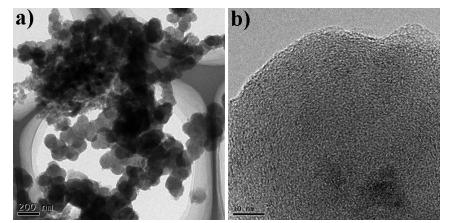
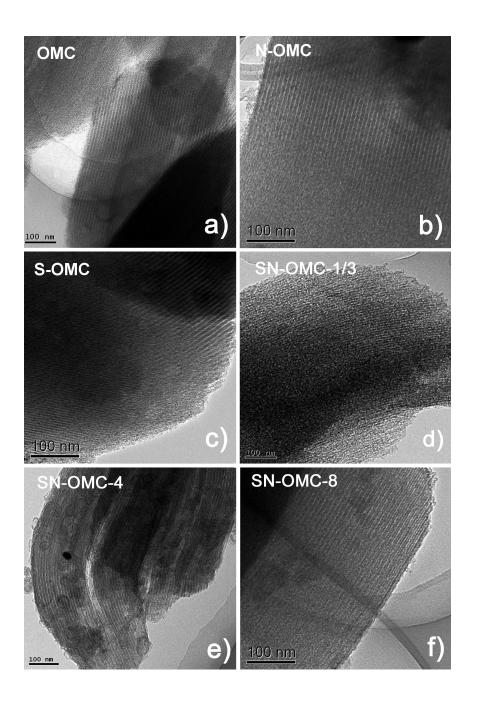

Supporting Information

A Sulfur- and Nitrogen-Doped, Ferrocene-Derived Mesoporous Carbons with Efficient Electrochemical Reduction of Oxygen

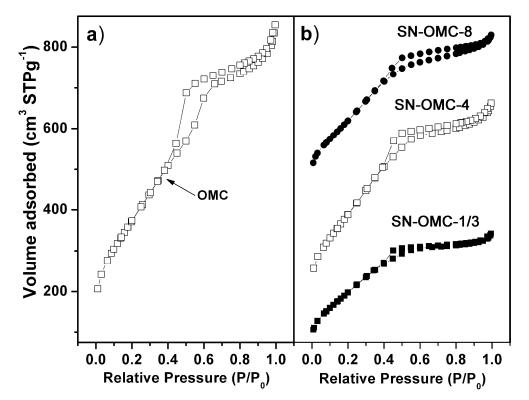
Jiaoxing Xu,^{1,2} Yi Zhao,^{1,2} Cai Shen³ and Lunhui Guan^{*1,2}

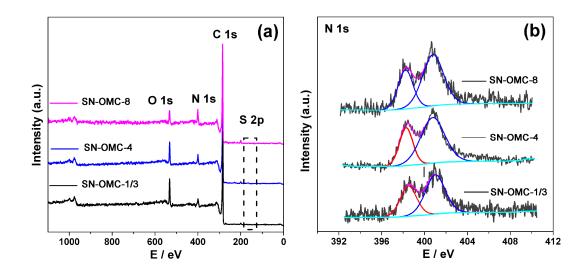
 State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, YangQiao West Road 155#, Fuzhou, Fujian 350002, P.R. China.
Key Laboratory of design and assembly of functional nanostructures, Chinese A cademy of Sciences.
Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 615201, China.


> Fax: 86-591-8379 2835; Tel: 86-591-8379 2835 E-mail: <u>guanlh@fjirsm.ac.cn</u>


1. A schematic drawing of CVD reaction system

Scheme S1. Schematic drawings of the CVD reaction system equipped with a ferrocene sublimation-vapor generator (dashed-line section)


2. Additional experimental data


Figure S1. a) TEM image and b) HR-TEM image of the oligoporous SN-C prepared in template-free CVD condition.

