Supporting Information

for Asymmetric Substitution at Tetrasubstituted Chiral Carbon: Catalytic Ring-Opening Alkylation of Racemic 2,2-Disubstituted Aziridines with 3-Substituted Oxindoles

Kohsuke Ohmatsu,[†] Yuichiro Ando,[†] and Takashi Ooi^{*,†,‡}

[†]Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan.

> [‡]CREST, Japan Science and Technology Agency (JST), Nagoya, 464-8603, Japan. tooi@apchem.nagoya-u.ac.jp

General Information: Infrared spectra were recorded on a Shimadzu IRAffinity-1 spectrometer. ¹H NMR spectra were recorded on a JEOL JNM-ECS400 (400 MHz) spectrometer. Chemical shifts are reported in ppm from the solvent resonance (C_6D_6 ; 7.16 ppm) or the tetramethylsilane (0.0 ppm) resonance as the internal standard [(CD₃)₂CO and CDCl₃]. Data are reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, sept = septet, m = multiplet, and br = broad) and coupling constants (Hz). ¹³C NMR spectra were recorded on a JEOL JNM-ECS400 (101 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from the solvent 19 F resonance as the internal standard [(CD₃)₂CO; 29.84 ppm, CDCl₃; 77.16 ppm, and C_6D_6 ; 128.06 ppm]. NMR spectra were recorded on a JEOL JNM-ECS400 (376 MHz) spectrometer. Chemical shifts are reported in ppm from benzotrifluoride (-64.0 ppm) resonance as the external standard. Optical rotations were measured on a HORIBA SEPA-500 polarimeter. The high resolution mass spectra were conducted on Thermo Fisher Scientific Exactive. Analytical thin layer chromatography (TLC) was performed on Merck precoated TLC plates (silica gel 60 GF254, 0.25 mm). Flash column chromatography was performed on PSQ60AB (spherical, av. 55 µm; Fuji Silysia Chemical ltd.) and Silica gel 60 (Merck 1.09385.9929, 230-400 mesh). Enantiomeric excesses were determined by HPLC analysis using chiral columns [ϕ 4.6 mm x 250 mm, DAICEL CHIRALCEL OD-3 (OD3), CHIRALCEL OJ-3 (OJ3), CHIRALCEL OZ-3 (OZ3), CHIRALPAK AD-3 (AD3), CHIRALPAK ID-3 (ID3), and CHIRALPAK IE-3 (IE3)] with hexane (Hex), isopropyl alcohol (IPA) and ethanol (EtOH) as eluent.

All air- and moisture-sensitive reactions were performed under an atmosphere of argon (Ar) in dried glassware. Dichloromethane (CH₂Cl₂), diethyl ether (Et₂O), and tetrahydrofuran (THF) were supplied from Kanto Chemical Co., Inc. as "Dehydrated" and further purified by passing through neutral alumina under nitrogen atmosphere. 1,2,3-Triazolium salts $1\cdot X$ were synthesized by following the literature methods.¹ Other simple chemicals were purchased and used as such.

¹ Ohmatsu, K.; Kiyokawa, M.; Ooi, T. J. Am. Chem. Soc. 2011, 133, 1307.

(A) Initial Rate Kinetics

General Procedure for Kinetic Experiments:

 $[2b] = 0.2 \text{ M}, [3a] = 0.1 \text{ M}, [1d \cdot Br] = 0.005 \text{ M}, [K_2CO_3] = 0.1 \text{ mmol}, [anisole] = 0.25 \text{ M}.$

A solution of $1d \cdot Br$ (4.76 mg, 0.005 mmol), aziridine 2b (63.1 mg, 0.20 mmol), and oxindole 3a (24.7 mg, 0.10 mmol) in Et₂O (1.0 mL) was degassed by alternating vacuum evacuation/Ar backfill. To this solution was added K₂CO₃ (13.8 mg, 0.10 mmol) and the mixture was stirred at room temperature. After stirring for 10, 20, or 30 min, the reaction was quenched by the addition of a saturated aqueous solution of NH₄Cl and the extractive work-up was performed with CHCl₃. After evaporation to remove solvent, the residue was dissolved into C₆D₆(1 mL). To this solution was added anisole (27.2 µL, 0.25 mmol) as an internal standard. The sample thus prepared was analyzed by ¹H NMR at room temperature. The yield of product 4b was measured by comparison of the integrated area of the methyl protons of anisole.

