
Time resolved THz spectroscopy 
 
Our TRTS measurements were done in a traditional transmission configuration, using an 
optical pump - THz probe setup driven by a femtosecond Ti:Sapphire mJ-class amplifier 
operating at the central wavelength of 800 nm, and delivering ca. 100 fs – long laser pulses.1  
The samples were optically excited by the fundamental 800 nm pulses or the frequency-
double pulses with 400 nm central wavelength (corresponding to 3.1 eV optical energy), and 
duration of about 100 fs. The precision-delayed single-cycle THz probe pulse, with a total 
duration on the order of 1 ps, was generated by the optical rectification of 800 nm pulses in a 
<110> ZnTe crystal.1 This probe allowed for accurate spectroscopy in the range of ca. 0.3 – 
1.6 THz.  The divergent THz probe was focused into the sample by a pair of off-axis 
parabolic mirrors, and subsequently collimated and refocused by another pair of parabolic 
mirrors onto a second <110> ZnTe crystal. Here the transmitted THz waveforms were 
measured in the time domain as the temporal evolution of their electric field, using free-space 
electro-optic sampling, through the polarization rotation of a third, precision-delayed 
ultrashort 800 nm gating pulse. By varying this gating pulse delay, the entire transmitted THz 
probe pulse could be mapped out in time. The experiment was repeated as a function of 
pump-probe delay, which allowed us to measure the temporal evolution of the THz –probed 
conductivity spectrum of the photoexcited sample at different times after photoexcitation. 
The data analysis was performed in the frequency domain via Fourier transforms of the 
measured time traces, see below. 
 
Extraction of the conductivity 
 
     We model in frequency the domain the propagation of the THz probe through an air phase 
of (complex) refractive index 1n  followed by a second phase of refractive index 2n  and 
thickness l2, which can be either a cuvette window or another air phase depending on the 
sample, then the sample of thickness d and refractive index 3n  when unexcited, and *

3n  when 
photoexcited, then through another window (or substrate) of index 𝑛4 and thickness 𝑙4 into 
air again. For the transmission through the unexcited and excited sample respectively, we get: 
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so that 
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T0 is the THz field in the absence of a sample, ω is the angular frequency of the probe (THz) 
field, c is the speed of light t and t* are the interfacial Fresnel transmission coefficients, and ρ 
and ρ* accounts for multiple reflections within a given region. This correction is necessary 
when the sample is thin enough that the reflected THz waveforms overlap in time with the 
transmitted as is the case for the film samples. For the samples dispersed in solvent the 
optical path length in medium 3 is long enough (1 mm) that the reflected waveforms can be 
filtered out temporally, and the 𝜌 factors are not included in the analysis. The transmission 
and reflection factors are given by:2 
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Experimentally we measure in the time domain the THz field transmitted through the 

unexcited sample )(tT meas
unexc , and the photoinduced change in the transmitted field )(tT meas

exc∆ . 
By Fourier transformation we obtain the frequency dependent waveforms and calculate the 
ratio 
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By numerically minimizing the difference between meas
unexc

meas
exc

T
T  and calc

unexc

calc
exc

T
T , we can extract the 

photoinduced change in complex conductivity n∆ . 
From the corresponding dielectric functions 2

3)(n=ε  and 2
3

2*
3

* )()( nnn ∆+==ε , the 
complex photoconductivity can now be found: 
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where ε0 is the vacuum permittivity. 
The parameters used in our analysis are 𝑛2 = 1 for air or 𝑛2 = 2.157 for the quartz 

windows, 5.13 =n (for TCB), 2.1574 =n  and 1=d mm in the case of the cuvette or 10=d  
µm in the case of a film. 



 

Directionally averaged c parameter 

 

 
Figure 1 one-dimensional conductor and THz field in spherical coordinate system. 

 

The c parameter in the Drude-Smith model denotes the persistence of momentum in a 

scattering event such that c = 0 describes fully momentum randomizing scattering and c = -1 

describes complete backscattering. We let the polarization of the THz probe field be parallel 

to the polar axis in a spherical coordinate system and consider an infinite one-dimensional 

conductor with arbitrary orientation characterized by polar angle θ and azimuthal angle ϕ, see 

Figure 1. Taking the component parallel to the THz field to yield c = 0, and the perpendicular 

component to yield c = -1, we get the c value for a single conductor 

 

𝐶 = − sin𝜃 

(for 0 < θ < π). 

 

In 3 dimensions the directionally averaged c value can now be found by integrating over all 

directions and dividing out the angles, utilizing the differential solid angle dΩ = sinθ dθ dϕ: 
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For a conductors in a 2 dimensional plane which contains the THz polarization direction we 

simply integrate over the angle θ. 
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