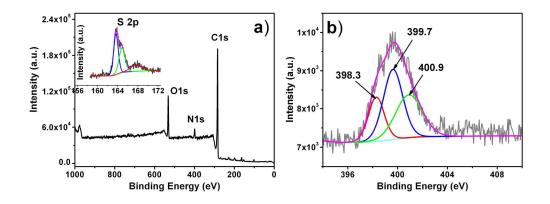
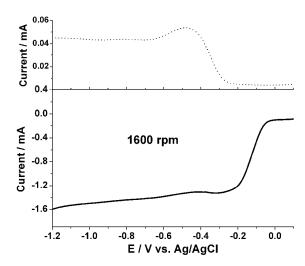

Figure S2. Typical TEM images of a) undoped OMC, b) N-OMC, c) S-OMC, d) SN-OMC-1/3, e) SN-OMC-4, and f) SN-OMC-8.

Figure S3. N₂-sorption isotherm curves of a) OMC for CVD-growth of 4 h and b) the SN-OMC-1/3, SN-OMC-4 and SN-OMC-8. The isotherms of SN-OMC-4 and SN-OMC-8 were offset vertically by 100 and 400 cm³g⁻¹, respectively.

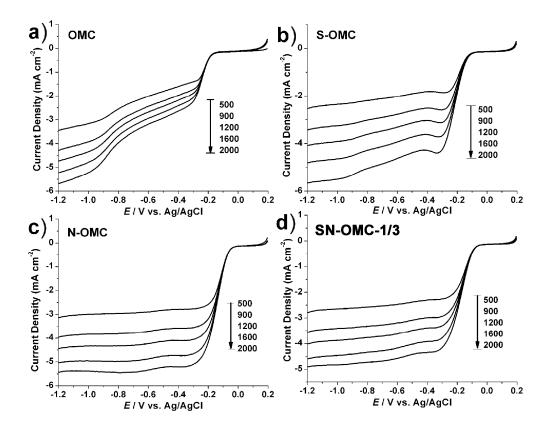
Figure S4. a) XPS survey spectra and b) high-resolution N1s spectra for SN-OMC-1/3, SN-OMC-4 and SN-OMC-8 samples: the black and purple lines are the raw and fitted spectra, respectively; the red and blue lines correspond to pyridinic-N (398.1 eV) and pyrrolic/graphitic-N (400.8 eV), respectively according to reference.²

Figure S5. a) XPS survey spectrum of SN-C, the inset shows the corresponding S 2p spectrum. b) High resolution N 1s spectrum: the grey and purple lines are the raw and fitted spectra; the red, blue and green lines correspond to pyridinic-N (398.3 eV) and pyrrolic-N (399.7 eV) and graphitic-N (400.9 eV), respectively.

Table S1. Physicochemical properties of OMC, S-OMC, N-OMC, SN-C, SN-OMC-4 and SN-OMC-16 samples.


Catalyst	SA ^{a)}	$PV^{b)}$	PD ^{c)}	$At\%^{d}$ $At\%^{d}$ $At\%^{d}$		At%	At% ^{d)} N	
	$[m^2 \cdot g^{-1}]$	$[\mathrm{cm}^3 \cdot \mathrm{g}^{-1}]$	[nm]	С	0	S	<i>N</i> -1 ^{e)}	<i>N</i> -2 ^{f)}
OMC	1390	1.32	3.9/2.4	88.5	11.5			
S-OMC	688	0.71	3.5/2.4	89.8	9.2	1.0		
N-OMC	556	0.5	3.5/2.4	81.1	15.4		2.8	3.4
SN-C				80.7	13.6	1.85	0.83	2.96
SN-OMC-16	680	0.70	3.2	74.8	4.9	2.1	4.6	12.75

^{a)} Specific surface area from multiple BET method; ^{b)} Total pore volume at P/P₀ = 0.99; ^{c)} Average pore diameter, estimated using the desorption branch of the isotherm and the Barrett–Joyner–Halenda formula; ^{d)} Atomic ratio data from XPS analyses; ^{e)} Pyridinc-N, at ~398.3 eV; ^{f)} Pyrrolic-/graphitic-N, at ~400~402 eV according to reference.²


Table S2. The electrochemical activity of OMC, SN-C, SN-OMC-4 and SN-OMC-16 sample for ORR.