Note: Taking out the aliquots of the reaction mixture from liquid–solid biphasic system to analyze the conversion at the first stage of the reaction (10 min) caused an error of the following reaction rate, probably due to the deviation of the relative amount of K_2CO_3 salt. Therefore, we analyzed the conversion at recorded times by quenching each reaction experiments. The reproducibility of data was confirmed by performing all experiments twice.

Kinetics on catalyst 1d·Br:

 $[2b] = 0.2 \text{ M}, [3a] = 0.1 \text{ M}, [1d \cdot Br] = 0.003 \sim 0.007 \text{ M}, [K_2CO_3] = 0.1 \text{ mmol.}$

initial rate 0.003 M: 0.0088 Ms⁻¹ 0.005 M: 0.0135 Ms⁻¹ 0.007 M: 0.0186 Ms⁻¹

Figure S1. (a) Initial rate kinetics (catalyst) (b) Kinetics on catalyst **1d**·**Br** *Pseudo-first-order* dependence on the concentration of catalyst **1d**·**Br**

Kinetics on aziridine 2b:

Kinetics on oxindole 3a:

initial rate 0.20 M: 0.0135 Ms⁻¹ 0.25 M: 0.0130 Ms⁻¹ 0.30 M: 0.0133 Ms⁻¹

Figure S2. (a) Initial rate kinetics (aziridine) (b) Kinetics on aziridine **2b** *Zero-order* dependence on the concentration of aziridine **2b**

Figure S3. (a) Initial rate kinetics (oxindole) (b) Kinetics on oxindole **3a** *Zero-order* dependence on the concentration of oxindole **3a**

Kinetics on K₂CO₃:

Figure S4. (a) Initial rate kinetics (base) (b) Kinetics on K_2CO_3 *First-order* dependence on the amount of K_2CO_3

These definitive data clearly indicated that the rate-limiting step is not carbon–carbon bond formation between oxindole-derived chiral triazolium enolate with aziridine but ion-exchange process for the generation of the requisite enolate.

 $[2\mathbf{b}] = 0.2 \sim 0.3 \text{ M}, [3\mathbf{a}] = 0.1 \text{ M}, [1\mathbf{d} \cdot \mathbf{Br}] = 0.005 \text{ M}, [K_2 \text{CO}_3] = 0.1 \text{ mmol.}$

(B) Nonlinear Effect

 Table S1. Asymmetric Amplification

Figure S5. Nonlinear effect

The data of Table S1 and the graph of Figure S5 demonstrated a pronounced positive nonlinear effect, which suggested that more than one catalyst is involved in the stereo-determining step.

Experimental Section:

Characterization of 1,2,3-Triazolium Salt 1.Br

1a·Br: ¹H NMR (400 MHz, CDCl₃) δ 10.2 (1H, brs), 8.65 (1H, brs), 8.20 (2H, d, J = 6.9 Hz), 7.87-7.82 (3H, m), 7.64 (1H, t, J = 7.6 Hz), 7.45-7.29 (8H, m), 7.27-7.22 (2H, m), 7.20-7.14 (4H, m), 7.03-6.97 (4H, m), 6.91-6.84 (4H, m), 6.55 (2H, d, J = 7.8 Hz), 4.85 (2H, s), 1.63 (3H, d, J = 7.3 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 142.9, 140.3, 139.9, 138.5, 135.3, 133.7, 132.9, 132.4, 132.0, 131.9, 131.1, 130.2, 129.9,

129.4, 129.2, 129.0, 128.9, 128.8, 128.5, 128.4, 128.3, 128.2, 127.8, 127.6, 127.2, 120.3, 69.4, 65.9, 55.2, 15.8, two peaks for aromatic carbons were not found probably due to overlapping; IR 3221, 2934, 1672, 1520, 1275, 1148, 746, 702 cm⁻¹; HRMS (ESI) Calcd for $C_{43}H_{37}N_4O^+$ ([M]⁺) 625.2962. Found 625.2969.; $[\alpha]_D^{22} = -44.3$ (c = 1.0, MeOH).

