7 \mathrm{mg}, 35 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.06(\mathrm{br}, 1 \mathrm{H}) 3.11(\mathrm{dd}, J=$ $12.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=12.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=24.9,17.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.92$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.1-7.33(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 44.9(\mathrm{~d}), 48.5(\mathrm{t})$, 52.3 (t), 125.9 (d), 126.3 (d), 126.4 (d), 128.5 (d), 128.9 (d), 130.3 (d), 136.3 (s), 137.4 (s), $144.9(\mathrm{~s}) \cdot[\alpha]^{26}{ }_{\mathrm{D}}=+4.4^{\circ}\left(c=0.8, \mathrm{CHCl}_{3}\right) . \mathrm{Lit}^{2}[\alpha]^{26}{ }_{\mathrm{D}}=+11.1^{\circ}\left(c=0.73, \mathrm{CH}_{3} \mathrm{OH}\right)$.

(R)-7b

Scheme 1

(4R)-4-methyl-1,2,3,4-tetrahydroisoquinoline (7b). ${ }^{3}$ To a solution of (R)-5b (15 mg , $0.063 \mathrm{mmol})$ in anhydrous methanol (2 mL), $10 \% \mathrm{Pd} / \mathrm{C}(15 \mathrm{mg})$ and ammonia formate ($39.9 \mathrm{mg}, 0.63 \mathrm{mmol}$) were added sequentially. The reaction mixture was stirred at room temperature for 3 h and then heated to reflux for 10 min . The resulting mixture was filtered through celite and evaporated to dryness. The residue was treated with saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(2 \times 5 \mathrm{~mL})$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$. The organic layer was dried over MgSO 4 and evaporated to dryness. The residue was purified by prep-TLC using 10% ethyl acetate in hexane to give pure product (R)-7b $(4.5 \mathrm{mg}, 48.6 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.29(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.88(\mathrm{br}, 1 \mathrm{H}), 2.78-2.90(\mathrm{~m}, 2 \mathrm{H}), 3.22(\mathrm{dd}, \mathrm{J}=12.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}), 7.00$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.26(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 20.6(\mathrm{q}), 32.1$ (d), 48.8 (t), 51.1 (t), 125.7 (d), 126.0 (d), 126.3 (d), 128.2 (d), 135.6 (s), 140.1 ($s)$. $[\alpha]^{26}{ }_{\mathrm{D}}=+21.4^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right)$. Lit. $^{3}[\alpha]^{26}{ }_{\mathrm{D}}=+47.2^{\circ}\left(c=0.5, \mathrm{CHCl}_{3}\right)$.

Synthesis of $\boldsymbol{\beta}$-haloamines (Scheme 2)

General procedure for synthesis of secondary $\boldsymbol{\beta}$-amino halide $\mathbf{1 , 2}$ and 3. To a solution of N, N-dialkylated alcohol 8 (1 equiv) and triphenyl phosphine (1.2 equiv) in CHCl_{3} was added NCS, NBS or NIS (1.2 equiv) portionwise at $0{ }^{\circ} \mathrm{C}$ over 10 min . The resulting mixture was stirred for 4 h while being maintained at $0^{\circ} \mathrm{C}$. The ice bath was removed,
and the reaction mixture was warmed to room temperature and stirred for 1 h and evaporated to dryness. The residue was purified via column chromatography on silica gel (60-230 mesh) eluting with 5-10\% ethyl acetate in hexanes.

(R)-1a

Dibenzyl[(2R)-2-bromo-2-phenylethyl]amine ((R)-1a). To a solution of (S)-8a ${ }^{4}$ (200 $\mathrm{mg}, 0.63 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(199.1 \mathrm{mg}, 0.76 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ was added NBS $(135.3 \mathrm{mg}, 0.76 \mathrm{mmol})$ portionwise at $0^{\circ} \mathrm{C}$ over 20 min . After the work-up, the residue was purified via column chromatography on silica gel (60-230 mesh) eluting with 5\% ethyl acetate in hexanes to afford pure (R)-1a (150 mg, 62.3\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 3.22(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{dd}, J=41.4,13.5 \mathrm{~Hz}, 4 \mathrm{H}), 4.91(\mathrm{dd}, J=7.6,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.19-7.31(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 52.7(\mathrm{~d}), 58.9(\mathrm{t}), 61.6(\mathrm{t})$, 127.1 (d), 128.1 (d), 128.3 (d), 128.3 (d), 128.5 (d), 129.0 (d), 139.0 (s), 140.1 (s).
$[\alpha]^{26}{ }_{\mathrm{D}}=-60.0^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}\left[\mathrm{M}-\mathrm{Br}+\mathrm{H}_{2} \mathrm{O}\right]^{+} \mathrm{m} / \mathrm{z}$ 318.4321. Found: $\left[\mathrm{M}-\mathrm{Br}+\mathrm{H}_{2} \mathrm{O}\right]^{+} m / z 318.1870$.

(R)-2a

Dibenzyl[(2R)-2-chloro-2-phenylethyl]amine ((R)-2a). To a solution of (S)-8a ${ }^{4}$ (165 $\mathrm{mg}, 0.52 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(162.4 \mathrm{mg}, 0.62 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added NCS ($85 \mathrm{mg}, 0.62 \mathrm{mmol}$). After 1 h at $0{ }^{\circ} \mathrm{C}$, additional 0.4 equiv of $\mathrm{PPh}_{3}(55.0 \mathrm{mg}, 0.21$ mmol) and NCS ($27.8 \mathrm{mg}, 0.21 \mathrm{mmol}$) was added. After the work-up, the residue was purified by silica gel column chromatography eluted with 5\% ethyl acetate in hexanes to afford (R)-2a $(44.5 \mathrm{mg}, 25 \%)$ as a colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.12(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{dd}, J=40.1,13.6 \mathrm{~Hz}, 4 \mathrm{H}), 4.85(\mathrm{dd}, J=7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.37$ $(\mathrm{m}, 15 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 59.0(\mathrm{t}), 61.1(\mathrm{~d}), 61.9(\mathrm{t}), 127.1(\mathrm{~d}), 127.6(\mathrm{~d})$, 128.3 (d), 128.6 (d), 128.9 (d), 129.2 (d), 139.0 (s), 140.4 (s).
$[\alpha]^{26}{ }_{\mathrm{D}}=-47.3^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}\left[\mathrm{M}-\mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}\right]^{+} \mathrm{m} / \mathrm{z}$ 318.4321. Found: $\left[\mathrm{M}-\mathrm{Br}+\mathrm{H}_{2} \mathrm{O}\right]^{+} m / z 318.1865$.

(R)-3a

Dibenzyl[(2R)-2-iodo-2-phenylethyl]amine ((R)-3a). To a solution of (S)-8a ${ }^{4}$ (250 mg , $0.79 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(248.9 \mathrm{mg}, 0.95 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(7 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added NIS ($212.7 \mathrm{mg}, 0.95 \mathrm{mmol}$). After 1 h at $0{ }^{\circ} \mathrm{C}$, additional 0.4 equiv of $\mathrm{PPh}_{3}(82.8 \mathrm{mg}, 0.32$ mmol) and NIS (71.7 mg 0.32 mmol) was added. After the work-up, the residue was purified by silica gel column chromatography eluted with 5\% ethyl acetate in hexanes to afford (R)-3a (202.2 mg, 60\%) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.21(\mathrm{dd}, J$ $=13.8,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=13.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=31.2,13.5 \mathrm{~Hz}, 4 \mathrm{H})$,
$5.22(\mathrm{dd}, J=8.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.43(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 32.5$ (d), 58.7 (t), 63.0 (t$), 128.1$ (d), 128.6 (d), 128.7 (d), 128.8 (d), 129.2 (d), 129.3 (d), 139.0 (s), 142.3 (s).
$[\alpha]^{26}{ }_{\mathrm{D}}=-85.7^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) . \mathrm{HRMS}(\mathrm{ESI})$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}\left[\mathrm{M}-\mathrm{Br}+\mathrm{H}_{2} \mathrm{O}\right]^{+} \mathrm{m} / \mathrm{z}$ 318.4321. Found: $\left[\mathrm{M}-\mathrm{I}+\mathrm{H}_{2} \mathrm{O}\right]^{+} \mathrm{m} / \mathrm{z} 318.1881$.

