Supporting Information
 for Asymmetric Substitution at Tetrasubstituted Chiral Carbon: Catalytic Ring-Opening Alkylation of Racemic 2,2-Disubstituted Aziridines with 3-Substituted Oxindoles

Kohsuke Ohmatsu, ${ }^{\dagger}$ Yuichiro Ando, ${ }^{\dagger}$ and Takashi Ooi*, ${ }^{\dagger}, \star$
${ }^{\dagger}$ Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan.
${ }^{\dagger}$ CREST, Japan Science and Technology Agency (JST), Nagoya, 464-8603, Japan. tooi@apchem.nagoya-u.ac.jp

General Information: Infrared spectra were recorded on a Shimadzu IRAffinity-1 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a JEOL JNM-ECS400 $(400 \mathrm{MHz})$ spectrometer. Chemical shifts are reported in ppm from the solvent resonance $\left(\mathrm{C}_{6} \mathrm{D}_{6} ; 7.16 \mathrm{ppm}\right)$ or the tetramethylsilane $(0.0 \mathrm{ppm})$ resonance as the internal standard $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right.$ and $\left.\mathrm{CDCl}_{3}\right]$. Data are reported as follows: chemical shift, integration, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, sept $=$ septet, $\mathrm{m}=$ multiplet, and $\mathrm{br}=$ broad) and coupling constants (Hz). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL JNM-ECS400 (101 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from the solvent resonance as the internal standard $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO} ; 29.84 \mathrm{ppm}, \mathrm{CDCl}_{3} ; 77.16 \mathrm{ppm}\right.$, and $\left.\mathrm{C}_{6} \mathrm{D}_{6} ; 128.06 \mathrm{ppm}\right] .{ }^{19} \mathrm{~F}$ NMR spectra were recorded on a JEOL JNM-ECS400 (376 MHz) spectrometer. Chemical shifts are reported in ppm from benzotrifluoride (-64.0 ppm) resonance as the external standard. Optical rotations were measured on a HORIBA SEPA-500 polarimeter. The high resolution mass spectra were conducted on Thermo Fisher Scientific Exactive. Analytical thin layer chromatography (TLC) was performed on Merck precoated TLC plates (silica gel $60 \mathrm{GF} 254,0.25 \mathrm{~mm}$). Flash column chromatography was performed on PSQ60AB (spherical, av. $55 \mu \mathrm{~m}$; Fuji Silysia Chemical ltd.) and Silica gel 60 (Merck 1.09385.9929, 230-400 mesh). Enantiomeric excesses were determined by HPLC analysis using chiral columns [$\phi 4.6 \mathrm{~mm} \times 250$ mm, DAICEL CHIRALCEL OD-3 (OD3), CHIRALCEL OJ-3 (OJ3), CHIRALCEL OZ-3 (OZ3), CHIRALPAK AD-3 (AD3), CHIRALPAK ID-3 (ID3), and CHIRALPAK IE-3 (IE3)] with hexane (Hex), isopropyl alcohol (IPA) and ethanol (EtOH) as eluent.

All air- and moisture-sensitive reactions were performed under an atmosphere of argon (Ar) in dried glassware. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$, and tetrahydrofuran (THF) were supplied from Kanto Chemical Co., Inc. as "Dehydrated" and further purified by passing through neutral alumina under nitrogen atmosphere. $\quad 1,2,3$-Triazolium salts $\mathbf{1} \cdot \mathbf{X}$ were synthesized by following the literature methods. ${ }^{1}$ Other simple chemicals were purchased and used as such.

[^0]
Additional Experimental Data and Discussion:

(A) Initial Rate Kinetics

General Procedure for Kinetic Experiments:

$[\mathbf{2 b}]=0.2 \mathrm{M},[\mathbf{3 a}]=0.1 \mathrm{M},[\mathbf{1 d} \cdot \mathbf{B r}]=0.005 \mathrm{M},\left[\mathrm{K}_{2} \mathrm{CO}_{3}\right]=0.1 \mathrm{mmol}$, $[$ anisole $]=0.25 \mathrm{M}$.
A solution of $\mathbf{1 d} \cdot \mathbf{B r}(4.76 \mathrm{mg}, 0.005 \mathrm{mmol})$, aziridine $\mathbf{2 b}(63.1 \mathrm{mg}, 0.20 \mathrm{mmol})$, and oxindole $\mathbf{3 a}(24.7 \mathrm{mg}$, $0.10 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ was degassed by alternating vacuum evacuation/Ar backfill. To this solution was added $\mathrm{K}_{2} \mathrm{CO}_{3}(13.8 \mathrm{mg}, 0.10 \mathrm{mmol})$ and the mixture was stirred at room temperature. After stirring for 10,20 , or 30 min , the reaction was quenched by the addition of a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and the extractive work-up was performed with CHCl_{3}. After evaporation to remove solvent, the residue was dissolved into $\mathrm{C}_{6} \mathrm{D}_{6}(1 \mathrm{~mL})$. To this solution was added anisole $(27.2 \mu \mathrm{~L}, 0.25 \mathrm{mmol})$ as an internal standard. The sample thus prepared was analyzed by ${ }^{1} \mathrm{H}$ NMR at room temperature. The yield of product $\mathbf{4 b}$ was measured by comparison of the integrated area of the methyl protons of anisole.

Note: Taking out the aliquots of the reaction mixture from liquid-solid biphasic system to analyze the conversion at the first stage of the reaction (10 min) caused an error of the following reaction rate, probably due to the deviation of the relative amount of $\mathrm{K}_{2} \mathrm{CO}_{3}$ salt. Therefore, we analyzed the conversion at recorded times by quenching each reaction experiments. The reproducibility of data was confirmed by performing all experiments twice.

Kinetics on catalyst $\mathbf{1 d} \cdot \mathbf{B r}$

$[\mathbf{2 b}]=0.2 \mathrm{M},[\mathbf{3 a}]=0.1 \mathrm{M},[\mathbf{1 d} \cdot \mathbf{B r}]=0.003 \sim 0.007 \mathrm{M},\left[\mathrm{K}_{2} \mathrm{CO}_{3}\right]=0.1 \mathrm{mmol}$.
(a)

(b)

initial rate
0.003 M: $0.0088 \mathrm{Ms}^{-1}$
0.005 M: $0.0135 \mathrm{Ms}^{-1}$
0.007 M: $0.0186 \mathrm{Ms}^{-1}$

Figure S1. (a) Initial rate kinetics (catalyst) (b) Kinetics on catalyst 1d•Br
Pseudo-first-order dependence on the concentration of catalyst $\mathbf{1 d} \cdot \mathbf{B r}$

Kinetics on aziridine 2b:

$[\mathbf{2 b}]=0.2 \sim 0.3 \mathrm{M},[\mathbf{3 a}]=0.1 \mathrm{M},[\mathbf{1 d} \cdot \mathbf{B r}]=0.005 \mathrm{M},\left[\mathrm{K}_{2} \mathrm{CO}_{3}\right]=0.1 \mathrm{mmol}$.

initial rate
$0.20 \mathrm{M}: 0.0135 \mathrm{Ms}^{-1}$
$0.25 \mathrm{M}: 0.0130 \mathrm{Ms}^{-1}$
$0.30 \mathrm{M}: 0.0133 \mathrm{Ms}^{-1}$

Figure S2. (a) Initial rate kinetics (aziridine) (b) Kinetics on aziridine 2b
Zero-order dependence on the concentration of aziridine $\mathbf{2 b}$

Kinetics on oxindole 3a:

$[\mathbf{2 b}]=0.2 \mathrm{M},[\mathbf{3 a}]=0.1 \sim 0.2 \mathrm{M},[\mathbf{1 d} \cdot \mathbf{B r}]=0.005 \mathrm{M},\left[\mathrm{K}_{2} \mathrm{CO}_{3}\right]=0.1 \mathrm{mmol}$.

initial rate
$0.10 \mathrm{M}: 0.0135 \mathrm{Ms}^{-1}$
$0.15 \mathrm{M}: 0.0135 \mathrm{Ms}^{-1}$
$0.20 \mathrm{M}: 0.0137 \mathrm{Ms}^{-1}$

Figure S3. (a) Initial rate kinetics (oxindole) (b) Kinetics on oxindole 3a
Zero-order dependence on the concentration of oxindole 3a

Kinetics on $\mathrm{K}_{2} \mathrm{CO}_{3}$:

$[\mathbf{2 b}]=0.2 \mathrm{M},[3 \mathrm{a}]=0.1 \mathrm{M}$,
$[\mathbf{1 d} \cdot \mathbf{B r}]=0.005 \mathrm{M}$
, $\left[\mathrm{K}_{2} \mathrm{CO}_{3}\right]=0.1 \sim 0.15 \mathrm{mmol}$.
(a)

b)

initial rate
$0.10 \mathrm{mmol}: 0.0135 \mathrm{Ms}^{-1}$
0.125 mmol: 0.0176
Ms^{-1}
$0.15 \mathrm{mmol}: 0.0205 \mathrm{Ms}^{-1}$

Figure S4. (a) Initial rate kinetics (base) (b) Kinetics on $\mathrm{K}_{2} \mathrm{CO}_{3}$
First-order dependence on the amount of $\mathrm{K}_{2} \mathrm{CO}_{3}$
These definitive data clearly indicated that the rate-limiting step is not carbon-carbon bond formation between oxindole-derived chiral triazolium enolate with aziridine but ion-exchange process for the generation of the requisite enolate.
(B) Nonlinear Effect

Table S1. Asymmetric Amplification
Figure S5. Nonlinear effect

The data of Table S1 and the graph of Figure S5 demonstrated a pronounced positive nonlinear effect, which suggested that more than one catalyst is involved in the stereo-determining step.