1b·Br: ¹H NMR (400 MHz, CDCl₃) δ 9.94 (1H, brs), 8.51 (1H, brs), 8.20 (2H, d, J = 6.2 Hz), 7.79 (2H, brs), 7.66 (2H, td, J = 7.7, 1.2 Hz), 7.51-7.35 (9H, m), 7.30-7.15 (9H, m), 7.07 (2H, t, J = 7.6 Hz), 6.85 (2H, d, J = 7.1 Hz), 6.64 (2H, d, J = 7.5 Hz), 5.07 (2H, brs), 2.13-2.07 (1H, m), 1.90-1.81 (1H, m), 1.33-1.25 (1H, m), 0.84-0.75 (4H, m); ¹³C NMR (101 MHz, CDCl₃) δ 167.9, 142.8, 140.6, 138.6, 133.7, 133.1, 132.4,

132.2, 131.9, 130.8, 130.6, 129.8, 129.3, 129.2, 129.0, 128.8, 128.7, 128.6, 128.6, 128.4, 128.3, 128.3, 127.8, 127.7, 127.4, 120.3, 70.4, 69.1, 55.8, 31.9, 19.3, 13.7, three peaks for aromatic carbons were not found probably due to overlapping; IR 3235, 2932, 1674, 1485, 1285, 1146, 748, 704 cm⁻¹; HRMS (ESI) Calcd for $C_{45}H_{41}N_4O^+$ ([M]⁺) 653.3275. Found 653.3270.; $[\alpha]_D^{22} = -27.7$ (c = 1.0, MeOH).

1c·Br: ¹H NMR (400 MHz, CDCl₃) δ 8.92 (1H, brs), 8.42 (1H, brs), 8.09 (2H, d, J = 7.3 Hz), 7.80 (1H, d, J = 8.2 Hz), 7.70 (1H, s), 7.55 (2H, d, J = 6.8 Hz), 7.48-7.29 (15H, m), 7.17 (2H, t, J = 7.8 Hz), 7.11 (1H, brs), 6.89 (2H, d, J = 8.0 Hz), 6.82 (2H, d, J = 7.6 Hz), 5.69 (1H, brs), 5.37 (1H, d, J = 15.3 Hz), 2.16-2.10 (1H, m), 1.60-1.57 (1H, m), 1.25-1.19 (1H, m), 0.81-0.73 (4H, m); ¹³C NMR (101 MHz, CDCl₃) δ 168.7,

 $[Ar^{1} = 4-CF_{3}C_{6}H_{4}]$ 143.4, 141.6, 140.0, 137.3, 137.0, 134.5 (q, $J_{C-F} = 33.9$ Hz), 134.0, 133.5, 132.3, 132.0 (q, $J_{C-F} = 32.9$ Hz), 129.7, 129.5, 129.2, 129.1, 128.8, 128.7, 128.5, 128.4, 128.3, 128.2, 128.0, 128.0, 127.4 (q, J = 2.9 Hz), 126.1 (q, $J_{C-F} = 3.9$ Hz), 125.7 (q, $J_{C-F} = 2.9$ Hz), 125.5 (q, $J_{C-F} = 276$ Hz), 123.3 (q, $J_{C-F} = 277$ Hz), 69.7, 68.7, 56.1, 32.7, 19.4, 13.6, three peaks for aromatic carbons were not found probably due to overlapping; IR 3026, 2934, 1674, 1485, 1325, 1130, 752, 706 cm⁻¹; HRMS (ESI) Calcd for C₄₇H₃₉N₄OF₆⁺ ([M]⁺) 789.3023. Found 789.3015.; $[\alpha]_{D}^{22} = -25.1$ (c = 0.4, MeOH).