(S)-1a

Dibenzyl[(2S)-2-bromo-2-phenylethyl]amine ((S)-1a). General procedure was followed. To a solution of $(\mathbf{R})-\mathbf{8 a} \mathbf{a}^{5}(160 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(159 \mathrm{mg}, 0.61 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(10$ mL) was added NBS ($108 \mathrm{mg}, 0.61 \mathrm{mmol}$) portionwise at $0{ }^{\circ} \mathrm{C}$ over 20 min . After the work-up, the residue was purified via column chromatography on silica gel (60-230 mesh) eluting with 5% ethyl acetate in hexanes to afford pure (S)-1a (104 mg, 55\%). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR are identical to those of $(\mathbf{R})-1 \mathbf{a} \cdot[\alpha]^{26}{ }_{\mathrm{D}}=+51.0^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

Dibenzyl(2-bromo-2-phenylethyl)amine ((rac)-1a). General procedure was followed. To a solution of (rac)-8a ${ }^{6}(500 \mathrm{mg}, 1.58 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(620 \mathrm{mg}, 2.36 \mathrm{mmol})$ in CHCl_{3} $(10 \mathrm{~mL})$ was added NBS $(421 \mathrm{mg}, 2.36 \mathrm{mmol})$ portionwise at $0^{\circ} \mathrm{C}$ over 20 min . After the
work-up, the residue was purified via column chromatography on silica gel (60-230 mesh) eluting with 5% ethyl acetate in hexanes to afford pure (rac)-1a ($400 \mathrm{mg}, 66 \%$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data are identical to those of (R)-1a.

(R)-1b

Dibenzyl[(2R)-2-bromopropyl]amine ((R)-1b). ${ }^{7}$ To a solution of (S)-8b ${ }^{8}(2 \mathrm{~g}, 7.8 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(2.46 \mathrm{~g}, 9.4 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added NBS $(1.68 \mathrm{~g}, 9.4$ mmol). After the work-up, the residue was purified by silica gel column chromatography eluted with 5% ethyl acetate in hexanes to afford (R)-1b (1.9 g, 76\%) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.65(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.73(\mathrm{dd}, J=13.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.92$ $(\mathrm{dd}, J=13.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=35.7,13.5 \mathrm{~Hz}, 4 \mathrm{H}), 4.07-4.14(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.42$ $(\mathrm{m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 24.0(\mathrm{q}), 47.9(\mathrm{~d}), 59.1(\mathrm{t}), 62.7(\mathrm{t}), 127.2(\mathrm{~d})$, 128.3 (d), 129.0 (d), $139.1(\mathrm{~s}) .[\alpha]^{26}{ }_{\mathrm{D}}=+18.9^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

(S)-1b

Dibenzyl[(2S)-2-bromopropyl]amine ((S)-1b). ${ }^{9}$ To a solution of (R)-8b ${ }^{10}$ (536mg, 2.1 $\mathrm{mmol})$ and $\mathrm{PPh}_{3}(661 \mathrm{mg}, 2.5 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added NBS $(445 \mathrm{mg}$, $2.5 \mathrm{mmol})$. After the work-up, the residue was purified by silica gel column chromatography eluted with 5% ethyl acetate in hexanes to afford $\mathbf{(S)} \mathbf{- 1 b}(500 \mathrm{mg}, \mathbf{7 6 \%})$
as a white solid. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data are identical to those of (\mathbf{R})-1b.
$[\alpha]^{26}{ }_{\mathrm{D}}=-16.2^{\mathrm{o}}\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

(rac)-1b
Dibenzyl(2-bromopropyl)amine ((rac)-1b). To a solution of (rac)-8b (974 mg, 3.8 $\mathrm{mmol})$ and $\mathrm{PPh}_{3}(1.2 \mathrm{~g}, 4.6 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(25 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added NBS $(819 \mathrm{mg}$, $4.6 \mathrm{mmol})$. After the work-up, the residue was purified by silica gel column chromatography eluted with 5% ethyl acetate in hexanes to afford (rac)-1b (840 mg , 69.5%) as a white solid. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data are identical to (R)-1b.

(R)-1c

Dibenzyl[(2R)-2-bromopentyl]amine ((R)-1c). To a solution of (S)-8c ${ }^{11}(95 \mathrm{mg}, 0.34$ $\mathrm{mmol})$ and $\mathrm{PPh}_{3}(89 \mathrm{mg}, 0.34 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added NBS $(60.5 \mathrm{mg}$, 0.34 mmol). After the work-up, the residue was purified by silica gel column chromatography eluted with 5\% ethyl acetate in hexanes to afford (R)-1c ($52.9 \mathrm{mg}, 45 \%$) as a colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.45(\mathrm{~m}$, $3 \mathrm{H}), 1.46-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.97(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.94(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{dd}, J=33.0,13.5$ $\mathrm{Hz}, 4 \mathrm{H}), 4.00-4.05(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.41(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 13.5(\mathrm{q})$,
20.3 (t), 38.2 (t), 54.8 (d), 59.2 (t), 61.4 (t), 127.2 (d), 128.3 (d), 129.0 (d), 139.1 (s$).$ $[\alpha]^{26}{ }_{\mathrm{D}}=+16.0^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}\left[\mathrm{M}-\mathrm{Br}+\mathrm{H}_{2} \mathrm{O}\right]^{+} \mathrm{m} / \mathrm{z}$ 284.4158. Found: $\left[\mathrm{M}-\mathrm{Br}+\mathrm{H}_{2} \mathrm{O}\right]^{+} m / z 284.2027$.

(S)-1c

Dibenzyl[(2S)-2-bromopentyl]amine ((S)-1c). General procedure was followed. To a solution of $(\mathbf{R})-\mathbf{8 c}(214 \mathrm{mg}, 0.76 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(238 \mathrm{mg}, 0.91 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(7 \mathrm{~mL})$ was added NBS ($162 \mathrm{mg}, 0.91 \mathrm{mmol}$) portionwise at $0{ }^{\circ} \mathrm{C}$ over 20 min . After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) eluting with 5% ethyl acetate in hexanes to afford pure (S)-1c (138 mg, 52\%). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data are identical to those of $(\mathbf{R})-\mathbf{1 c} \cdot[\alpha]^{26}{ }_{\mathrm{D}}=-14.5^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

Dibenzyl(2-bromopentyl)amine ((rac)-1c). General procedure was followed. To a solution of (rac)-8c (300 mg, 1.06 mmol$)$ and $\mathrm{PPh}_{3}(416.6 \mathrm{mg}, 1.59 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(10$ mL) was added NBS ($283 \mathrm{mg}, 1.59 \mathrm{mmol}$) portionwise at $0{ }^{\circ} \mathrm{C}$ over 20 min . After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) eluting with 5% ethyl acetate in hexanes to afford pure (rac)-1c (150 mg, 40.9\%). ${ }^{1} \mathrm{H}$ and
${ }^{13} \mathrm{C}$ NMR data are identical to those of (R)-1c.

(R)-1d
[(2R)-2-Bromopropyl]bis(naphthalen-2-ylmethyl)amine ((R)-1d). To a solution of (S)$8 \mathbf{d}(284 \mathrm{mg}, 0.80 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(251 \mathrm{mg}, 0.96 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(7 \mathrm{~mL})$ was added NBS ($170 \mathrm{mg}, 0.96 \mathrm{mmol}$) portionwise at $0{ }^{\circ} \mathrm{C}$ over 20 min . After the work-up, the residue was purified via column chromatography on silica gel (60-230 mesh) eluting with 5% ethyl acetate in hexanes to afford pure (R)-1d $(241 \mathrm{mg}, 72 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 1.65(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.81(\mathrm{dd}, J=13.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=13.2,6.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=30.6,13.5 \mathrm{~Hz}, 4 \mathrm{H}), 4.13-4.20(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.62(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~s}, 2 \mathrm{H}), 7.84-7.88(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 24.0(\mathrm{q})$, 47.9 (d), 59.4 (t), 62.7 (t), 125.7 (d), 126.1 (t), 127.3 (d), 127.6 (d), 127.7 (d), 128.1 (d), $132.9(\mathrm{~s}), 133.3(\mathrm{~s}), 136.7(\mathrm{~s}) .[\alpha]^{26}{ }_{\mathrm{D}}=-5.4^{\mathrm{o}}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NO}\left[\mathrm{M}-\mathrm{Br}+\mathrm{H}_{2} \mathrm{O}\right]^{+} m / z$ 356.4800. Found: $\left[\mathrm{M}-\mathrm{Br}+\mathrm{H}_{2} \mathrm{O}\right]^{+} m / z$ 356.2006.