Experimental Section:

Characterization of $\mathbf{1 , 2 , 3 - T r i a z o l i u m ~ S a l t ~} \mathbf{1} \cdot \mathbf{B r}$

$\mathbf{1 a} \cdot \mathbf{B r}$: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.2(1 \mathrm{H}$, brs), $8.65(1 \mathrm{H}$, brs), $8.20(2 \mathrm{H}, \mathrm{d}, J=$ $6.9 \mathrm{~Hz}), 7.87-7.82(3 \mathrm{H}, \mathrm{m}), 7.64(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.45-7.29(8 \mathrm{H}, \mathrm{m}), 7.27-7.22(2 \mathrm{H}$, m), 7.20-7.14 ($4 \mathrm{H}, \mathrm{m}$), 7.03-6.97 ($4 \mathrm{H}, \mathrm{m}$), 6.91-6.84 ($4 \mathrm{H}, \mathrm{m}$), $6.55(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz})$, $4.85(2 \mathrm{H}, \mathrm{s}), 1.63(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4,142.9$, $140.3,139.9,138.5,135.3,133.7,132.9,132.4,132.0,131.9,131.1,130.2,129.9$, $129.4,129.2,129.0,128.9,128.8,128.5,128.4,128.3,128.2,127.8,127.6,127.2,120.3,69.4,65.9,55.2$, 15.8, two peaks for aromatic carbons were not found probably due to overlapping; IR 3221, 2934, 1672, 1520, 1275, 1148, 746, $702 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{43} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}^{+}\left([\mathrm{M}]^{+}\right)$625.2962. Found 625.2969.; $[\alpha]_{\mathrm{D}}{ }^{22}=$ $-44.3(\mathrm{c}=1.0, \mathrm{MeOH})$.

1b•Br: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.94(1 \mathrm{H}$, brs $), 8.51(1 \mathrm{H}$, brs $), 8.20(2 \mathrm{H}, \mathrm{d}, J=$ $6.2 \mathrm{~Hz}), 7.79(2 \mathrm{H}, \mathrm{brs}), 7.66(2 \mathrm{H}, \mathrm{td}, J=7.7,1.2 \mathrm{~Hz}), 7.51-7.35(9 \mathrm{H}, \mathrm{m}), 7.30-7.15$ $(9 \mathrm{H}, \mathrm{m}), 7.07(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 6.85(2 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 6.64(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz})$, $5.07(2 \mathrm{H}$, brs $), 2.13-2.07(1 \mathrm{H}, \mathrm{m}), 1.90-1.81(1 \mathrm{H}, \mathrm{m}), 1.33-1.25(1 \mathrm{H}, \mathrm{m}), 0.84-0.75(4 \mathrm{H}$, $\mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.9,142.8,140.6,138.6,133.7,133.1,132.4$, $132.2,131.9,130.8,130.6,129.8,129.3,129.2,129.0,128.8,128.7,128.6,128.6,128.4,128.3,128.3,127.8$, 127.7, 127.4, 120.3, 70.4, 69.1, 55.8, 31.9, 19.3, 13.7, three peaks for aromatic carbons were not found probably due to overlapping; IR $3235,2932,1674,1485,1285,1146,748,704 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{45} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}^{+}\left([\mathrm{M}]^{+}\right) 653.3275$. Found 653.3270.; $[\alpha]_{\mathrm{D}}{ }^{22}=-27.7(\mathrm{c}=1.0, \mathrm{MeOH})$.

$\left|\mathrm{Ar}^{1}=4-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right|$

1c•Br: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.92(1 \mathrm{H}, \mathrm{brs}), 8.42(1 \mathrm{H}, \mathrm{brs}), 8.09(2 \mathrm{H}, \mathrm{d}, J=$ $7.3 \mathrm{~Hz}), 7.80(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.70(1 \mathrm{H}, \mathrm{s}), 7.55(2 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 7.48-7.29$ $(15 \mathrm{H}, \mathrm{m}), 7.17(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 7.11(1 \mathrm{H}, \mathrm{brs}), 6.89(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.82(2 \mathrm{H}, \mathrm{d}$, $J=7.6 \mathrm{~Hz}), 5.69(1 \mathrm{H}, \mathrm{brs}), 5.37(1 \mathrm{H}, \mathrm{d}, J=15.3 \mathrm{~Hz}), 2.16-2.10(1 \mathrm{H}, \mathrm{m}), 1.60-1.57$ $(1 \mathrm{H}, \mathrm{m}), 1.25-1.19(1 \mathrm{H}, \mathrm{m}), 0.81-0.73(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.7$, $143.4,141.6,140.0,137.3,137.0,134.5\left(\mathrm{q}, J_{\mathrm{C} . \mathrm{F}}=33.9 \mathrm{~Hz}\right), 134.0,133.5,132.3,132.0$ $\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=32.9 \mathrm{~Hz}\right), 129.7,129.5,129.2,129.1,128.8,128.7,128.5,128.4,128.3,128.2,128.0,128.0,127.4$ $(\mathrm{q}, J=2.9 \mathrm{~Hz}), 126.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.9 \mathrm{~Hz}\right), 125.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right), 125.5\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=276 \mathrm{~Hz}\right), 123.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=277\right.$ Hz), 69.7, 68.7, 56.1, 32.7, 19.4, 13.6, three peaks for aromatic carbons were not found probably due to overlapping; IR 3026, 2934, 1674, 1485, 1325, 1130, $752,706 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{47} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{OF}_{6}{ }^{+}$ $\left([\mathrm{M}]^{+}\right) 789.3023$. Found 789.3015.; $[\alpha]_{\mathrm{D}}{ }^{22}=-25.1(\mathrm{c}=0.4, \mathrm{MeOH})$.

$\mathbf{1 d} \cdot \mathbf{B r}$: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.37(1 \mathrm{H}, \mathrm{brs}), 8.18(1 \mathrm{H}, \mathrm{brs}), 8.04(2 \mathrm{H}, \mathrm{d}, J=$ $8.0 \mathrm{~Hz}), 7.79(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.73(1 \mathrm{H}, \mathrm{s}), 7.56(2 \mathrm{H}, \mathrm{brs}), 7.48(2 \mathrm{H}, \mathrm{d}, J=8.2$ $\mathrm{Hz}), 7.36-7.32(4 \mathrm{H}, \mathrm{m}), 7.24-7.14(9 \mathrm{H}, \mathrm{m}), 6.88-6.83(4 \mathrm{H}, \mathrm{m}), 5.49(1 \mathrm{H}$, brs $), 5.22$ $(1 \mathrm{H}, \mathrm{d}, J=15.3 \mathrm{~Hz}), 2.34,(3 \mathrm{H}, \mathrm{s}), 2.05-1.96(1 \mathrm{H}, \mathrm{m}), 1.62(1 \mathrm{H}, \mathrm{br}), 1.24(1 \mathrm{H}, \mathrm{br})$, $0.82-0.70(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.6,143.6,143.1,140.1,139.5$, $137.2,134.8,134.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=33.9 \mathrm{~Hz}\right), 134.5,134.1,133.6,133.0,132.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $32.9 \mathrm{~Hz}), 130.9,130.3,130.1,129.6,129.4,129.4,129.3,128.8,128.6,128.3,128.0$, $127.6,126.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.9 \mathrm{~Hz}\right), 125.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.9 \mathrm{~Hz}\right), 123.5,123.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=278 \mathrm{~Hz}\right), 123.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=278\right.$ $\mathrm{Hz}), 69.6,68.2,55.9,32.2,21.6,19.3,13.6$, one peak for aromatic carbon was not found probably due to overlapping; IR 3026, 2934, 2361, 1674, 1325, 1132, $752 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{48} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{OF}_{6} \mathrm{Cl}_{2}{ }^{+}$ $\left([\mathrm{M}]^{+}\right) 871.2400$. Found 871.2390.; $[\alpha]_{\mathrm{D}}{ }^{22}=-17.2(\mathrm{c}=1.0, \mathrm{MeOH})$.

Preparation and Characterization of 2,2-Disubstituted Aziridines 2:

To a solution of $\mathrm{I}_{2}(5.08 \mathrm{~g}, 20 \mathrm{mmol})$ and Brij $35(0.60 \mathrm{~g})$ in NH_{3} aq. (30 mL) was added α-methylstyrene $(1.30 \mathrm{~mL}, 10 \mathrm{mmol})$, and the reaction mixture was stirred for 2 h at room temperature. The resulting solution was diluted with a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and EtOAc . The extractive work-up was performed with EtOAc. After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtration, and removal of solvent, the resulting crude residue was purified by column chromatography ($\mathrm{Hex} / \mathrm{EtOAc}=1: 1$ as eluent) to afford $\mathbf{S 1}(915 \mathrm{mg}, 6.9$ mmol, 69% yield) as a yellow liquid. \quad S1: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 7.31(2 \mathrm{H}$, $\mathrm{t}, J=7.3 \mathrm{~Hz}), 7.22(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.94(2 \mathrm{H}, \mathrm{s}), 1.60(3 \mathrm{H}, \mathrm{s}), 0.63(1 \mathrm{H}, \mathrm{br})$.