1d·Br: ¹H NMR (400 MHz, CDCl₃) δ 8.37 (1H, brs), 8.18 (1H, brs), 8.04 (2H, d, J = 8.0 Hz), 7.79 (1H, d, J = 8.0 Hz), 7.73 (1H, s), 7.56 (2H, brs), 7.48 (2H, d, J = 8.2 Hz), 7.36-7.32 (4H, m), 7.24-7.14 (9H, m), 6.88-6.83 (4H, m), 5.49 (1H, brs), 5.22 (1H, d, J = 15.3 Hz), 2.34, (3H, s), 2.05-1.96 (1H, m), 1.62 (1H, br), 1.24 (1H, br), 0.82-0.70 (4H, m); ¹³C NMR (101 MHz, CDCl₃) δ 168.6, 143.6, 143.1, 140.1, 139.5, 137.2, 134.8, 134.8 (q, $J_{C-F} = 33.9$ Hz), 134.5, 134.1, 133.6, 133.0, 132.3 (q, $J_{C-F} = 32.9$ Hz), 130.9, 130.3, 130.1, 129.6, 129.4, 129.4, 129.3, 128.8, 128.6, 128.3, 128.0,

127.6, 126.2 (q, $J_{C-F} = 3.9 \text{ Hz}$), 125.6 (q, $J_{C-F} = 3.9 \text{ Hz}$), 123.5, 123.4 (q, $J_{C-F} = 278 \text{ Hz}$), 123.2 (q, $J_{C-F} = 278 \text{ Hz}$), 69.6, 68.2, 55.9, 32.2, 21.6, 19.3, 13.6, one peak for aromatic carbon was not found probably due to overlapping; IR 3026, 2934, 2361, 1674, 1325, 1132, 752 cm⁻¹; HRMS (ESI) Calcd for C₄₈H₃₉N₄OF₆Cl₂⁺ ([M]⁺) 871.2400. Found 871.2390.; $[\alpha]_D^{22} = -17.2$ (c = 1.0, MeOH).

Preparation and Characterization of 2,2-Disubstituted Aziridines 2:

Ph Me
$$H_3^{I_2}$$
 Ph Me $H_3^{I_2}$ Ph Me H_3^{I_2} Ph Me $H_3^{I_2}$ Ph Me H_3^{I_2} Ph Me $H_3^{I_2}$ Ph Me H_3^{I_2} Ph Me H_3^{I_2} Ph Me $H_3^{I_2}$ Ph Me H_3^{I_2}

To a solution of I₂ (5.08 g, 20 mmol) and Brij 35 (0.60 g) in NH₃ aq. (30 mL) was added α -methylstyrene (1.30 mL, 10 mmol), and the reaction mixture was stirred for 2 h at room temperature. The resulting solution was diluted with a saturated aqueous solution of Na₂SO₃ and EtOAc. The extractive work-up was performed with EtOAc. After drying over Na₂SO₄, filtration, and removal of solvent, the resulting crude residue was purified by column chromatography (Hex/EtOAc = 1:1 as eluent) to afford **S1** (915 mg, 6.9 mmol, 69% yield) as a yellow liquid. **S1**: ¹H NMR (400 MHz, CDCl₃) δ 7.36 (2H, d, *J* = 7.3 Hz), 7.31 (2H, t, *J* = 7.3 Hz), 7.22 (1H, t, *J* = 7.3 Hz), 1.94 (2H, s), 1.60 (3H, s), 0.63 (1H, br).

To a solution of **S1** (915 mg, 6.9 mmol) in CH₂Cl₂ (15 mL) were added 2-mesitylenesulfonyl chloride (1.51 g, 6.9 mmol), and *N*,*N*-dimethyl-4-aminopyridine (0.84 g, 6.9 mmol) at 0 °C, and the whole reaction mixture was stirred for 3 h at the same temperature. The mixture was then diluted with water and the extractive work-up was conducted with CHCl₃. The organic extracts were dried over Na₂SO₄, filtered , and concentrated. Purification of the crude residue by column chromatography on silica gel (Hex/EtOAc = 30:1 as eluent) gave **2b** (631 mg, 2.0 mmol, 29% yield) as a white solid.

