Supporting information ## Inkjet-Printing-Based Soft-Etching Technique for High-Speed Polymer Ambipolar Integrated Circuits Dongyoon Khim,[‡] Kang-Jun Baeg,[§] Minji Kang,[‡] Seung-Hoon Lee,[‡] Nam-Koo Kim, [‡] Jihong Kim,[‡] Geon-Woong Lee,[§] Chuan Liu, [†] Dong-Yu Kim,*[‡] and Yong-Young Noh*,[†] [†]Department of Energy and Materials Engineering, Dongguk University, 26 Pil-dong, 3 ga, Jung-gu, Seoul 100-715, Republic of Korea [‡]Heeger Center for Advanced Materials, School of Materials Science and Engineering, Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea Nano Carbon Materials Research Group, Korea Electrotechnology Research Institute (KERI), 12, Bulmosan-ro 10beon-gil, Seongsan-gu, Changwon, Gyeongsangnam-do 642-120, Republic of Korea ## **CORRESPONDING AUTHORS** * E-mail: yynoh@dongguk.edu (Y.-Y. Noh) * E-mail: kimdy@gist.ac.kr (D.-Y. Kim) **Figure S1**. (a) AFM image of soft-etched PS area on P(NDI2OD-T2) layer. (b) Corresponding cross-sectional image. Figure S2. Optical microscope image of a PS soft-etched transistor array on a glass substrate. **Figure S3**. Field-effect mobility for ambipolar P(NDI2OD-T2) semiconductors with various gate dielectric layers. The values of μ_{FET} and V_{Th} were calculated at the saturation regime ($V_d = \pm 30 \text{ V}$) using gradual channel approximation equations (W/L = 1.0 mm/20 μ m).