To a solution of $\mathbf{S 1}(915 \mathrm{mg}, 6.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ were added 2-mesitylenesulfonyl chloride (1.51 $\mathrm{g}, 6.9 \mathrm{mmol})$, and N, N-dimethyl-4-aminopyridine ($0.84 \mathrm{~g}, 6.9 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the whole reaction mixture was stirred for 3 h at the same temperature. The mixture was then diluted with water and the extractive work-up was conducted with CHCl_{3}. The organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered , and concentrated. Purification of the crude residue by column chromatography on silica gel (Hex/EtOAc $=30: 1$ as eluent) gave $\mathbf{2 b}$ ($631 \mathrm{mg}, 2.0 \mathrm{mmol}, 29 \%$ yield) as a white solid.

2b: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 7.33(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 7.28(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz})$, $6.96(2 \mathrm{H}, \mathrm{s}), 3.02(1 \mathrm{H}, \mathrm{s}), 2.71(6 \mathrm{H}, \mathrm{s}), 2.54(1 \mathrm{H}, \mathrm{s}), 2.30(3 \mathrm{H}, \mathrm{s}), 2.06(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.8,141.3,139.7,135.1,131.9,128.5,127.8,126.6,51.1,42.0,23.3,21.1,21.0$; IR 3152, 2938, 1314, 1121, 1105, 1024, 862, 800, $775 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 316.1366$. Found 316.1366.; HPLC conditions for the recovered aziridine 2b (Scheme 1), OZ3, H/IPA $=10: 1$, flow rate $=0.5$ $\mathrm{mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 13.2 \min ($ major $), 14.5 \min ($ minor $) ;[\alpha]_{\mathrm{D}}{ }^{22}=-22.0\left(\mathrm{c}=3.5, \mathrm{CHCl}_{3}, 76 \%\right.$ ee $)$.

2c: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21(1 \mathrm{H}, \mathrm{td}, J=7.1,1.4 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{s}), 7.17$ $(1 \mathrm{H}, \mathrm{dd}, J=7.11 .4 \mathrm{~Hz}), 7.08(1 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 6.95(2 \mathrm{H}, \mathrm{s}), 2.99(1 \mathrm{H}, \mathrm{s}), 2.71$ $(6 \mathrm{H}, \mathrm{s}), 2.53(1 \mathrm{H}, \mathrm{s}), 2.33(3 \mathrm{H}, \mathrm{s}), 2.30(3 \mathrm{H}, \mathrm{s}), 2.04(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 142.7,141.3,139.8,138.2,135.2,131.9,128.5,128.4,127.4,123.7,51.2$,
41.9, 23.3, 21.6, 21.1, one peak for methyl carbon was not found probably due to overlapping; IR 2940, 2920, 1601, 1452, 1321, 1038, 905, $719 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$330.1522. Found 330.1522 .

2d: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23(1 \mathrm{H}, \mathrm{t}, J=9.4 \mathrm{~Hz}), 6.97(1 \mathrm{H}, \mathrm{dd}, J=9.4,0.9$ $\mathrm{Hz}), 6.96(2 \mathrm{H}, \mathrm{s}), 6.93(1 \mathrm{H}, \mathrm{t}, J=0.9), 6.81(1 \mathrm{H}, \mathrm{dd}, J=9.4,0.9 \mathrm{~Hz}), 3.79(3 \mathrm{H}, \mathrm{s})$, $3.01(1 \mathrm{H}, \mathrm{s}), 2.72(6 \mathrm{H}, \mathrm{s}), 2.51(1 \mathrm{H}, \mathrm{s}), 2.30(3 \mathrm{H}, \mathrm{s}), 2.05(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.7,143.1,142.8,139.8,135.1,131.9,129.6,118.9,113.4,112.3,55.3,51.1,42.0,23.3$, 21.1, 20.9; IR 2967, 2918, 1601, 1315, 1111, 905, $698 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 346.1471. Found 346.1472.

2e: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(1 \mathrm{H}, \mathrm{t}, J=1.4 \mathrm{~Hz}$), $7.30-7.28(3 \mathrm{H}, \mathrm{m}), 6.97$ $(2 \mathrm{H}, \mathrm{s}), 3.01(1 \mathrm{H}, \mathrm{s}), 2.71(6 \mathrm{H}, \mathrm{s}), 2.50(1 \mathrm{H}, \mathrm{s}), 2.31(3 \mathrm{H}, \mathrm{s}), 2.04(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.3,143.0,139.8,134.9,134.4,132.0,129.9,128.0,126.9$, 124.9, 50.1, 42.0, 23.3, 21.1, 20.6; IR 3472, 3148, 1599, 1314, 1130, 1053, $878 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{SCl}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$350.0976. Found 350.0977.

2f: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49(1 \mathrm{H}, \mathrm{t}, J=1.8 \mathrm{~Hz}), 7.40(1 \mathrm{H}, \mathrm{dt}, J=7.8,1.8$ $\mathrm{Hz}), 7.33(1 \mathrm{H}, \mathrm{dt}, J=7.8,1.8 \mathrm{~Hz}), 7.20(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 6.97(2 \mathrm{H}, \mathrm{s}), 3.01(1 \mathrm{H}, \mathrm{s})$, $2.71(6 \mathrm{H}, \mathrm{s}), 2.50(1 \mathrm{H}, \mathrm{s}), 2.31(3 \mathrm{H}, \mathrm{s}), 2.04(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.6,143.0,139.8,134.9,132.0,130.9,130.2,129.9,125.4,122.6,50.1,42.0,23.3,21.2,20.6$; IR 3144, 2943, 1601, 1315, 1144, 876, $683 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{SBr}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$394.0471. Found 394.0472.

2g: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.13(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz})$, $6.95(2 \mathrm{H}, \mathrm{s}), 2.99(1 \mathrm{H}, \mathrm{s}), 2.70(6 \mathrm{H}, \mathrm{s}), 2.53(1 \mathrm{H}, \mathrm{s}), 2.33(3 \mathrm{H}, \mathrm{s}), 2.30(3 \mathrm{H}, \mathrm{s}), 2.03$ ($3 \mathrm{H}, \mathrm{s}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.7,140.0,138.3,137.5,135.2,131.9$, $129.2,126.6,51.0,42.1,23.3,21.2,21.1$, one peak for methyl carbon was not found probably due to overlapping; IR $3028,2938,1603,1319,1157,820,692 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}^{+}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$330.1522. Found 330.1536.

2h

2h: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(2 \mathrm{H}, \mathrm{dd}, J=6.1,2.8 \mathrm{~Hz}), 7.29(2 \mathrm{H}, \mathrm{dd}, J=$ $6.1,2.8 \mathrm{~Hz}), 6.96(2 \mathrm{H}, \mathrm{s}), 3.00(1 \mathrm{H}, \mathrm{s}), 2.70(6 \mathrm{H}, \mathrm{s}), 2.51(1 \mathrm{H}, \mathrm{s}), 2.30(3 \mathrm{H}, \mathrm{s}), 2.03$ $(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.9,139.8,139.7,135.0,133.6,131.9$, 128.7, 128.1, 50.2, 42.0, 23.3, 21.1, 20.8; IR 3159, 2943, 2633, 1317, 1148, 868, $696 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{SCl}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$350.0976. Found 350.0978.

2i: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(2 \mathrm{H}, \mathrm{dd}, J=6.7,1.8 \mathrm{~Hz}), 7.26(2 \mathrm{H}, \mathrm{dd}, J=$ $6.7,1.8 \mathrm{~Hz}), 6.96(2 \mathrm{H}, \mathrm{s}), 3.00(1 \mathrm{H}, \mathrm{s}), 2.70(6 \mathrm{H}, \mathrm{s}), 2.50(1 \mathrm{H}, \mathrm{s}), 2.31(3 \mathrm{H}, \mathrm{s}), 2.03$ $(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.9,140.4,139.7,134.9,131.9,131.6$, $128.4,121.8,50.2,42.0,23.3,21.1,20.7$; IR $3275,2932,1321,1161,1055,872,723 \mathrm{~cm}^{-1} ;$ HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{SBr}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$394.0471. Found 394.0468.

2j: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(2 \mathrm{H}, \mathrm{dt}, J=8.7,1.8 \mathrm{~Hz}), 7.43(2 \mathrm{H}, \mathrm{dt}, J$ $=8.7,1.8 \mathrm{~Hz}), 6.96(2 \mathrm{H}, \mathrm{s}), 3.03(1 \mathrm{H}, \mathrm{s}), 2.71(6 \mathrm{H}, \mathrm{s}), 2.52(1 \mathrm{H}, \mathrm{s}), 2.31(3 \mathrm{H}, \mathrm{s})$, $2.06(3 \mathrm{H}, \mathrm{s}), 1.59(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.5,145.7,143.0$, $139.8,135.0,132.0,131.5,129.7,126.5,81.3,50.5,42.1,28.3,23.3,21.2,20.6$; IR $2976,1721,1452,1300$, 1049, 858, $569 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{NaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$438.1710. Found 438.1710.