(S)-1d
[(2S)-2-Bromopropyl]bis(naphthalen-2-ylmethyl)amine ((S)-1d). To a solution of (R)-
$\mathbf{8 d}(78 \mathrm{mg}, 0.22 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(86.3 \mathrm{mg}, 0.33 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1 \mathrm{~mL})$ was added NBS $(58.8 \mathrm{mg}, 0.33 \mathrm{mmol})$ portionwise at $0{ }^{\circ} \mathrm{C}$ over 10 min . After the work-up, the residue was purified via column chromatography on silica gel (60-230 mesh) eluting with 5\% ethyl acetate in hexanes to afford pure (S)-1d (37 mg, 40\%). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data are identical to those of $(\mathbf{R})-\mathbf{1 d} \cdot[\alpha]^{26}{ }_{\mathrm{D}}=+5.2^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

(rac)-1d
(2-Bromopropyl)bis(naphthalen-2-ylmethyl)amine ((rac)-1d). To a solution of (rac)$\mathbf{8 d}(680 \mathrm{mg}, 1.9 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(602 \mathrm{mg}, 2.3 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(8 \mathrm{~mL})$ was added NBS $(409 \mathrm{mg}, 2.3 \mathrm{mmol})$ portionwise at $0^{\circ} \mathrm{C}$ over 10 min . After the work-up, the residue was purified via column chromatography on silica gel (60-230 mesh) eluting with 5\% ethyl acetate in hexanes to afford pure (rac)-1d (523 mg, 65.9\%). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data are identical to those of (R)-1d.

Bis[(3-bromophenyl)methyl][(2R)-2-bromopropyl]amine ((R)-1e). To a solution of (S)-8e (509 mg, 1.2 mmol) and $\mathrm{PPh}_{3}(378 \mathrm{mg}, 1.4 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(7 \mathrm{~mL})$ was added NBS ($249 \mathrm{mg}, 1.4 \mathrm{mmol}$) portionwise at $0^{\circ} \mathrm{C}$ over 20 min . After the work-up, the residue was purified via column chromatography on silica gel (60-230 mesh) eluting with 5%
ethyl acetate in hexanes to afford pure (R)-1e $(466 \mathrm{mg}, 82 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 1.64(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.67(\mathrm{dd}, J=13.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=13.5,6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=18.9,13.8 \mathrm{~Hz}, 4 \mathrm{H}), 4.09(\mathrm{dd}, J=13.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=$ $7.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 24.0(\mathrm{q}), 47.3$ (d), $58.41(\mathrm{t}), 62.5(\mathrm{t}), 122.5(\mathrm{~s}), 127.5(\mathrm{~d})$, 130.0 (d), 130.3 (d), 131.9 (d), 141.2 (s). $[\alpha]^{26}{ }_{\mathrm{D}}=+1.1^{\mathrm{o}}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{NO}\left[\mathrm{M}-\mathrm{Br}+\mathrm{H}_{2} \mathrm{O}\right]^{+} m / z$ 414.1548. Found: $\left[\mathrm{M}-\mathrm{Br}+\mathrm{H}_{2} \mathrm{O}\right]^{+} \mathrm{m} / \mathrm{z}$ 414.9917.

Bis[(3-bromophenyl)methyl][(2S)-2-bromopropyl]amine ((S)-1e). To a solution of $(\mathbf{R})-\mathbf{8 e}(92 \mathrm{mg}, 0.22 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(87.6 \mathrm{mg}, 0.33 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1 \mathrm{~mL})$ was added NBS ($59.5 \mathrm{mg}, 0.33 \mathrm{mmol}$) portionwise at $0{ }^{\circ} \mathrm{C}$ over 5 min . After the work-up, the residue was purified via column chromatography on silica gel (60-230 mesh) eluting with 5% ethyl acetate in hexanes to afford pure (S)-1e (77 mg, 73.5\%). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data are identical to those of $(\mathbf{R})-1 \mathbf{e} \cdot[\alpha]^{26}{ }_{\mathrm{D}}=-1.6^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

Bis[(3-bromophenyl)methyl](2-bromopropyl)amine ((rac)-1e). To a solution of (rac)-
$\mathbf{8 e}(200 \mathrm{mg}, 0.48 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(152 \mathrm{mg}, 0.58 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ was added NBS ($103.4 \mathrm{mg}, 0.58 \mathrm{mmol}$) portionwise at $0{ }^{\circ} \mathrm{C}$ over 10 min . After the work-up, the residue was purified via column chromatography on silica gel (60-230 mesh) eluting with 5\% ethyl acetate in hexanes to afford pure (rac)-1e (142 mg, 62.1\%). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data are identical to those of (R)-1e.

(S)-1f

Benzyl[(2S)-2-bromo-2-phenylethyl](prop-2-en-1-yl)amine ((S)-1f). To a solution of (R)-8f $(150 \mathrm{mg}, 0.56 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(175.5 \mathrm{mg}, 0.67 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(6 \mathrm{~mL})$ was added NBS ($119.9 \mathrm{mg}, 0.67 \mathrm{mmol}$) portionwise at $0{ }^{\circ} \mathrm{C}$ over 20 min . After the work-up, the residue was purified via column chromatography on silica gel (60-230 mesh) eluting with 5% ethyl acetate in hexanes to afford pure (S)-1f $(108.7 \mathrm{mg}, 59 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 3.13(\mathrm{dd}, J=6.3,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{dd}, J=6.9,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{dd}, J=$ $27.0,13.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.98(\mathrm{dd}, J=8.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-5.22(\mathrm{~m}, 2 \mathrm{H}), 5.75-5.88(\mathrm{~m}, 1 \mathrm{H})$, 7.21-7.42 (m, 10H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 53.1(\mathrm{~d}), 57.3(\mathrm{t}), 58.8(\mathrm{t}), 61.4(\mathrm{t})$, 117.8 (t), 128.1 (d), 128.2 (d), 128.3 (d), 128.5 (d), 128.7 (d), 128.9 (d), 135.4 (d), 139.1 (s), $140.8(\mathrm{~s}) .[\alpha]^{26}{ }_{\mathrm{D}}=+88.6^{\circ}\left(c=0.5, \mathrm{CHCl}_{3}\right)$. HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}-$ $\left.\mathrm{Br}+\mathrm{H}_{2} \mathrm{O}\right]^{+} m / z$ 268.3734. Found: $\left[\mathrm{M}-\mathrm{Br}+\mathrm{H}_{2} \mathrm{O}\right]^{+} m / z$ 268.1724.

(R)-1f

Benzyl[(2R)-2-bromo-2-phenylethyl](prop-2-en-1-yl)amine ((R)-1f). To a solution of (S)-8f ($150 \mathrm{mg}, 0.56 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(178.2 \mathrm{mg}, 0.68 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(6 \mathrm{~mL})$ was added NBS ($121.04 \mathrm{mg}, 0.68 \mathrm{mmol}$) portionwise at $0{ }^{\circ} \mathrm{C}$ over 20 min . The resulting mixture was stirred for 4 h while being maintained at $0^{\circ} \mathrm{C}$. The ice bath was removed, and the reaction mixture was warmed to room temperature and stirred for 1 h and evaporated to dryness. The residue was purified via column chromatography on silica gel (60-230 mesh) eluting with $5 \% \mathrm{EtOAc}$ in hexanes to afford (R)-1f $(89.2 \mathrm{mg}, 48.5 \%) \cdot[\alpha]^{26}{ }_{\mathrm{D}}=-41.0(c=$ 1.0, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of (\mathbf{R})-1f are identifical to those of $(\mathbf{S})-\mathbf{1 f}$.