2b: ¹H NMR (400 MHz, CDCl₃) δ 7.39 (2H, d, *J* = 7.3 Hz), 7.33 (2H, t, *J* = 7.3 Hz), 7.28 (1H, t, *J* = 7.3 Hz), 6.96 (2H, s), 3.02 (1H, s), 2.71 (6H, s), 2.54 (1H, s), 2.30 (3H, s), 2.06 (3H, s); ¹³C NMR (101 MHz, CDCl₃) δ 142.8, 141.3, 139.7, 135.1, 131.9, 128.5, 127.8, 126.6, 51.1, 42.0, 23.3, 21.1, 21.0; IR 3152, 2938, 1314, 1121, 1105, 1024, 862, 800, 775 cm⁻¹; HRMS (ESI) Calcd for C₁₈H₂₂NO₂S⁺ ([M+H]⁺) 316.1366. Found 316.1366.; HPLC conditions for the recovered aziridine **2b** (Scheme 1), OZ3, H/IPA = 10:1, flow rate = 0.5 mL/min, λ = 210 nm, 13.2 min (major), 14.5 min (minor); $[\alpha]_D^{22} = -22.0$ (c = 3.5, CHCl₃, 76% ee).

Ńе

2d

MeC

2c: ¹H NMR (400 MHz, CDCl₃) δ 7.21 (1H, td, J = 7.1, 1.4 Hz), 7.18 (1H, s), 7.17 (1H, dd, J = 7.1 1.4 Hz), 7.08 (1H, d, J = 7.1 Hz), 6.95 (2H, s), 2.99 (1H, s), 2.71 (6H, s), 2.53 (1H, s), 2.33 (3H, s), 2.30 (3H, s), 2.04 (3H, s); ¹³C NMR (101 MHz, CDCl₃) δ 142.7, 141.3, 139.8, 138.2, 135.2, 131.9, 128.5, 128.4, 127.4, 123.7, 51.2,

41.9, 23.3, 21.6, 21.1, one peak for methyl carbon was not found probably due to overlapping; IR 2940, 2920, 1601, 1452, 1321, 1038, 905, 719 cm⁻¹; HRMS (ESI) Calcd for $C_{19}H_{24}NO_2S^+$ ([M+H]⁺) 330.1522. Found 330.1522.

2d: ¹H NMR (400 MHz, CDCl₃) δ 7.23 (1H, t, J = 9.4 Hz), 6.97 (1H, dd, J = 9.4, 0.9 Hz), 6.96 (2H, s), 6.93 (1H, t, J = 0.9), 6.81 (1H, dd, J = 9.4, 0.9 Hz), 3.79 (3H, s), 3.01 (1H, s), 2.72 (6H, s), 2.51 (1H, s), 2.30 (3H, s), 2.05 (3H, s); ¹³C NMR (101

MHz, CDCl₃) δ 159.7, 143.1, 142.8, 139.8, 135.1, 131.9, 129.6, 118.9, 113.4, 112.3, 55.3, 51.1, 42.0, 23.3, 21.1, 20.9; IR 2967, 2918, 1601, 1315, 1111, 905, 698 cm⁻¹; HRMS (ESI) Calcd for C₁₉H₂₄NO₃S⁺ ([M+H]⁺) 346.1471. Found 346.1472.

Cl N_{Me} 2e: ¹H NMR (400 MHz, CDCl₃) δ 7.34 (1H, t, J = 1.4 Hz), 7.30-7.28 (3H, m), 6.97 (2H, s), 3.01 (1H, s), 2.71 (6H, s), 2.50 (1H, s), 2.31 (3H, s), 2.04 (3H, s); ¹³C NMR (101 MHz, CDCl₃) δ 143.3, 143.0, 139.8, 134.9, 134.4, 132.0, 129.9, 128.0, 126.9, 124.9, 50.1, 42.0, 23.3, 21.1, 20.6; IR 3472, 3148, 1599, 1314, 1130, 1053, 878 cm⁻¹; HRMS (ESI) Calcd for C₁₈H₂₁NO₂SCl⁺ ([M+H]⁺) 350.0976. Found 350.0977.