2k: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82-7.79(4 \mathrm{H}, \mathrm{m}), 7.51-7.45(3 \mathrm{H}, \mathrm{m}), 6.96(2 \mathrm{H}$, s), $3.09(1 \mathrm{H}, \mathrm{s}), 2.73(6 \mathrm{H}, \mathrm{s}), 2.66(1 \mathrm{H}, \mathrm{s}), 2.30(3 \mathrm{H}, \mathrm{s}), 2.15(3 \mathrm{H}, \mathrm{s}),{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.8,139.8,138.7,135.2,133.1,132.8,131.9,128.4,128.1,127.8$, $126.5,126.4,125.6,124.6,51.2,42.1,23.3,21.2,20.9$; IR 3472, 2932, 2658, 1314, 1130, 935, 854, $696 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$366.1522. Found 366.1523.; HPLC conditions for the recovered aziridine $\mathbf{2 k}$ (Scheme 1), AD3, Hex/IPA $=10: 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 6.9 \mathrm{~min}(S)$, $8.1 \min (R) ;[\alpha]_{\mathrm{D}}{ }^{22}=+11.5\left(\mathrm{c}=1.5, \mathrm{CHCl}_{3}, 76 \%\right.$ ee $)$.

General Procedure for $\mathbf{1 d} \cdot \mathbf{B r}$-Catalyzed Asymmetric Ring-Opening Alkylation of 2,2-Disubstituted Aziridines 2 with Oxindole 3:

A solution of $\mathbf{1 d} \cdot \mathbf{B r}(4.76 \mathrm{mg}, 0.005 \mathrm{mmol})$, aziridine $\mathbf{2 b}(63.1 \mathrm{mg}, 0.20 \mathrm{mmol})$, and oxindole $\mathbf{3 a}(24.7 \mathrm{mg}$, $0.10 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ was degassed by alternating vacuum evacuation/Ar backfill. To this solution was added $\mathrm{K}_{2} \mathrm{CO}_{3}(13.8 \mathrm{mg}, 0.10 \mathrm{mmol})$ and the mixture was stirred for 24 h at room temperature. The reaction mixture was diluted with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and the extractive work-up was performed with CHCl_{3}. After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtration, and removal of solvent, the resulting crude residue was purified by column chromatography $\left(\mathrm{Hex} / \mathrm{CHCl}_{3} / \mathrm{EtOAc}=8: 2: 1\right.$ as eluent) to afford $\mathbf{4 b}$ (55.7 mg , $0.10 \mathrm{mmol}, 99 \%$ yield) as a white solid.

Characterization of Alkylation Products 4:

4b: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.97(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 6.96-6.90(2 \mathrm{H}, \mathrm{m}), 6.83(2 \mathrm{H}$, $\mathrm{t}, J=7.6 \mathrm{~Hz}), 6.63(1 \mathrm{H}, \mathrm{td}, J=7.8,1.0 \mathrm{~Hz}), 6.58(2 \mathrm{H}, \mathrm{s}), 6.54(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 6.03$ $(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 4.26(1 \mathrm{H}, \mathrm{dd}, J=8.7,5.5 \mathrm{~Hz}), 3.90(1 \mathrm{H}, \mathrm{dd}, J=12.4,8.7 \mathrm{~Hz}), 3.71$ $(1 \mathrm{H}, \mathrm{dd}, J=12.4,5.5 \mathrm{~Hz}), 2.59(6 \mathrm{H}, \mathrm{s}), 1.91(3 \mathrm{H}, \mathrm{s}), 1.42(9 \mathrm{H}, \mathrm{s}), 1.24(3 \mathrm{H}, \mathrm{s}), 1.05$ $(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 177.0,149.4,141.8,140.3,139.6,139.4,134.5,132.1,130.7,128.5$, 127.3, 125.1, 123.3, 114.7, 83.3, 54.1, 47.4, 46.8, 28.0, 23.2, 20.7, 18.9, 18.5, two peaks for aromatic carbons were not found probably due to overlapping; IR 2978, 2371, 1732, 1605, 1479, 1348, 1153, $754 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{NaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$585.2394. Found 585.2390.; HPLC ID3, Hex/IPA = 10:1, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 40.7 \mathrm{~min}$ (major isomer of major diastereomer), 63.8 min (minor isomer of major diastereomer), 73.8 min (minor diastereomer), 78.6 min (minor diastereomer).

4c: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.95(1 \mathrm{H}$, brd, $J=6.0 \mathrm{~Hz}$), $6.94(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz})$, $6.83-6.77(2 \mathrm{H}, \mathrm{m}), 6.65(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 6.58(2 \mathrm{H}, \mathrm{s}), 6.44(1 \mathrm{H}, \mathrm{brd}, J=7.4 \mathrm{~Hz})$, $6.35(1 \mathrm{H}, \mathrm{s}), 6.12(1 \mathrm{H}, \mathrm{brd}, J=6.9 \mathrm{~Hz}), 4.35-4.19(1 \mathrm{H}, \mathrm{m}), 3.88(1 \mathrm{H}, \mathrm{dd}, J=12.4,8.7$ $\mathrm{Hz}), 3.70(1 \mathrm{H}, \mathrm{dd}, J=12.4,4.6 \mathrm{~Hz}), 2.58(6 \mathrm{H}, \mathrm{s}), 1.92(3 \mathrm{H}, \mathrm{s}), 1.91(3 \mathrm{H}, \mathrm{s}), 1.41(9 \mathrm{H}$, s), $1.30(3 \mathrm{H}, \mathrm{s}), 1.07(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 176.9,149.4,141.7,140.4$, $139.5,139.2,137.2,134.5,134.4,132.1,130.8,128.9,128.5,125.3,125.1,123.2,114.6,83.2,54.1,47.5$, $46.8,27.9,23.1,21.5,20.7,18.8,18.5$, one peak for aromatic carbon was not found probably due to overlapping; IR 3319, 2978, 1730, 1605, 1479, 1290, 847, $652 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{NaS}^{+}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 599.2550$. Found 599.2549.; HPLC ID3, Hex/IPA $=19: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$, 70.5 min (major isomer of major diastereomer), 106 min (minor isomer of major diastereomer), 124 min (minor diastereomer), 132 min (minor diastereomer).

4d: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.93(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 6.93(1 \mathrm{H}, \mathrm{td}, J=7.8,1.4$
$\mathrm{Hz}), 6.78(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 6.66(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 6.59-6.56(3 \mathrm{H}, \mathrm{m}), 6.28(1 \mathrm{H}$, brs), $6.25(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 6.19(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 4.42(1 \mathrm{H}, \mathrm{dd}, J=8.7,4.8 \mathrm{~Hz})$, $3.85(1 \mathrm{H}, \mathrm{dd}, J=12.5,8.7 \mathrm{~Hz}), 3.70(1 \mathrm{H}, \mathrm{dd}, J=12.5,4.8 \mathrm{~Hz}), 3.19(3 \mathrm{H}, \mathrm{s}), 2.58(6 \mathrm{H}$, s), $1.92(3 \mathrm{H}, \mathrm{s}), 1.41(9 \mathrm{H}, \mathrm{s}), 1.33(3 \mathrm{H}, \mathrm{s}), 1.08(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 176.8,159.5,149.4,141.8,140.9,140.4,139.5,134.4,132.1,130.8,128.9,128.5$, 125.1, 123.3, 120.3, 114.7, 114.1, 113.3, 83.2, 54.5, 54.0, 47.7, 46.9, 27.9, 23.1, 20.7, 18.8, 18.5; IR 3315, 2978, 1730, 1602, 1290, 1147, $750 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{NaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 615.2499$. Found 615.2495.; HPLC ID3, Hex/EtOH $=10: 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 16.1 \mathrm{~min}$ (major isomer of major diastereomer), 18.5 min (minor isomer of major diastereomer), 21.5 min (minor diastereomer), 23.8 min (minor diastereomer).

4e: ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.92(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 6.93(1 \mathrm{H}, \mathrm{td}, J=8.2,1.4 \mathrm{~Hz})$, $6.89(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}), 6.70-6.66(2 \mathrm{H}, \mathrm{m}), 6.57(2 \mathrm{H}, \mathrm{s}), 6.48(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz})$, $6.24(1 \mathrm{H}, \operatorname{brd}, J=7.3 \mathrm{~Hz}), 6.18(1 \mathrm{H}, \operatorname{brd}, J=6.9 \mathrm{~Hz}), 4.32(1 \mathrm{H}, \mathrm{dd}, J=7.8,6.2 \mathrm{~Hz})$, $3.71(1 \mathrm{H}, \mathrm{dd}, J=12.7,7.8 \mathrm{~Hz}), 3.58(1 \mathrm{H}, \mathrm{dd}, J=12.7,6.2 \mathrm{~Hz}), 2.54(6 \mathrm{H}, \mathrm{s}), 1.91(3 \mathrm{H}$, s), $1.42(9 \mathrm{H}, \mathrm{s}), 1.19(3 \mathrm{H}, \mathrm{s}), 0.99(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 176.4,149.3$, $47.5,46.8,27.9,23.1,20.7,18.2,18.1$, two peaks for aromatic carbons were not found probably due to overlapping; IR 3273, 2980, 1730, 1605, 1477, 1147, 750, $583 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{NaSCl}^{+}\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]^{+}\right.$619.2004. Found 619.2004.; HPLC OZ3, Hex/IPA $=10: 1$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 17.2 \mathrm{~min}$ (major isomer of major diastereomer), 25.3 min (minor isomer of major diastereomer), 28.3 min (minor diastereomer), 35.0 min (minor diastereomer).