(R)-1g

Benzyl[(2R)-2-bromo-2-phenylethyl]methylamine ((R)-1g). To a solution of (S)-8g $(140 \mathrm{mg}, 0.16 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(183.4 \mathrm{mg}, 0.70 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ was added NBS ($124.6 \mathrm{mg}, 0.70 \mathrm{mmol}$) portionwise at $0{ }^{\circ} \mathrm{C}$ over 20 min . The resulting mixture was stirred for 4 h while being maintained at $0^{\circ} \mathrm{C}$. The ice bath was removed, and the reaction mixture was warmed to room temperature and stirred for 1 h and evaporated to
dryness. The residue was purified via column chromatography on silica gel (60-230 mesh) eluting with 5% EtOAc in hexanes to afford pure (R)-1g (75 mg, 43\%). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 2.28(\mathrm{~s}, 3 \mathrm{H}), 3.04-3.20(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{dd}, J=15.2,14.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{dd}, J$ $=6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.39(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 42.5(\mathrm{q}), 52.5(\mathrm{~d})$, 62.4 (t), 64.5 (t), 127.1 (d), 127.9 (d), 128.2 (d), 128.4 (d), 128.7 (d), 129.0 (d), 138.6 (s$)$, $140.7(\mathrm{~s}) \cdot[\alpha]^{26}{ }_{\mathrm{D}}=-47.2\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

1h
Dibenzyl(2-bromo-5-phenylpentyl)amine (1h). To a solution of (rac)-8h (200 mg, 0.56 $\mathrm{mmol})$ and $\mathrm{PPh}_{3}(175.1 \mathrm{mg}, 0.67 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ was added NBS $(118.58 \mathrm{mg}$, 0.67 mmol) portionwise at $0^{\circ} \mathrm{C}$ over 20 min . After the work-up, the residue was purified via column chromatography on silica gel (60-230 mesh) eluting with 5\% ethyl acetate in hexanes to afford pure (rac)-1h $(140 \mathrm{mg}, 60 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.60-1.70$ $(\mathrm{m}, 2 \mathrm{H}), 1.82-1.89(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.81-3.00(\mathrm{~m}, 2 \mathrm{H})$, $3.64(\mathrm{dd}, J=42.0,13.5 \mathrm{~Hz}, 4 \mathrm{H}), 4.03-4.05(\mathrm{~m}, 1 \mathrm{H}) .7 .21-7.38(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 28.8(\mathrm{t}), 35.2(\mathrm{t}), 35.5(\mathrm{t}), 54.7(\mathrm{~d}), 59.3(\mathrm{t}), 61.5(\mathrm{t}), 125.9(\mathrm{~d}), 127.2$ (d), 128.4 (d), 128.5 (d), 129.1 (d), 139.1 (s), 142.0 (s). HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NO}$ $\left[\mathrm{M}-\mathrm{Br}+\mathrm{H}_{2} \mathrm{O}\right]^{+} m / z$ 360.5118. Found: $\left[\mathrm{M}-\mathrm{Br}+\mathrm{H}_{2} \mathrm{O}\right]^{+} m / z 360.2337$.

Synthesis and characterization of optically active aziridinium ions (Scheme 2)

General synthesis of aziridinium ions 9. To a stirred solution of β-amino bromide 1a-d in CDCl_{3} at $-5^{\circ} \mathrm{C}$ was added silver perchlorate (5 equiv), silver tetrafluoroborate (1 equiv) or silver triflate (5 equiv). The resulting mixture was continuously stirred at $-5^{\circ} \mathrm{C}$, while the reaction progress was monitored using TLC. After completion of the reaction, silver bromide was filtered. The aziridinium ions obtained was characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and optical rotation.

(S)-9aa
(S)-1,1-Dibenzyl-2-phenylaziridinium perchlorate ((S)-9aa). The general procedure was followed for the reaction of $(\mathbf{R}) \mathbf{- 1 a}(50 \mathrm{mg}, 0.13 \mathrm{mmol})$ and $\mathrm{AgClO}_{4}(136.2 \mathrm{mg}, 0.66$ $\mathrm{mmol})$ in $\mathrm{CDCl}_{3}(1 \mathrm{~mL})$ for 15 min . After completion of the reaction, silver bromide was filtered, and the filtrate was immediately characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and optical rotation. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.55(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=8.3,4.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=7.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.60(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{dd}, J=8.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.36-$ $7.44(\mathrm{~m}, 13 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 42.0(\mathrm{t}), 53.6(\mathrm{~d}), 56.3(\mathrm{t}), 61.5(\mathrm{t}), 125.1$
(s), 128.7 (s), 129.0 (s$), 129.6$ (d), 129.7 (d), 129.8 (d), 129.9 (d), 130.2 (d), 130.9 (d), $131.3(\mathrm{~d}), 131.5(\mathrm{~s}), 131.7(\mathrm{~s}) .[\alpha]^{26}{ }_{\mathrm{D}}=+20.3^{\circ}\left(c=1.1, \mathrm{CDCl}_{3}\right)$.

(R)-1,1-Dibenzyl-2-phenylaziridinium perchlorate ((R)-9aa). The general procedure was followed for the reaction of $\mathbf{(S)} \mathbf{- 1 a}(50 \mathrm{mg}, 0.13 \mathrm{mmol})$ and $\mathrm{AgClO}_{4}(136.2 \mathrm{mg}, 0.66$ $\mathrm{mmol})$ in $\mathrm{CDCl}_{3}(1 \mathrm{~mL})$ for 15 min . After completion of the reaction, silver bromide was filtered, and the filtrate was immediately characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and optical rotation. $[\alpha]^{26}{ }_{\mathrm{D}}=-22.1^{\circ}\left(c=0.82, \mathrm{CDCl}_{3}\right) \cdot{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of (R)-9aa are identical to those of (S)-9aa.

(S)-9ab
(S)-1,1-Dibenzyl-2-phenylaziridinium tetrafluoroborate ((S)-9ab). The general procedure was followed for the reaction of $(\mathbf{R}) \mathbf{- 1 a}(50 \mathrm{mg}, 0.13 \mathrm{mmol})$ and $\mathrm{AgBF}_{4}(25.6$ $\mathrm{mg}, 0.13 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(1 \mathrm{~mL})$ for 15 min . After completion of the reaction, silver bromide was filtered, and the filtrate was immediately characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and optical rotation. $[\alpha]^{26}{ }_{\mathrm{D}}=+24.8^{\circ}\left(c=1.0, \mathrm{CDCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $3.54(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=8.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-4.05(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{~d}, J=$
$13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{dd}, J=8.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.18(\mathrm{~m}, 2 \mathrm{H})$, 7.36-7.43 (m, 13H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 42.0(\mathrm{t}), 53.5(\mathrm{~d}), 56.2(\mathrm{t}), 61.4(\mathrm{t})$, 125.2 (s), 128.7 (s), 128.9 (s), 129.7 (d), 129.8 (d), 129.9 (d), 130.1 (d), 130.8 (d), 131.2 (d), 131.6 (d). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of (S)-9ab are almost identical to those of (S)-9aa.

(S)-1,1-Dibenzyl-2-methylaziridinium perchlorate ((S)-9ba). The general procedure was followed for the reaction of $(\mathbf{R}) \mathbf{- 1 b}(40 \mathrm{mg}, 0.13 \mathrm{mmol})$ and $\mathrm{AgClO}_{4}(130.2 \mathrm{mg}, 0.63$ $\mathrm{mmol})$ in $\mathrm{CDCl}_{3}(0.8 \mathrm{~mL})$ for 5 min . After completion of the reaction, silver bromide was filtered, and the filtrate was evaporated and dried in vacuo. The residue was characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and optical rotation. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.80(\mathrm{~d}, J=6.1$ $\mathrm{Hz}, 3 \mathrm{H}), 3.21(\mathrm{dd}, J=8.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=7.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.61(\mathrm{~m}, 1 \mathrm{H})$, $4.18(\mathrm{dd}, J=18.8,13.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{dd}, J=13.7,9.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.28-7.49 (m, 8H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 11.9(\mathrm{q}), 43.0(\mathrm{t}), 47.9(\mathrm{~d}), 56.3(\mathrm{t})$, 61.1 (t), 128.1 (s), 129.1 (s), 129.6 (d), 129.7 (d), 130.1 (d), 130.2 (d), 130.6 (d), 131.0 (d). $[\alpha]^{26}{ }_{\mathrm{D}}=+17.2^{\circ}\left(c=1.3, \mathrm{CHCl}_{3}\right)$.