Catalyst	$E_{\text{onset}} / E_{1/2}^{a}$ [mV/mV]	$J_{\kappa}^{b)}$ [mA·cm ⁻²]	n ^{c)}
OMC	-186/-229	5.4	2.4
S-OMC	-136/-203	14.2	2.1
N-OMC	-75/-138	26.0	3.8
SN-C	-280/-350	2.4	2.3
SN-OMC-16	-60/-144	22.5	4.0

a) Onset potential (E_{onset}) and half-wave potential ($E_{1/2}$), estimated LSV measurement curves; b) Kinetically limiting diffusion current density at -0.3 V vs. Ag/AgCl; c) The number of electron-transfer.

Figure S6. Polarization curves obtained with a rotating disk-ring electrode for ORR on SN-OMC-4 catalyst (0.306 mg/cm²) in 0.1m NaOH. Rotation rates are indicated in the graph; sweep rate 10 mVs⁻¹; ring potential +500 mV vs. Ag/AgCl; ring and disk areas are 0.2467 cm² and 0.1867 cm², respectively; collection efficiency 37 %.

Figure S7. Linear sweep voltammograms of a) OMC, b) S-OMC, c) N-OMC, and d) dual-doped SN-OMC-1/3 on GC electrodes in O_2 -saturated 0.1 M NaOH solution at different ratation speeds with a scan rate of 10 mV·S⁻¹.

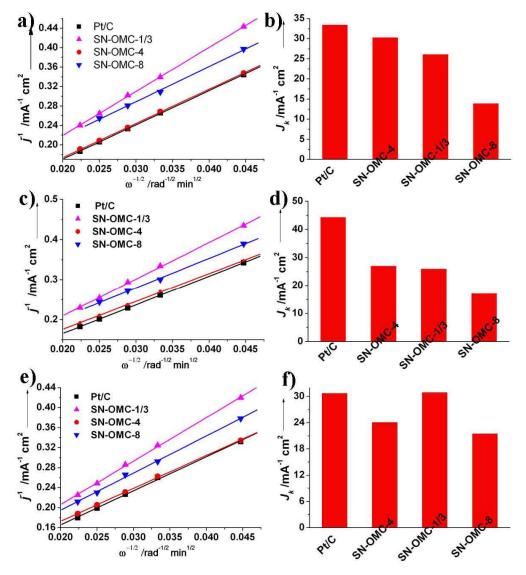


Figure S8. K-L plots and the corresponding kinetic limiting currents of SN-OMC-1/3, SN-OMC-4, SN-OMC-8 as well as Vulcan Pt/C obtained at different potentials: a, b) -0.3 V; c, d) -0.4 V; e,f) -0.5 V.

3. Koutechy-Levich equations and the transfer electron number calcualtions

The transfer electron number per oxygen molecule involved in the oxygen reduction at SN-OMCs electrodes was determined on the basis of the Koutechy-Levich equation^{1,2} given below:

 $I^{-1} = I_k^{-1} + (0.62nFCD^{2/3}\upsilon^{-1/6}\omega^{1/2})^{-1}$

where I_k is the kinetics current density, I is the measured current density of the ORR, n represents the number of electrons transferred per oxygen molecule, F is the Faraday constant (F=96485 C·mol⁻¹), C is the bulk concentration of O₂ (= 1.2×10^{-3} mol· L⁻¹), D is the diffusion coefficient of O₂ in the KOH electrolyte (= $1.9*10^{-5}$ cm² S⁻¹), υ is the kinetic viscosity of the electrolyte (=0.01 cm₂ S⁻¹), and ω is the angular velocity of the the disk ($\omega = 2\pi N$, N is the linear rotation speed).

Reference

- Chen, W. & Chen, S. W. Oxygen Electroreduction Catalyzed by Gold Nanoclusters: Strong Core Size Effects. *Angew Chem Int Edit* 48, 4386-4389 (2009).
- Xu, J. X. Dong, G. F. Jin, C. H. Huang, M. H. & Guan, L.H. Sulfur and Nitrogen Co-Doped, Few-Layered Graphene Oxide As a Highly Efficient Electrocatalyst for the Oxygen Redution Reaction. *ChemSusChem* 6, 493-499 (2013).