4f: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.92(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.04(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})$, $6.96(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 6.86-6.80(1 \mathrm{H}, \mathrm{m}), 6.70(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 6.57(2 \mathrm{H}, \mathrm{s}), 6.42$ $(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 6.24(2 \mathrm{H}, \mathrm{brd}, J=6.2 \mathrm{~Hz}), 4.41(1 \mathrm{H}, \mathrm{dd}, J=7.8,6.2 \mathrm{~Hz}), 3.71(1 \mathrm{H}$, dd, $J=12.7,7.8 \mathrm{~Hz}), 3.57(1 \mathrm{H}, \mathrm{dd}, J=12.7,6.2 \mathrm{~Hz}), 2.54(6 \mathrm{H}, \mathrm{s}), 1.92(3 \mathrm{H}, \mathrm{s}), 1.43$ $(9 \mathrm{H}, \mathrm{s}), 1.20(3 \mathrm{H}, \mathrm{s}), 1.00(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 176.4,149.3,142.1$, $142.0,140.3,139.5,134.1,132.3,131.4,130.4,130.2,129.2,128.8,126.3,124.9,123.4,122.4,114.9,83.4$, $53.9,47.5,46.8,27.9,23.1,20.7,18.2,18.2$; IR 3273, 2978, 1732, 1605, 1477, 1150, 754, $536 \mathrm{~cm}^{-1} ;$ HRMS (ESI) Calcd for $\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{NaSBr}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$663.1499. Found 663.1500.; HPLC OD3, Hex/IPA $=97: 3$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 30.1 \mathrm{~min}$ (major isomer of major diastereomer), 33.0 min (minor diastereomer), 38.4 min (minor isomer of major diastereomer), 62.9 min (minor diastereomer).

4g: ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.98(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 6.95(1 \mathrm{H}, \mathrm{td}, J=8.2,1.4 \mathrm{~Hz})$, $6.69(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 6.64(1 \mathrm{H}, \mathrm{td}, J=7.8,0.9 \mathrm{~Hz}), 6.59(2 \mathrm{H}, \mathrm{s}), 6.49(2 \mathrm{H}, \mathrm{d}, J=$ $7.8 \mathrm{~Hz}), 6.11(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 4.37(1 \mathrm{H}, \mathrm{dd}, J=8.7,5.0 \mathrm{~Hz}), 3.89(1 \mathrm{H}, \mathrm{dd}, J=12.8$, $8.7 \mathrm{~Hz}), 3.73(1 \mathrm{H}, \mathrm{dd}, J=12.8,5.0 \mathrm{~Hz}), 2.60(6 \mathrm{H}, \mathrm{s}), 2.03(3 \mathrm{H}, \mathrm{s}), 1.92(3 \mathrm{H}, \mathrm{s}), 1.42$ $(9 \mathrm{H}, \mathrm{s}), 1.26(3 \mathrm{H}, \mathrm{s}), 1.07(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 177.1,149.5,141.8$, $140.3,139.6,136.7,136.3,134.6,132.1,130.8,128.7,128.5,125.2,123.3,114.7,83.2,54.1,47.4,46.5,27.9$, $23.2,20.8,20.7,19.0,18.6$, one peak for aromatic carbon was not found probably due to overlapping; IR $3283,2978,2359,1730,1605,1292,1152,754,658 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{NaS}^{+}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 599.2550$. Found 599.2573.; HPLC OD3, Hex $/ \mathrm{EtOH}=98: 2$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$, 10.9 min (minor diastereomer), 11.5 min (major isomer of major diastereomer), 13.1 min (minor isomer of major diastereomer), 16.7 min (minor diastereomer).

4h

4h: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.86(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.95(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz})$, $6.75(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 6.68(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 6.54(2 \mathrm{H}, \mathrm{s}), 6.29-6.20(3 \mathrm{H}, \mathrm{m}), 4.63$ $(1 \mathrm{H}, \mathrm{dd}, J=7.4,6.8 \mathrm{~Hz}), 3.74(1 \mathrm{H}, \mathrm{dd}, J=12.9,7.4 \mathrm{~Hz}), 3.63(1 \mathrm{H}, \mathrm{dd}, J=12.9,6.8$ $\mathrm{Hz}), 2.52(6 \mathrm{H}, \mathrm{s}), 1.93(3 \mathrm{H}, \mathrm{s}), 1.39(9 \mathrm{H}, \mathrm{s}), 1.25(3 \mathrm{H}, \mathrm{s}), 1.03(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 176.5,149.1,142.1,140.3,139.6,138.0,134.2,133.2,132.1,130.3$, $129.3,128.7,125.0,123.5,114.8,83.4,53.9,47.6,46.6,27.9,23.1,20.7,18.5,18.3$, one peak for aromatic carbon was not found probably due to overlapping; IR 3273, 2978, 1730, 1605, 1290, 1148, 750, $536 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{NaSCl}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$619.2004. Found 619.2003.; HPLC OD3, Hex/IPA $=97: 3$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 15.0 \mathrm{~min}$ (minor diastereomer), 17.6 min (major isomer of major diastereomer), 21.4 min (minor isomer of major diastereomer), 31.7 min (minor diastereomer).

4i: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.88(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.94(1 \mathrm{H}, \mathrm{td}, J=8.0,0.9 \mathrm{~Hz})$, $6.89(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.66(1 \mathrm{H}, \mathrm{td}, J=8.0,0.9 \mathrm{~Hz}), 6.54(2 \mathrm{H}, \mathrm{s}), 6.22-6.16(3 \mathrm{H}, \mathrm{m})$, $4.48(1 \mathrm{H}, \mathrm{dd}, J=7.3,6.9 \mathrm{~Hz}), 3.72(1 \mathrm{H}, \mathrm{dd}, J=13.3,7.3 \mathrm{~Hz}), 3.61(1 \mathrm{H}, \mathrm{dd}, J=13.3$, $6.9 \mathrm{~Hz}), 2.52(6 \mathrm{H}, \mathrm{s}), 1.93(3 \mathrm{H}, \mathrm{s}), 1.40(9 \mathrm{H}, \mathrm{s}), 1.21(3 \mathrm{H}, \mathrm{s}), 1.00(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 176.5,149.1,142.1,140.3,139.6,138.5,134.2,132.1,130.7,130.3$, $129.6,128.7,125.0,123.4,121.5,114.8,83.4,53.8,47.5,46.6,27.9,23.1,20.8,18.4$, 18.3; IR 3279, 2978, 1732, 1605, 1290, 1055, 750, $536 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{NaSBr}^{+}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$663.1499. Found 663.1497.; HPLC ID3, Hex/IPA/EtOH $=92: 5: 3$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $210 \mathrm{~nm}, 16.2 \mathrm{~min}$ (major isomer of major diastereomer), 22.8 min (minor isomer of major diastereomer), 25.0 min (minor diastereomer), 27.4 min (minor diastereomer).

4j: ${ }^{1} \mathrm{H}$ NMR [$\left.400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] \delta 7.56(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.53(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz})$, $7.29(1 \mathrm{H}, \mathrm{td}, J=8.0,1.4 \mathrm{~Hz}), 7.10(1 \mathrm{H}, \mathrm{td}, J=8.0,0.9 \mathrm{~Hz}), 6.92(2 \mathrm{H}, \mathrm{s}), 6.87(1 \mathrm{H}$, brd, $J=7.3 \mathrm{~Hz}), 6.68(2 \mathrm{H}, \mathrm{br}), 5.76(1 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 3.80(1 \mathrm{H}, \mathrm{dd}, J=13.1,6.9 \mathrm{~Hz})$, $3.72(1 \mathrm{H}, \mathrm{dd}, J=13.1,6.9 \mathrm{~Hz}), 2.44(6 \mathrm{H}, \mathrm{s}), 2.29(3 \mathrm{H}, \mathrm{s}), 1.59(3 \mathrm{H}, \mathrm{s}), 1.57(9 \mathrm{H}, \mathrm{s})$, $1.47(3 \mathrm{H}, \mathrm{s}), 1.46(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 177.2,165.9,149.3$, $145.0,143.0,140.8,140.1,135.1,132.7,131.2,131.2,129.5,129.0,128.6,126.0$, $124.4,115.2,84.0,81.4,54.8,48.1,48.0,28.5,28.2,23.2,21.1,18.9,18.7$; IR $3289,2978,1711,1605,1292$, 1150, 752, $538 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{37} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{NaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$685.2918. Found 685.2916.; HPLC OD 3 , $\mathrm{Hex} / \mathrm{EtOH}=97: 3$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 20.0 \mathrm{~min}$ (minor diastereomer), 22.0 min (major isomer of major diastereomer), 27.2 min (minor isomer of major diastereomer), 35.2 min (minor diastereomer).

4k

4k: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.88(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.49(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz})$, $7.35(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.24-7.18(4 \mathrm{H}, \mathrm{m}), 6.94(1 \mathrm{H}, \mathrm{td}, J=8.2,1.4 \mathrm{~Hz}), 6.63-6.56$ $(2 \mathrm{H}, \mathrm{m}), 6.50(2 \mathrm{H}, \mathrm{s}), 6.19(1 \mathrm{H}, \mathrm{brd}, J=5.0 \mathrm{~Hz}), 4.33(1 \mathrm{H}, \mathrm{br}), 3.91(1 \mathrm{H}, \mathrm{dd}, J=12.6$, $8.0 \mathrm{~Hz}), 3.85(1 \mathrm{H}, \mathrm{dd}, J=12.6,5.7 \mathrm{~Hz}), 2.51(6 \mathrm{H}, \mathrm{s}), 1.90(3 \mathrm{H}, \mathrm{s}), 1.43(3 \mathrm{H}, \mathrm{s}), 1.25$ $(9 \mathrm{H}, \mathrm{s}), 1.12(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 176.7,149.2,141.8,140.4,139.5$, $136.9,134.4,133.1,132.6,132.1,130.7,128.7$, 128.6, 127.5, 127.2, 126.4, 126.0, $125.3,125.1,123.3,114.8,83.1,54.2,47.8,47.0,27.7,23.1,20.7,18.9,18.5$, one peak for aromatic carbon was not found probably due to overlapping; IR 3273, 2978, 1730, 1605, 1344, 1148, 746, $534 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{NaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$635.2550. Found 635.2552.; HPLC OD3, Hex/IPA $=97: 3$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 18.8 \mathrm{~min}$ (minor diastereomer), 23.0 min (minor isomer of major diastereomer), 27.6 min (major isomer of major diastereomer), 50.0 min (minor diastereomer).