(R)-1,1-Dibenzyl-2-methylaziridinium perchlorate ((R)-9ba). The general procedure was followed for the reaction of $\mathbf{(S)} \mathbf{- 1 b}(40 \mathrm{mg}, 0.13 \mathrm{mmol})$ and $\mathrm{AgClO}_{4}(130.2 \mathrm{mg}, 0.63$
$\mathrm{mmol})$ in $\mathrm{CDCl}_{3}(0.8 \mathrm{~mL})$ for 5 min . After completion of the reaction, silver bromide was filtered, and the filtrate was evaporated and dried in vacuo. The residue was characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and optical rotation. $[\alpha]^{26}{ }_{\mathrm{D}}=-19.4^{\circ}\left(c=0.93, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of (\mathbf{R})-9ba are identical to those of (S)-9ba.

(2S)-1,1-Dibenzyl-2-propylaziridin-1-ium perchlorate ((S)-9ca). The general procedure was followed for the reaction of $(\mathbf{R}) \mathbf{- 1 c}(30 \mathrm{mg}, 0.088 \mathrm{mmol})$ and $\mathrm{AgClO}_{4}(89$ $\mathrm{mg}, 0.43 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(0.8 \mathrm{~mL})$ for 5 min . After completion of the reaction, silver bromide was filtered, and the filtrate was evaporated and dried in vacuo. The residue was characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and optical rotation. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.47-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.92(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.24(\mathrm{~m}, 1 \mathrm{H}), 3.26-$ $3.46(\mathrm{~m}, 2 \mathrm{H}), 3.45-3.65(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=13.8,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{dd}, J=13.6,10.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.19-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.54(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 13.5(\mathrm{q})$, 20.0 (t), 28.2 (t), 43.4 (t), 51.6 (d), 56.2 (t), 61.4 (t), 128.4 (s$), 129.1$ (s$), 129.6$ (d), 129.8 (d), 130.0 (d), 130.3 (d), 130.7 (d), $131.0(d) \cdot[\alpha]^{26}{ }_{D}=+20.1^{\circ}\left(c=1.1, \mathrm{CHCl}_{3}\right)$.

(2R)-1,1-Dibenzyl-2-propylaziridin-1-ium perchlorate ((R)-9ca). The general procedure was followed for the reaction of $\mathbf{(S)} \mathbf{- 1 c}(30 \mathrm{mg}, 0.088 \mathrm{mmol})$ and $\mathrm{AgClO}_{4}(89$
$\mathrm{mg}, 0.43 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(0.8 \mathrm{~mL})$ for 5 min . After completion of the reaction, silver bromide was filtered, and the filtrate was evaporated and dried in vacuo. The residue was characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and optical rotation. $[\alpha]^{26}{ }_{\mathrm{D}}=-24.8^{\circ}\left(c=0.89, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of (S)-9ca are almost identical to those of (S)-9ca.

Lewis acid-promoted debenzylation of β-amino bromide 10 (Scheme 3)

N-[(2S)-1-Bromopropan-2-yl]-4-methylbenzene-1-sulfonamide (11). To the suspension of AlCl_{3} (19.2 mg, 0.14 mmol) in toluene (1 mL), β-amino bromide $\mathbf{1 0}$ (25 $\mathrm{mg}, 0.065 \mathrm{mmol})$ in toluene (2 mL) was added dropwise over 15 min at $0{ }^{\circ} \mathrm{C}$. The resulting reaction mixture was gradually warm to room temperature over 2 h and then was heated to reflux for 6 h . After the work-up, the residue was purified by column chromatography on silica gel (60-230 mesh) with 15% ethyl acetate in hexanes to afford $11(18.5 \mathrm{mg}, 97.5 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.17(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$, $3.33-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.58-3.62(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 20.1(\mathrm{q}), 21.6(\mathrm{q}), 39.3(\mathrm{t}), 49.4$ (d), 127.0 (d), $129.8(d), 137.6(\mathrm{~s}), 143.7(\mathrm{~s}) \cdot[\alpha]^{26}{ }_{\mathrm{D}}=-33.6\left(c=0.8, \mathrm{CHCl}_{3}\right)$. HRMS (ESI) Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{BrNNaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} m / z$ 313.9821. Found: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ 313.9856.

(2S)- N-Benzyl-1-hydroxy-S-(4-methylphenyl)propane-2-sulfonamido (17). ${ }^{12}$ To a
solution of $\mathbf{1 6}^{13}(120 \mathrm{mg}, 0.73 \mathrm{mmol})$ and triethylamine ($88.9 \mathrm{mg}, 0.88 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added tosyl chloride ($152.5 \mathrm{mg}, 0.8 \mathrm{mmol}$) portionwise in over 20 min. After the work-up, the residue was purified via chromatography on silica gel (60230 mesh) eluted with 30% ethyl acetate in hexanes to afford $17(172.5 \mathrm{mg}, 74 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.91(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.75(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$, $3.27(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.99-4.06(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.25-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.42(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 14.1$ (q), $21.6(\mathrm{q}), 47.5$ (t), $56.0(\mathrm{~d}), 64.8(\mathrm{t}), 127.1(\mathrm{~d}), 127.8(\mathrm{~d})$, 127.9 (d), 128.8 (d), 129.8 (d), 137.7 (s), 138.1 (s), 143.5 (s).
$[\alpha]^{26}{ }_{\mathrm{D}}=+33.5\left(c=0.6, \mathrm{CHCl}_{3}\right)$.

N-Benzyl- N-[(2S)-1-bromopropan-2-yl]-4-methylbenzene-1-sulfonamide (10). To а solution of $\mathbf{1 7}^{12}(150 \mathrm{mg}, 0.47 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(146.7 \mathrm{mg}, 0.56 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ was added NBS ($100.4 \mathrm{mg}, 0.56 \mathrm{mmol}$) portionwise at $0{ }^{\circ} \mathrm{C}$ over 20 min . The resulting mixture was stirred for 4 h while being maintained at $0^{\circ} \mathrm{C}$. The ice bath was removed, and the reaction mixture was warmed to room temperature and stirred for 2 d and evaporated to dryness. The residue was purified via column chromatography on silica gel (60-230 mesh) eluting with 5% ethyl acetate in hexanes to afford pure $\mathbf{1 0}(76.5 \mathrm{mg}$, $42.6 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.15(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{t}, J=$ $9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=9.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.14(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.62(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.39(\mathrm{~m}, 7 \mathrm{H}), 7.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 16.6$ (q), 21.6 (q), 35.6 (t), 48.0 (t), 55.6 (d), 127.1 (d), 128.0 (d), 128.2 (d),
128.7 (d), 129.8 (d), 137.6 (s), 137.7 (s$), 143.5(\mathrm{~s}) \cdot[\alpha]^{26}{ }_{\mathrm{D}}=-21.9^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{BrNNaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} m / z$ 404.0290. Found: $[\mathrm{M}+\mathrm{Na}]^{+}$ $m / z 404.0320$.

Synthesis of $\boldsymbol{\beta}$-amino alcohols 8 (Scheme 2)

General Procedure for synthesis of $\boldsymbol{N}, \boldsymbol{N}$-bisubstituted $\boldsymbol{\beta}$-amino alcohols 8. To a solution of 15 (1 equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.2 equiv) in $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of an alkylating agent (2.2 equiv) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ over 20 min . The mixture was allowed to room temperature and stirred for 24 h and filtered. The filtrate was subject to evaporation in vacuo, and the residue was purified via chromatography on silica gel (60-230 mesh) eluted with 5-10\% ethyl acetate in hexanes to afford pure 8 .

(2S)-2-(Dibenzylamino)-2-phenylethan-1-ol ((S)-8a). ${ }^{4}$ To a solution of (S)-15a (2 g, $14.6 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(4.2 \mathrm{~g}, 30.6 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of benzyl bromide ($5.1 \mathrm{~g}, 29.9 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ over 20 min . After the work-up, the residue was purified via chromatography on silica gel (60-230 mesh) eluted with 5\% ethyl acetate in hexanes to afford (S)-8a (2.5 g, 54\%).
$[\alpha]^{26}{ }_{\mathrm{D}}=+136.9^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.12(\mathrm{br}, 1 \mathrm{H}), 3.20(\mathrm{~d}$,
$J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.66-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.96-4.00(\mathrm{~m}, 3 \mathrm{H}), 4.20(\mathrm{dd}, J=10.5,10.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.32-7.47 (m, 15H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 53.6(\mathrm{t}), 60.5(\mathrm{t}), 63.1(\mathrm{~d}), 127.4(\mathrm{~d})$. 128.1 (d), 128.5 (d), 128.7 (d), 129.1 (d), 129.4 (d), 135.1 (s), 139.2 (s).