41

41: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.98(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.95(1 \mathrm{H}, \mathrm{td}, J=8.0,1.4 \mathrm{~Hz})$, $6.92(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 6.83(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 6.66(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 6.59(2 \mathrm{H}, \mathrm{s})$, $6.54(2 \mathrm{H}, \mathrm{br}), 6.06(1 \mathrm{H}, \mathrm{brd}, J=7.3 \mathrm{~Hz}), 4.26(1 \mathrm{H}, \mathrm{dd}, J=8.7,5.0 \mathrm{~Hz}), 3.88(1 \mathrm{H}, \mathrm{dd}, J$ $=12.4,8.7 \mathrm{~Hz}), 3.75(1 \mathrm{H}, \mathrm{dd}, J=12.4,5.0 \mathrm{~Hz}), 2.60(6 \mathrm{H}, \mathrm{s}), 2.05(1 \mathrm{H}, \mathrm{qd}, J=13.2$, $6.9 \mathrm{~Hz}), 1.91(3 \mathrm{H}, \mathrm{s}), 1.45(1 \mathrm{H}, \mathrm{qd}, J=13.2,6.9 \mathrm{~Hz}), 1.40(9 \mathrm{H}, \mathrm{s}), 1.30(3 \mathrm{H}, \mathrm{s}), 0.25(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz})$;
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 176.4,149.3,141.8,141.5,139.6,139.5,134.5,132.1,128.6,127.2,125.3$, $123.3,114.7,83.3,60.2,47.5,47.3,27.9,24.4,23.2,20.7,19.1,9.5$, three peaks for aromatic carbons were not found probably due to overlapping; IR 3283, 2978, 1730, 1605, 1296, 1152, 754, $660 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{NaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 599.2550$. Found 599.2550.; HPLC ID3, Hex/EtOH = 97:3, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 23.8 \mathrm{~min}$ (major isomer of major diastereomer), 31.9 min (minor isomer of major diastereomer), 34.2 min (minor diastereomer), 41.9 min (minor diastereomer).

4m: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.69(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.97(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz})$, $6.89(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 6.81(1 \mathrm{H}, \mathrm{td}, J=8.0,1.4 \mathrm{~Hz}), 6.77-6.63(8 \mathrm{H}, \mathrm{m}), 6.60(2 \mathrm{H}, \mathrm{s})$, $6.20(1 \mathrm{H}, \operatorname{brd}, J=7.3 \mathrm{~Hz}), 4.43(1 \mathrm{H}, \mathrm{dd}, J=8.7,5.0 \mathrm{~Hz}), 4.23(1 \mathrm{H}, \mathrm{dd}, J=12.5,8.7$ $\mathrm{Hz}), 3.92(1 \mathrm{H}, \mathrm{dd}, J=12.5,5.0 \mathrm{~Hz}), 3.45(1 \mathrm{H}, \mathrm{d}, J=12.8 \mathrm{~Hz}), 2.83(1 \mathrm{H}, \mathrm{d}, J=12.8$ $\mathrm{Hz}), 2.64(6 \mathrm{H}, \mathrm{s}), 1.91(3 \mathrm{H}, \mathrm{s}), 1.34(9 \mathrm{H}, \mathrm{s}), 1.31(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 176.1,149.0,141.8$, $141.2,139.8,139.6,135.7,134.7,132.2,130.7,128.6,127.4,126.7,126.3,122.7,114.6,83.2,61.0,47.6$, 38.2, 27.9, 23.2, 20.7, 19.5, four peaks for aromatic carbons and one peak for aliphatic carbon were not found probably due to overlapping; IR 3292, 2980, 1730, 1605, 1252, 1032, 748, $654 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{NaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 661.2707$. Found 661.2702.; HPLC ID3, $\mathrm{Hex} / \mathrm{EtOH}=10: 1$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 15.5 \mathrm{~min}$ (major isomer of major diastereomer), 21.1 min (minor diastereomer), 28.9 min (minor isomer of major diastereomer), 53.1 min (minor diastereomer).

4n

4n: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.90(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 6.93(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz})$, $6.83(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 6.77(1 \mathrm{H}, \mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}), 6.59(2 \mathrm{H}, \mathrm{s}), 6.54(2 \mathrm{H}, \mathrm{d}, J$ $=7.4 \mathrm{~Hz}), 5.89(1 \mathrm{H}$, brs $), 4.39-4.31(1 \mathrm{H}, \mathrm{m}), 3.92(1 \mathrm{H}, \mathrm{dd}, J=12.6,8.5 \mathrm{~Hz}), 3.70$ $(1 \mathrm{H}, \mathrm{dd}, J=12.6,5.0 \mathrm{~Hz}), 2.59(6 \mathrm{H}, \mathrm{s}), 1.93(3 \mathrm{H}, \mathrm{s}), 1.91(3 \mathrm{H}, \mathrm{s}), 1.42(9 \mathrm{H}, \mathrm{s})$, $1.27(3 \mathrm{H}, \mathrm{s}), 1.09(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 177.1,149.5,141.8,139.6,139.5,138.0,134.4$, 132.6, 132.1, 130.7, 129.0, 127.3, 125.9, 114.5, 83.1, 54.1, 47.4, 46.8, 28.0, 23.2, 20.9, 20.7, 18.9, 18.6, two peaks for aromatic carbons were not found probably due to overlapping; IR 3291, 2978, 1728, 1605, 1304, 1055, 750, $656 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{NaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$599.2550. Found 599.2544.; HPLC AD3, Hex/IPA $=97: 3$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 22.6 \mathrm{~min}$ (minor diastereomer), 28.8 min (minor isomer of major diastereomer), 36.4 min (major isomer of major diastereomer), 44.2 min (minor diastereomer).

40: ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.96(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.92(1 \mathrm{H}, \mathrm{t}, J=7.3$ $\mathrm{Hz}), 6.85(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 6.61-6.58(5 \mathrm{H}, \mathrm{m}), 5.62(1 \mathrm{H}, \mathrm{brs}) ,4.40(1 \mathrm{H}, \mathrm{dd}, J$ $=8.7,5.0 \mathrm{~Hz}), 4.00(1 \mathrm{H}, \mathrm{dd}, J=12.8,8.7 \mathrm{~Hz}), 3.73(1 \mathrm{H}, \mathrm{dd}, J=12.8,5.0 \mathrm{~Hz})$, $3.15(3 \mathrm{H}, \mathrm{s}), 2.61(6 \mathrm{H}, \mathrm{s}), 1.92(3 \mathrm{H}, \mathrm{s}), 1.45(9 \mathrm{H}, \mathrm{s}), 1.22(3 \mathrm{H}, \mathrm{s}), 1.06(3 \mathrm{H}, \mathrm{s})$;
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 177.2,156.2,149.6,141.8,139.5,139.5,134.5,133.5,132.1,132.0,127.3$, 115.6, 113.7, 111.5, 83.2, 54.9, 54.4, 47.2, 46.8, 28.0, 23.2, 20.7, 19.0, 18.9, two peaks for aromatic carbons were not found probably due to overlapping; IR $3283,2978,1726,1605,1277,1150,748,656 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{NaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$615.2499. Found 615.2497.; HPLC ID3, $\mathrm{Hex} / \mathrm{EtOH}=19: 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 35.1 \mathrm{~min}$ (major isomer of major diastereomer), 43.5 min (minor diastereomer), 48.3 min (minor diastereomer), 51.3 min (minor isomer of major diastereomer).