(2R)-2-(Dibenzylamino)-2-phenylethan-1-ol ((R)-8a). ${ }^{5}$ To a solution of (R)-15a (1.58 g, $11.5 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.68 \mathrm{~g}, 25.3 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of benzyl bromide ($4.04 \mathrm{~g}, 29.9 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ over 20 min. After the work-up, the residue was purified via chromatography on silica gel (60230 mesh) eluted with 5\% ethyl acetate in hexanes to afford (R)-13a (1.2 g, 32.9\%). $[\alpha]_{\mathrm{D}}^{26}=-128.6^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of (R)-8a are essentially identical to (S)-8a.

2-(Dibenzylamino)-2-phenylethan-1-ol ((rac)-8a). ${ }^{6}$ To a solution of (rac)-15a (700 mg, $5.1 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.55 \mathrm{~g}, 11.2 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of benzyl bromide ($1.74 \mathrm{~g}, 10.2 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ over 20 min . After the work-up, the residue was purified via chromatography on silica gel (60-230 mesh) eluted with 5% ethyl acetate in hexanes to afford (rac)-13a (911 mg, 56\%). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR are identical to those of (S)-8a.

(S)-8b
(2S)-2-(Dibenzylamino)propan-1-ol ((S)-8b). ${ }^{8}$ To a solution of (S)-15b (2.5 g, 34 mmol$)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(5.64 \mathrm{~g}, 40.8 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of benzyl bromide ($6.98 \mathrm{~g}, 40.8 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ over 20 min After the work-up, the residue was purified via chromatography on silica gel (60-230 mesh) eluted with 15% ethyl acetate in hexanes to afford (S)-8b (5.99 g, 69.1\%).
$[\alpha]^{26}{ }_{\mathrm{D}}=+109.0^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.01(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 2.99-3.06(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{br}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.50(\mathrm{dd}, J=10.2,10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.34(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 8.7 (q), 53.0 (t), 54.2 (d), 62.8 (t), 127.3 (d), 128.5 (d), 129.0 (d), 139.3 (s$).$

(R)-8b
(2R)-2-(Dibenzylamino)propan-1-ol ((R)-8b). ${ }^{10}$ To a solution of (R)-15b (530 mg, 7.1 mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.0 \mathrm{~g}, 15 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(13 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of benzyl bromide ($2.5 \mathrm{~g}, 14.6 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ over 20 min . After the work-up, the residue was purified via chromatography on silica gel (60-230 mesh) eluted with 15% ethyl acetate in hexanes to afford (R)-8b ($1.6 \mathrm{~g}, 88.3 \%$).
$[\alpha]^{26}{ }_{\mathrm{D}}=-86.4^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of $(\mathbf{R})-\mathbf{8 b}$ are essentially identical to those of $\mathbf{(S)} \mathbf{- 8 b}$.

(rac)-8b
2-(Dibenzylamino)propan-1-ol ((rac)-8b). To a solution of (rac)-15b (1.0 g, 13.3 mmol$)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(3.9 \mathrm{~g}, 27.9 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of benzyl bromide ($4.6 \mathrm{~g}, 27.3 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL})$ over 20 min . After the work-up, the residue was purified via chromatography on silica gel (60-230 mesh) eluted with 15% ethyl acetate in hexanes to afford (rac)-8b $(2.0 \mathrm{~g}, 60 \%) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR are essentially identical to those of $(\mathbf{S}) \mathbf{- 8 b}$.

(2S)-2-(Dibenzylamino)pentan-1-ol ((S)-8c). ${ }^{11}$ To a solution of (S)-15c (45.6 mg, 0.44 $\mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(135.24 \mathrm{mg}, 0.98 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of benzyl bromide ($153.9 \mathrm{mg}, 0.9 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ over 10 min. After the work-up, the residue was purified via chromatography on silica gel (60230 mesh) eluted with 15% ethyl acetate in hexanes to afford (S)-8c ($99 \mathrm{mg}, 80 \%$).
$[\alpha]^{26}{ }_{\mathrm{D}}=+82.0^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.96(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, 1.19-1.38 (m, 3H), 1.69-1.74 (m, 1H), 2.80-2.83 (m, 1H), $3.23(\mathrm{br}, 1 \mathrm{H}), 3.40-3.53(\mathrm{~m}$, $4 \mathrm{H}), 3.84(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.36(\mathrm{~m}, 10 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 14.5 (q), 20.4 (t), 27.2 (t), 53.2 (t), 58.7 (d), 60.9 (t), 127.4 (d), 128.5 (d), 129.1 (d), 139.4 (s).

(2R)-2-(Dibenzylamino)pentan-1-ol ((R)-8c). To a solution of (R)-15c (197 mg, 1.9 $\mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(554 \mathrm{mg}, 4.0 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of benzyl bromide ($666 \mathrm{mg}, 3.9 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ over 10 min . After the work-up, the crude mixture was purified via chromatography on silica gel (60-230 mesh) eluted with 15% ethyl acetate in hexanes to afford (R)-8c ($490 \mathrm{mg}, 91 \%$).
$[\alpha]^{26}{ }_{\mathrm{D}}=-82.7^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of (R)-8c are essentially identical to those of (S)-8c.

2-(Dibenzylamino)pentan-1-ol ((rac)-8c). To a solution of (rac)-15c (500 mg, 4.85 mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.5 \mathrm{~g}, 10.7 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of benzyl bromide ($1.66 \mathrm{~g}, 9.7 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ over 10 min . After the work-up, the crude mixture was purified via chromatography on silica gel (60-230 mesh) eluted with 15% ethyl acetate in hexanes to afford (rac)-8c (952 mg, 69.4\%). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of (rac)-8c are identical to those of (S)-8c.

(S)-8d
(2S)-2-[Bis(naphthalen-2-ylmethyl)amino]propan-1-ol ((S)-8d). To a solution of (S)$\mathbf{1 5 d}(288 \mathrm{mg}, 3.8 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.2 \mathrm{~g}, 8.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of 2-bromomethyl naphthalene ($1.68 \mathrm{~g}, 7.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \mathrm{~mL})$ over 20 min . After the work-up, the residue was purified via chromatography on silica gel (60-230 mesh) eluted with 15% ethyl acetate in hexanes to afford (S)-8d (600 $\mathrm{mg}, 50 \%) \cdot[\alpha]^{26}{ }_{\mathrm{D}}=-48.0^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.07(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.05-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{br}, 1 \mathrm{H}), 3.34-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=13.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.03(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.52(\mathrm{~m}, 6 \mathrm{H}), 7.74(\mathrm{~s}, 2 \mathrm{H}), 7.80-7.85(\mathrm{~m}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.8$ (q), 53.2 (t), 54.2 (d), 62.8 (t$), 125.8$ (d), 126.1 (d), 127.0 (d), 127.6 (d), 127.8 (d), 127.9 (d), 128.5 (d), 132.8 (s), 133.3 (s), 136.8 (s). HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} m / z 356.2009$. Found: $[\mathrm{M}+\mathrm{H}]^{+} m / z$ 356.2017.

(R)-8d
(2R)-2-[Bis(naphthalen-2-ylmethyl)amino]propan-1-ol ((R)-8d). To a solution of (R)$\mathbf{1 5 d}(42 \mathrm{mg}, 0.56 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(170 \mathrm{mg}, 1.23 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of 2-bromomethyl naphthalene ($272 \mathrm{mg}, 1.23 \mathrm{mmol}$) in
$\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ over 20 min . After the work-up, the residue was purified via chromatography on silica gel (60-230 mesh) eluted with 15% ethyl acetate in hexanes to afford (R)-8d $(84 \mathrm{mg}, 42 \%) .[\alpha]^{26}{ }_{\mathrm{D}}=+41.8^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of (R)-8d are identical to those of (S)-8d.

2-[Bis(naphthalen-2-ylmethyl)amino]propan-1-ol ((rac)-8d). To a solution of (rac)15d ($808 \mathrm{mg}, 10.8 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(3.1 \mathrm{~g}, 22.6 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of 2-bromomethyl naphthalene ($4.88 \mathrm{~g}, 22.1 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}$ $(10 \mathrm{~mL})$ over 20 min . After the work-up, the residue was purified via chromatography on silica gel (60-230 mesh) eluted with 15% ethyl acetate in hexanes to afford (rac)-8d (1.7 g, $44.3 \%) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR are identical to those of (S)-8d.

(S)-8e
(2S)-2-\{Bis[(3-bromophenyl)methyl]amino\}propan-1-ol ((S)-8e). To a solution of (S)15e (207 mg, 2.8 mmol$)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(800 \mathrm{mg}, 5.8 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of 3-bromobenzyl bromide ($1.4 \mathrm{~g}, 5.7 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ over 20 min . After the work-up, the residue was purified via chromatography on silica gel
(60-230 mesh) eluted with 15% ethyl acetate in hexanes to afford (S)-8e ($814 \mathrm{mg}, 70 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.99(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.77(\mathrm{br}, 1 \mathrm{H}), 2.93-3.00(\mathrm{~m}, 1 \mathrm{H})$, $3.38(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{dd}, J=21.0,10.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.16-7.24(m, 4H), 7.36-7.40(m, 4H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 9.0(\mathrm{q}), 52.8(\mathrm{t})$, 54.9 (d), 62.9 (t), 122.6 (s$), 127.5$ (d), 130.2 (d), 130.5 (d), 132.0 (d), 141.5 (s).
$[\alpha]^{26}{ }_{D}=+43.8^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{Br}_{2} \mathrm{NO}[\mathrm{M}]^{+} \mathrm{m} / \mathrm{z}$ 413.1469. Found: $[\mathrm{M}]^{+} m / z 413.9880$.

(R)-8e
(2R)-2-\{Bis[(3-bromophenyl)methyl]amino\}propan-1-ol ((R)-8e). To a solution of (R)-15e ($41 \mathrm{mg}, 0.55 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(166 \mathrm{mg}, 1.2 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of 3-bromobenzyl bromide ($300 \mathrm{mg}, 1.2 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}$ (1mL) over 20 min . After the work-up, the residue was purified via chromatography on silica gel (60-230 mesh) eluted with 5\% ethyl acetate in hexanes to afford (R)-8e (100 mg, $44 \%) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR are identical to (S)-8e. $[\alpha]^{26}{ }_{\mathrm{D}}=-41.2^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

(rac)-8e
2-\{Bis[(3-bromophenyl)methyl]amino\}propan-1-ol ((rac)-8e). To a solution of (rac)15e (219 mg, 2.9 mmol$)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(846 \mathrm{mg}, 6.1 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was
added dropwise a solution of 3-bromobenzyl bromide (1.49 g, 5.9 mmol) in $\mathrm{CH}_{3} \mathrm{CN}$ (2 mL) over 20 min . After the work-up, the residue was purified via chromatography on silica gel (60-230 mesh) eluted with 5\% ethyl acetate in hexanes to afford (rac)-8e (740 $\mathrm{mg}, 61.8 \%) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR are identical to (S)-8e.

(S)-8f
(2S)-2-[Benzyl(prop-2-en-1-yl)amino]-2-phenylethan-1-ol ((S)-8f). To a solution of (S)-15f (250 mg, 1.1 mmol$)$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(140 \mathrm{mg}, 1.32 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of allyl bromide ($159.7 \mathrm{mg}, 1.32 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ over 20 min . After the work-up, the residue was purified via chromatography on silica gel (60-230 mesh) eluted with 5% ethyl acetate in hexanes to afford (S)-8f ($177.5 \mathrm{mg}, 60 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.84(\mathrm{dd}, J=14.1,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 2 \mathrm{H})$, 3.41-3.47 (m, 1H), 3.68 (dd, $J=9.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-4.16(\mathrm{~m}, 3 \mathrm{H}), 5.22-5.30(\mathrm{~m}, 2 \mathrm{H})$, 5.86-5.91 (m, 1H), 7.27-7.47 (m, 10H) ${ }^{13}{ }^{13} \mathrm{CNR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 52.6(\mathrm{t}), 53.6(\mathrm{t})$, 60.6 (t), 63.5 (d), 118.1 (t), 127.3 (d), 128.0 (d), 128.4 (d), 128.6 (d), 128.8 (d), 128.9 (d), 129.2 (d), $135.6(\mathrm{~s}), 136.5(\mathrm{~d}), 139.3(\mathrm{~s}) \cdot[\alpha]^{26}{ }_{\mathrm{D}}=+134.9\left(c=1.0, \mathrm{CHCl}_{3}\right)$. HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} m / z$ 268.1696. Found: $[\mathrm{M}+\mathrm{H}]^{+} m / z$ 268.1710.

(R)-8f

(2R)-2-[benzyl(prop-2-en-1-yl)amino]-2-phenylethan-1-ol ((R)-8f). To a stirred solution of (\mathbf{R})-15f(250 mg, 1.10 mmol$)$ in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(227.7 \mathrm{mg}$, 1.65 mmol) at $0{ }^{\circ} \mathrm{C}$. Then the solution of allyl bromide ($263.5 \mathrm{mg}, 1.65 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}$ $(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise. The reaction mixture was gradually warmed to RT and stirred for 24 h while the reaction progress was continuously monitored using TLC. The reaction mixture was filtered and concentrated in vacuo. The crude N -benzyl, N methyl amino alcohol was purified via column chromatography on silica gel (60-230 mesh) eluted with 10% Ethyl acetate in hexanes to afford pure diakylated amino alcohol $(184 \mathrm{mg}, 62.5 \%) .[\alpha]^{26}{ }_{\mathrm{D}}=-99.9\left(c=2.1, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of (R)-8f are essentially identical to those of (S)-8f.

(2S)-2-[benzyl(methyl)amino]-2-phenylethan-1-ol ((S)-8g). ${ }^{14}$ To a stirred solution of $\mathbf{1 5 g}{ }^{15}(250 \mathrm{mg}, 1.10 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ was added $\mathrm{Na}_{2} \mathrm{CO}_{3}(140 \mathrm{mg}, 1.32 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. Then the solution of dimethyl sulfate $(166.5 \mathrm{mg}, 1.32 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$ was added dropwise. The reaction mixture was gradually warmed to RT and stirred for 24 h while the reaction progress was continuously monitored using TLC. The reaction mixture was filtered and concentrated in vacuo. The crude N-benzy, N-methyl amino alcohol was purified via column chromatography on silica gel (60-230 mesh) eluted with 15% Ethyl acetate in hexanes to afford pure diakylated amino alcohol ($154.4 \mathrm{mg}, 60 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.18(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{br}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H})$,
3.65-3.76 (m, 2H), $3.90(\mathrm{dd}, J=9.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=9.9,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-$ $7.46(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 36.8(\mathrm{q}), 58.5(\mathrm{t}), 60.7(\mathrm{t}), 68.1(\mathrm{~d}), 127.1$ (d), 128.0 (d), 128.3 (d), 128.4 (d), 128.9 (d), 129.1 (d), 135.3 (s), 138.9 (s).
$[\alpha]^{26}{ }_{D}=+7.6\left(c=1.0 \mathrm{CHCl}_{3}\right)$.