4p

4p: ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.82\left(1 \mathrm{H}, \mathrm{dd}, J=9.1, J_{\mathrm{F}-\mathrm{H}}=4.6 \mathrm{~Hz}\right), 6.91(1 \mathrm{H}, \mathrm{t}, J$ $=7.4 \mathrm{~Hz}), 6.82(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 6.63-6.58(3 \mathrm{H}, \mathrm{m}), 6.48(2 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 5.70$ $(1 \mathrm{H}, \operatorname{brd}, J=6.4 \mathrm{~Hz}), 4.26(1 \mathrm{H}, \mathrm{dd}, J=8.7,5.0 \mathrm{~Hz}), 3.89(1 \mathrm{H}, \mathrm{dd}, J=12.6,8.7 \mathrm{~Hz})$, $3.62(1 \mathrm{H}, \mathrm{dd}, J=12.6,5.0 \mathrm{~Hz}), 2.59(6 \mathrm{H}, \mathrm{s}), 1.92(3 \mathrm{H}, \mathrm{s}), 1.42(9 \mathrm{H}, \mathrm{s}), 1.16(3 \mathrm{H}, \mathrm{s})$, 0.93 ($3 \mathrm{H}, \mathrm{s}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 176.6,159.3\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=247.7 \mathrm{~Hz}\right.$), 149.4, 141.9, 139.6, 139.0, $136.1,134.5,132.6\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=7.7 \mathrm{~Hz}\right), 132.1,127.6,115.9\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=6.8 \mathrm{~Hz}\right), 114.9\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=23.2 \mathrm{~Hz}\right), 112.8$ (d, $J_{\mathrm{FCC}}=25.2 \mathrm{~Hz}$), 83.6, 54.3, 47.1, 46.7, 27.9, 23.2, 20.7, 18.9, 18.4, two peaks for aromatic carbons were not found probably due to overlapping; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta-118.4$; IR 3286, 2980, 1732, 1605, 1477, 1152, 754, $658 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{FNaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$603.2299. Found 603.2296.; HPLC IE3, H/EtOH $=19: 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, 38.7$ (major isomer of major diastereomer), 42.1 min (minor isomer of major diastereomer), 48.1 (minor diastereomer), 50.4 min (minor diastereomer).
 4a: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 7.74(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.60(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})$, $7.41(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.25(1 \mathrm{H}, \mathrm{td}, J=8.0,1.4 \mathrm{~Hz}), 7.17(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 7.09(2 \mathrm{H}$, $\mathrm{t}, J=7.5 \mathrm{~Hz}), 7.01(1 \mathrm{H}, \mathrm{td}, J=7.7,0.9 \mathrm{~Hz}), 6.82(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 6.63(1 \mathrm{H}, \mathrm{d}, J=7.3$ $\mathrm{Hz}), 5.78(1 \mathrm{H}, \mathrm{brt}, J=6.6 \mathrm{~Hz}), 3.85(1 \mathrm{H}, \mathrm{dd}, J=12.8,5.6 \mathrm{~Hz}), 3.74(1 \mathrm{H}, \mathrm{dd}, J=12.8$, $7.8 \mathrm{~Hz}), 2.44(3 \mathrm{H}, \mathrm{s}), 1.53(3 \mathrm{H}, \mathrm{s}), 1.52(9 \mathrm{H}, \mathrm{s}), 1.45(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 177.5,149.4$, 143.7, 140.6, 140.0, 139.0, 131.4, 130.4, 129.0, 128.9, 128.2, 127.9, 127.7, 126.0, 124.0, 114.8, 83.8, 54.8, $48.2,47.6,28.1,21.4,19.0,18.7$; IR 3300, 2978, 1734, 1477, 1290, 1060, $754 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{NaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 557.2081$. Found 557.2080.; HPLC OZ3, H/IPA/EtOH $=92: 5: 3$, flow rate $=0.5$ $\mathrm{mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 48.8$ (minor diastereomer), 59.1 min (minor diastereomer), 65.5 min (major isomer of major diastereomer), 89.0 min (minor isomer of major diastereomer).

Derivatization of 4b to Pyrrolidinoindoline 6

The alkylated product $\mathbf{4 b}(169 \mathrm{mg}, 0.30 \mathrm{mmol}, \mathrm{dr}=>20: 1.0,99 \%$ ee) was placed in a test tube and dissolved into trifluoroacetic acid (TFA) (0.3 mL). The resulting solution was stirred for 2.5 h at room temperature. After cooling to $0^{\circ} \mathrm{C}$, the reaction mixture was poured onto ice and the aqueous solution thus obtained was neutralized by NaOH . The aqueous phase was extracted with EtOAc and the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and concentration of the organic phase gave crude material. This crude material was dissolved into THF (3.0 mL), and $\mathrm{NaH}(36 \mathrm{mg}, 0.9 \mathrm{mmol})$ was carefully introduced into the solution under Ar at $0^{\circ} \mathrm{C}$. After stirring for 30 min at room temperature, methyl iodide $(0.050 \mathrm{~mL}, 0.9$ mmol) was added to the solution and whole reaction mixture was stirred for 12 h at $50^{\circ} \mathrm{C}$. The mixture was then diluted with water and the extractive workup was performed with EtOAc. After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$,
filtration, and removal of solvent, the resulting crude residue was purified by column chromatography $(\mathrm{Hex} / \mathrm{EtOAc}=3: 1$ as eluent) to afford $5(108 \mathrm{mg}, 0.22 \mathrm{mmol}, 73 \%$ yield for 2 steps $)$ as a white solid.
5: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 7.16-7.11(4 \mathrm{H}, \mathrm{m}), 6.99-6.96(3 \mathrm{H}, \mathrm{m}), 6.90(2 \mathrm{H}, \mathrm{t}, J$ $=7.8 \mathrm{~Hz}), 6.58(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 4.41(1 \mathrm{H}, \mathrm{d}, J=14.1 \mathrm{~Hz}), 3.68(1 \mathrm{H}, \mathrm{d}, J=14.1 \mathrm{~Hz}), 2.71(3 \mathrm{H}, \mathrm{s}), 2.65$ $(6 \mathrm{H}, \mathrm{s}), 2.32(3 \mathrm{H}, \mathrm{s}), 2.11(3 \mathrm{H}, \mathrm{s}), 1.33(6 \mathrm{H}, \mathrm{s})$.

To a solution of $5(108 \mathrm{mg}, 0.22 \mathrm{mmol})$ in TFA $(0.2 \mathrm{~mL})$ and thioanisole $(0.02 \mathrm{~mL})$ was added $\mathrm{MeSO}_{3} \mathrm{H}$ $(0.02 \mathrm{~mL}, 0.33 \mathrm{mmol})$ and the resulting solution was stirred for 6 h at room temperature. After cooling to $0^{\circ} \mathrm{C}$, the reaction mixture was poured onto ice and the aqueous solution thus obtained was neutralized by NaOH . The aqueous phase was extracted with EtOAc and the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and concentration of the organic phase gave crude material. To a solution of this crude material in THF (4.4 mL) was carefully added $\mathrm{LiAlH}_{4}(83 \mathrm{mg}, 2.2 \mathrm{mmol})$ and the mixture was refluxed for 2 h . After cooling to $0{ }^{\circ} \mathrm{C}$, the reaction was quenched by the addition of $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}(3.2 \mathrm{~g} 10 \mathrm{mmol})$, and the resulting suspension was vigorously stirred overnight at room temperature. The mixture was filtered with the aid of EtOAc and the filtrates were concentrated. Purification of the crude residue by column chromatography ($\mathrm{Hex} / \mathrm{EtOAc}=1: 1$ as eluent) furnished $\mathbf{6}(52.6 \mathrm{mg}, 0.18 \mathrm{mmol}, 82 \%$ yield for 2 steps, $\mathrm{dr}=$ $>20: 1.0,99 \%$ ee $)$ as a white solid. \quad : ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(2 \mathrm{H}, \mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}), 7.35(2 \mathrm{H}$, $\mathrm{t}, J=8.0 \mathrm{~Hz}), 7.24(1 \mathrm{H}, \mathrm{td}, J=8.0,1.4 \mathrm{~Hz}), 7.13(1 \mathrm{H}, \mathrm{td}, J=7.6,1.4 \mathrm{~Hz}), 7.11(1 \mathrm{H}, \mathrm{dd}, J=7.6,1.1 \mathrm{~Hz}), 6.71$ $(1 \mathrm{H}, \mathrm{td}, J=7.8,1.1 \mathrm{~Hz}), 6.43(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 4.02(1 \mathrm{H}, \mathrm{s}), 3.50(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 3.08(1 \mathrm{H}, \mathrm{d}, J=8.9$ $\mathrm{Hz}), 2.92(3 \mathrm{H}, \mathrm{s}), 2.73(3 \mathrm{H}, \mathrm{s}), 1.32(3 \mathrm{H}, \mathrm{s}), 0.95(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.7,145.6,133.4$, 128.3, 128.2, 127.1, 126.3, 123.7, 117.0, 106.5, 102.4, 66.4, 58.3, 51.3, 43.0, 35.2, 26.4, 26.0; IR 2926, 1605, 1491, 1240, 1022, $908,700 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$293.2012. Found 293.2007.; HPLC OJ3, $\mathrm{H} / \mathrm{IPA}=97: 3$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 10.6 \mathrm{~min}$ (major), 14.0 min (minor).

Crystallographic Structure Determination:

Recrystallization of $\mathbf{1 a} \cdot \mathbf{C l}, \mathbf{4 b}, \mathbf{4 k}, \mathbf{2 k}$, and 6: A single crystal of $\mathbf{1 a} \cdot \mathbf{C l}$ was obtained from toluene at room temperature. Single crystals of $\mathbf{4 b}$ and $\mathbf{4 k}$ were obtained from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ solvent system at room temperature. A single crystal of $\mathbf{2 k}$ was obtained from $\mathrm{Et}_{2} \mathrm{O} / \mathrm{Hex}$ solvent system at room temperature. A single crystal of $\mathbf{6}$ was obtained from Hex at room temperature. The single crystals thus obtained were mounted on CryoLoop. Data of X-ray diffraction were collected at 133 K on a Brucker SMART APEX CCD diffractometer with graphite-monochromated $\mathrm{Mo} \mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA$). An absorption correction was made using SADABS. The structure was solved by direct methods and Fourier syntheses, and refined by full-matrix least squares on $F 2$ by using SHELXTL. ${ }^{2}$ All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms bonded to oxygen atoms were located from a difference synthesis and their coordinates and isotropic thermal parameters refined. The other hydrogen atoms were placed in calculated positions. The crystallographic data were summarized in Tables S2, S3, S4, $\mathbf{S 5}$, and S6.