2-(Dibenzylamino)-5-phenylpentan-1-ol (8h). To a solution of $\mathbf{1 5 h}$ ($200 \mathrm{mg}, 1.1 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(339 \mathrm{mg}, 2.46 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of benzyl bromide ($420 \mathrm{mg}, 2.5 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ over 20 min . After the work-up, the residue was purified via chromatography on silica gel (60-230 mesh) eluted with 5% ethyl acetate in hexanes to afford $\mathbf{8 h}(400 \mathrm{mg}, 100 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 1.29-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.83(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=7.5,7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.84-2.88(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.50-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=$ $13.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.37(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 24.7(\mathrm{t}), 28.8(\mathrm{t}), 36.1$ (t), 53.3 (t$), 59.1$ (d), 61.0 (t$), 126.0$ (d), 127.3 (d), 128.4 (d), 128.5 (d), 128.6 (d), 128.8 (d), 129.1 (d), 139.3 (s), 142.0 (s). HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ 360.2322. Found: $[\mathrm{M}+\mathrm{H}]^{+} m / z 360.2350$.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of THIQ analogues 5

(R)-5a

(R)-5b

(R)-5c

(R)-5d

(R) -5 g

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of THIQs 7

(R)-7b

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of substituted $\boldsymbol{\beta}$-haloamines $\mathbf{1 , 2 , 3 , 1 0}$, and 11

(R)-1d

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of Aziridinium ions 9

(S)-9ab

(S)-9ba

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\boldsymbol{\beta}$-amino alcohols 8

(S)-8f

Chiral HPLC chromatograms of THIQ analogues 5

(R)-5a
(Table 1, entry 1, temp: $0^{\circ} \mathrm{C}, 71 \%$ ee)

(Table 1, entry 2, temp: $-70{ }^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}, \mathbf{7 9 \%}$ ee)

(Table 1, entry 3, temp: $-2{ }^{\circ} \mathrm{C}, \mathbf{7 0 \%}$ ee)

(Table 1, entry 4, temp: $0^{\circ} \mathrm{C}, 63 \%$ ee)

(Table 1, entry 5 , temp: $0^{\circ} \mathrm{C}, 61 \%$ ee)

Peak \#	RetTime [min]	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	2.331	MM	0.0835	948.00537	189.20534	19.2935
2	3.011	MM	0.1506	3965.59424	438.92996	80.7065

(Table 1, entry 7, temp: $0^{\circ} \mathrm{C}$ to reflux, $\mathbf{9 7 . 0 \%}$ ee)

Catalyst effect on the synthesis of (\mathbf{R})-5a (Table 2)

(R)-5a
(Table 2, entry 2, $\mathrm{FeBr}_{3}, \mathbf{8 3 \%}$ ee)

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	2.345		0.0849	342.76675	67.27968	8.3632
2	3.063	MM	0.1598	3755.74707	391.77582	91.6368

(Table 2, entry 3, $\mathbf{I n C l}_{3}, \mathbf{7 7 \%}$ ee)

(Table 2, entry $\mathbf{4}, \mathrm{TiCl}_{4}, \mathbf{8 1 \%} \mathbf{e e}$)

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	2.473	MM	0.0763	95.27595	20.81837	9.5955
2	3.046		0.1193	897.64337	125.40724	90.4045

(Table 2, entry $\mathbf{5}, \mathrm{SnCl}_{4}, \mathbf{8 1 \%}$ ee)

Effect of catalyst on the synthesis of (S)-5b (Table 2)

(S)-5b
(Table 2, entry 7, $\mathrm{FeBr}_{3}, \mathbf{8 5 \%}$ ee)

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	2.120		0.0635	4105.35010	1078.04407	92.3269
2	2.674	MM	0.0835	341.18890	68.13349	7.6731

(Table 2, entry $\mathbf{8}, \mathbf{I n C l}_{\mathbf{3}}, \mathbf{9 7 \%} \mathbf{e e}$)

Effect of solvent on the synthesis of (R)-5a (Table 3)

(R)-5a
(Table 3, entry 2, Benzene, 59\% ee)

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~S}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	2.312		0.1117	279.83545	41.76924	20.5402
2	3.020	MM	0.2266	1082.54529	79.62730	79.4598

(Table 3, entry 3, p-xylene, 69% ee)

(Table 3, entry 4, ($\left.\mathbf{C H}_{2} \mathrm{Cl}_{2}\right)_{2}, \mathbf{7 8 \%}$ ee)

(Table 3, entry 5, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{7 5 \%}$ ee)

(Table 3, entry 6, $\mathrm{CHCl}_{3}, 62 \%$ ee)

Solvent effect on the synthesis of (S)-5b (Table 3)

(S)-5b
(Table 3, entry 11, Benzene, >99\% ee)

(Table 3, entry 12, p-xylene, 98.3% ee)

Table 4. Substrate scope

(R)-5a
(Table 4, entry 1, 71% ee)

(S)-5a

(76\% ee)

(R)-5b
(Table 4, entry 2, 97.0\% ee)

(S)-5b
(96.9\% ee)

(rac)-5b

$t_{\mathrm{R}}=2.2 \mathrm{~min}(\mathrm{~S}$-isomer $), 2.7 \mathrm{~min}(\mathrm{R}$-isomer $)$

(R)-5c
(Table 4, entry 3, >99\% ee)

(S)-5c
(>99\% ее)

$t_{\mathrm{R}}=2.1$ (S-isomer), $t_{\mathrm{R}}=2.4$ (R-isomer)

(R)-5d
(Table 4, entry 4, $>\mathbf{9 9 \%}$ ee)

(S)-5d
(>99\% ee)

Chiral HPLC of a mixture of (R)-5d and (S)-5d (co-injection of the R and S isomer)

DAD1 C, Sig=230,16 Ref=360,100 (CYW 020113-1 $1004-0801 . D$)

$t_{\mathrm{R}}=6.1 \mathrm{~min}(\mathrm{R}$-isomer $), 6.7 \mathrm{~min}(\mathrm{~S}$-isomer $)$

(R)-5e
(Table 4, entry 5, 78\% ee)

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	4.516	BV	0.1286	138.01517	15.40079	11.0906
2	4.724		0.1063	1106.42126	156.92093	88.9094

(S)-5e
(86\% ee)

Chiral HPLC of a mixture of (R)-5e and (S)-5e (co-injection of the R and S isomer)

(R)-5f
(Table 4, entry 6, $\mathbf{1 8 . 6 \%}$ ee)

(46.9\% ee)

Peak \#	```RetTime Type [min]```	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area $\%$
1	3.834 MM	0.2555	586.58435	38.26030	26.5629
2	4.601 MM	0.5578	1621.70105	48.45588	73.4371

(Table 4, entry 7, 2.1% ee)

Reference

1. Philippe, N.; Levacher, V.; Dupas, G.; Quéguiner, G.; Bourguignon, J. Org. Lett. 2000, 2, 2185.
2. Kihara, M.; Ikeuchi, M.; Adachi, S.; Nagao, Y.; Moritoki, H.; Yamaguchi, M, Taira, Z. Chem. Pharm. Bull. 1995, 43, 1543.
3. Pedrosa, R.; Andrés, C.; Iglesias, J. M.; Obeso, M. A. Tetrahedron 2001, 57, 4005.
4. Schwerdtfeger, J.; Kolczewski, S.; Weber, B.; Frohlich, R.; Hoppe, D. Synthesis 1999, 9, 1573. (not clear)
5. Metro, T-X.; Appenzeller, J.; Pardo, D. G.; Cossy, J. Org. Lett. 2006, 8, 3509.
6. Meguro, M.; Asao, N.; Yamamoto, Y. J. Chem. Soc., Perkin Trans. I 1994, 2597
7. Dakanali, M.; Tsikalas, G. K.; Krautscheid, H.; Katerinopoulos, H. E. Tetrahedron Letts. 2008, 49, 1648.
8. A. J. M. van Beijnen, R. J. M. Nolte, A. J. Naaktgeboren, J. W. Zwikker, W. Drenth,
A. M. F. Hezemans. Macromolecules. 1983, 16, 1679.
9. Nagle, A. S.; Salvatore, R. N.; Chong, B.D.; Jung, K. W. Tetrahedron Letts. 2000, 41, 3011.
10. Hanessian, S.; Parthasarathy, S.; Mauduit, M.; Payza, K. J. Med. Chem. 2003, 46, 34
11. Gmeiner, P.; Kaertner, A. Synthesis 1995, $1,83$.
12. Jurczak, J.; Gryko, D.; Kobrzycka, E.; Gruza, H.; Prokopowiczit, P Tetrahedron. 1998, 54, 6051.
13. Ranganathan, R. S.; Pillai, R. K.; Raju, N.; Fan, H.; Nguyen, H.; Tweedle, M. F.; Desreux, J. F.; Jacques, V. Inorg. Chem. 2002, 41, 6846.
14. Wu, H-F.; Lin, W-B.; Xia, L-Z.; Luo, Y-Z.; Chen, X-Z.; Li, G-Y.; Zhang, G-L.; Pan, X-F. Helv. Chim. Acta. 2009, 92, 677.
15. Linzaga, I.; Escalante, J.; Munoz, M.; Juaristi, E. Tetrahedron 2002, 58, 8973