[^1]Table S2. Crystal data, structure refinement for $\mathbf{1 a} \cdot \mathbf{C l}$.

Figure S6. Molecular structure of ion-paired ligand 1a.CI. Calculated hydrogen atoms are omitted for clarity.
Blue $=$ nitrogen, red $=$ oxygen, green $=$ chlorine, black $=$ carbon.

Table S3. Crystal data and structure refinement for 4b.

Empirical formula	C32 H38 N2 O5 S
Formula weight	562.70
Temperature	103(2) K
Wavelength	0.71075 £
Crystal system	Orthorhombic
Space group	P_21_21_21
Unit cell dimensions	$a=6.4319(16) \AA$ ¢ $\quad \alpha=90^{\circ}$.
	$\mathrm{b}=16.382(4) \AA{ }^{\text {A }}$, $\quad \beta=90^{\circ}$.
	$\mathrm{c}=27.793(7) \AA \quad \gamma=90^{\circ}$.
Volume	2928.4(13) \AA^{3}
Z	4
Density (calculated)	$1.276 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.154 \mathrm{~mm}^{-1}$
F(000)	1200
Crystal size	$0.30 \times 0.02 \times 0.02 \mathrm{~mm}^{3}$
Theta range for data collection	3.18 to 27.48°.
Index ranges	$-8<=\mathrm{h}<=8,-21<=\mathrm{k}<=21,-36<=1<=31$
Reflections collected	23968
Independent reflections	$6696[\mathrm{R}(\mathrm{int})=0.1223]$
Completeness to theta $=27.48^{\circ}$	99.8\%
Absorption correction	Empirical
Max. and min. transmission	0.9969 and 0.9553
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	6696 / 0 / 369
Goodness-of-fit on F^{2}	1.035
Final R indices [I 2sigma(I]	$\mathrm{R} 1=0.0933, \mathrm{wR} 2=0.2105$
R indices (all data)	$\mathrm{R} 1=0.1421, \mathrm{wR} 2=0.2481$
Absolute structure parameter	-0.29(16)
Largest diff. peak and hole	0.721 and -0.402 e. A^{-3}

Figure S7. Molecular structure of ion-paired ligand 4b. All calculated hydrogen atoms are omitted for clarity. Blue $=$ nitrogen, red $=$ oxygen, yellow $=$ sulfur, black $=$ carbon.

Table S4. Crystal data and structure refinement for $\mathbf{4 k}$.

Empirical formula	C36 H41 N2 O5 S
Formula weight	613.77
Temperature	293(2) K
Wavelength	0.71075 £
Crystal system	Orthorhombic
Space group	P_21_21_21
Unit cell dimensions	$a=6.493(2) \AA \quad \alpha=90^{\circ}$.
	$b=16.778(6) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=30.179(11) \AA \quad \gamma=90^{\circ}$.
Volume	$3288(2) \AA^{3}$
Z	4
Density (calculated)	$1.240 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.143 \mathrm{~mm}^{-1}$
F(000)	1308
Crystal size	$0.30 \times 0.05 \times 0.05 \mathrm{~mm}^{3}$
Theta range for data collection	3.16 to 27.37°.
Index ranges	$-8<=\mathrm{h}<=8,-19<=\mathrm{k}<=21,-38<=1<=38$
Reflections collected	26453
Independent reflections	$7433[\mathrm{R}(\mathrm{int})=0.0952]$
Completeness to theta $=27.37^{\circ}$	99.6\%
Max. and min. transmission	0.9929 and 0.9584
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	7433 / 0 / 405
Goodness-of-fit on F^{2}	1.016
Final R indices [I 2sigma(I]	$\mathrm{R} 1=0.0784, \mathrm{wR} 2=0.1907$
R indices (all data)	$\mathrm{R} 1=0.1011, \mathrm{wR} 2=0.2145$
Absolute structure parameter	0.06(13)
Largest diff. peak and hole	0.726 and -0.540 e. \AA^{-3}

Table S5. Crystal data and structure refinement for $\mathbf{2 k}$.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

C32 H38 N2 O5 S
562.70

103(2) K
0.71075 Å

Orthorhombic
P_21_21_21
$\mathrm{a}=6.4319(16) \AA \quad \alpha=90^{\circ}$.
$b=16.382(4) \AA \quad \beta=90^{\circ}$.
$\mathrm{c}=27.793(7) \AA \quad \gamma=90^{\circ}$.

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=27.48^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2$ sigma(I)]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole
2928.4(13) \AA^{3}

4
$1.276 \mathrm{Mg} / \mathrm{m}^{3}$
$0.154 \mathrm{~mm}^{-1}$
1200
$0.30 \times 0.02 \times 0.02 \mathrm{~mm}^{3}$
3.18 to 27.48°.
$-8<=\mathrm{h}<=8,-21<=\mathrm{k}<=21,-36<=\mathrm{l}<=31$
23968
$6696[\mathrm{R}($ int $)=0.1223]$
99.8 \%

Empirical
0.9969 and 0.9553

Full-matrix least-squares on F^{2}
6696 / 0 / 369
1.035
$\mathrm{R} 1=0.0933, \mathrm{wR} 2=0.2105$
$R 1=0.1421, w R 2=0.2481$
-0.29(16)
0.721 and -0.402 e. \AA^{-3}

Table S6. Crystal data and structure refinement for 6.

Empirical formula	C 20 H 24 N 2	
Formula weight	292.41	
Temperature	$123(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal system	Rhombohedral	
Space group	R 3	$\alpha=90^{\circ}$.
Unit cell dimensions	$\mathrm{a}=21.290(6) \AA$	$\beta=90^{\circ}$.
	$\mathrm{b}=21.290(6) \AA$	$\gamma=120^{\circ}$.
	$\mathrm{c}=9.790(4) \AA$	
Volume	$3843(2) \AA^{3}$	
Z	9	
Density (calculated)	$1.137 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.067 \mathrm{~mm}{ }^{-1}$	
F(000)	1422	
Crystal size	$0.30 \times 0.20 \times 0.10 \mathrm{~mm}{ }^{3}$	
Theta range for data collection	1.91 to 28.34°.	
Index ranges	$-28<=\mathrm{h}<=24,-27<=\mathrm{k}<=28,-13<=1<=12$	
Reflections collected	7069	
Independent reflections	$3315[\mathrm{R}(\mathrm{int})=0.0528]$	
	S 17	

Completeness to theta $=28.34^{\circ}$	87.6%
Absorption correction	Empirical
Max. and min. transmission	0.9934 and 0.9803
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$3315 / 1 / 203$
Goodness-of-fit on F2	1.169
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0748, \mathrm{wR} 2=0.1857$
R indices (all data)	$\mathrm{R} 1=0.0973, \mathrm{wR} 2=0.1931$
Largest diff. peak and hole	0.235 and $-0.220 \mathrm{e} . \AA^{-3}$

Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra:

[^2](

$1 d \cdot B r$

$\begin{array}{llllllllllllllllllllllllllll}210.0 & 200.0 & 190.0 & 180.0 & 170.0 & 160.0 & 150.0 & 140.0 & 130.0 & 120.0 & 110.0 & 100.0 & 90.0 & 80.0 & 70.0 & 60.0 & 50.0 & 40.0 & 30.0 & 20.0 & 10.0 & 0 & -10.0 & -20.0\end{array}$

$\begin{array}{llllllllllllllllllllllllllllll}210.0 & 200.0 & 190.0 & 180.0 & 170.0 & 160.0 & 150.0 & 140.0 & 130.0 & 120.0 & 110.0 & 100.0 & 90.0 & 80.0 & 70.0 & 60.0 & 50.0 & 40.0 & 30.0 & 20.0 & 10.0 & 0 & -10.0 & -20.0\end{array}$

$\begin{array}{lllllllllllllllllll}210.0 & 200.0 & 190.0 & 180.0 & 170.0 & 160.0 & 150.0 & 140.0 & 130.0 & 120.0 & 110.0 & 100.0 & 90.0 & 80.0 & 70.0 & 60.0 & 50.0 & 40.0 & 30.0 \\ 20.0 & 10.0\end{array}$

HPLC Chromatograms：

2b

$4 \mathbf{a}$

1 PDA Multi $1 / 210 \mathrm{~nm} .4 \mathrm{~nm}$

1 PDA Multi $1 / 210$ n PDA Ch1 210nm ピーク\＃	保持時間	面榡\％
－1	56.616	0.485
2	64.606	32.057
3	73.404	66.026
4	102．355	1.431
合計		100.000

2k

1 PDA Multi $1 / 210 \mathrm{~nm}, 4 \mathrm{~nm}$

4b

iv 5

4c

1 検出器A／210nm

4e

1 検出器A／210nm

mAU 700

4g

1 PDA Multi $1 / 210 \mathrm{~nm}, 4 \mathrm{~nm}$

$4 i$

1 検出器A／210nm

4h

1 PDA Multi $1 / 210 \mathrm{~nm} .4 \mathrm{~nm}$

4j

[^0]: ${ }^{1}$ Ohmatsu, K.; Kiyokawa, M.; Ooi, T. J. Am. Chem. Soc. 2011, 133, 1307.

[^1]: ${ }^{2}$ Sheldrick, G. M. SHELXTL 5.1, Bruker AXS Inc., Madison, Wisconsin, 1997.

[^2]: $\begin{array}{lllllllllll}70.0 & 60.0 & 50.0 & 40.0 & 30.0 & 20.0 & 10.0 & 0 & -10.0 & -20.0\end{array}$