2f: ¹H NMR (400 MHz, CDCl₃) δ 7.49 (1H, t, J = 1.8 Hz), 7.40 (1H, dt, J = 7.8, 1.8 Hz), 7.33 (1H, dt, J = 7.8, 1.8 Hz), 7.20 (1H, t, J = 7.8 Hz), 6.97 (2H, s), 3.01 (1H, s), 2.71 (6H, s), 2.50 (1H, s), 2.31 (3H, s), 2.04 (3H, s); ¹³C NMR (101 MHz, CDCl₃)

 δ 143.6, 143.0, 139.8, 134.9, 132.0, 130.9, 130.2, 129.9, 125.4, 122.6, 50.1, 42.0, 23.3, 21.2, 20.6; IR 3144, 2943, 1601, 1315, 1144, 876, 683 cm⁻¹; HRMS (ESI) Calcd for C₁₈H₂₁NO₂SBr⁺ ([M+H]⁺) 394.0471. Found 394.0472.

^s **2g**: ¹H NMR (400 MHz, CDCl₃) δ 7.27 (2H, d, *J* = 8.2 Hz), 7.13 (2H, d, *J* = 8.2 Hz), 6.95 (2H, s), 2.99 (1H, s), 2.70 (6H, s), 2.53 (1H, s), 2.33 (3H, s), 2.30 (3H, s), 2.03 (3H, s); ¹³C NMR (101 MHz, CDCl₃) δ 142.7, 140.0, 138.3, 137.5, 135.2, 131.9,

129.2, 126.6, 51.0, 42.1, 23.3, 21.2, 21.1, one peak for methyl carbon was not found probably due to overlapping; IR 3028, 2938, 1603, 1319, 1157, 820, 692 cm⁻¹; HRMS (ESI) Calcd for $C_{19}H_{24}NO_2S^+$ ([M+H]⁺) 330.1522. Found 330.1536.

2h: ¹H NMR (400 MHz, CDCl₃) δ 7.32 (2H, dd, J = 6.1, 2.8 Hz), 7.29 (2H, dd, J = 6.1, 2.8 Hz), 7.29 (2H, dd, J = 6.1, 2.8 Hz), 6.96 (2H, s), 3.00 (1H, s), 2.70 (6H, s), 2.51 (1H, s), 2.30 (3H, s), 2.03 (3H, s); ¹³C NMR (101 MHz, CDCl₃) δ 142.9, 139.8, 139.7, 135.0, 133.6, 131.9,

128.7, 128.1, 50.2, 42.0, 23.3, 21.1, 20.8; IR 3159, 2943, 2633, 1317, 1148, 868, 696 cm⁻¹; HRMS (ESI) Calcd for $C_{18}H_{21}NO_2SCl^+$ ([M+H]⁺) 350.0976. Found 350.0978.

SO₂Mes **2i**: ¹H NMR (400 MHz, CDCl₃) δ 7.45 (2H, dd, J = 6.7, 1.8 Hz), 7.26 (2H, dd, J = 6.7, 1.8 Hz), 6.96 (2H, s), 3.00 (1H, s), 2.70 (6H, s), 2.50 (1H, s), 2.31 (3H, s), 2.03 (3H, s); ¹³C NMR (101 MHz, CDCl₃) δ 142.9, 140.4, 139.7, 134.9, 131.9, 131.6,

128.4, 121.8, 50.2, 42.0, 23.3, 21.1, 20.7; IR 3275, 2932, 1321, 1161, 1055, 872, 723 cm⁻¹; HRMS (ESI) Calcd for $C_{18}H_{21}NO_2SBr^+$ ([M+H]⁺) 394.0471. Found 394.0468.

Ńе

2i

139.8, 135.0, 132.0, 131.5, 129.7, 126.5, 81.3, 50.5, 42.1, 28.3, 23.3, 21.2, 20.6; IR 2976, 1721, 1452, 1300, 1049, 858, 569 cm⁻¹; HRMS (ESI) Calcd for $C_{23}H_{29}NO_4NaS^+$ ([M+Na]⁺) 438.1710. Found 438.1710.

 Ne
 2k: ¹H NMR (400 MHz, CDCl₃) δ7.82-7.79 (4H, m), 7.51-7.45 (3H, m), 6.96 (2H, s), 3.09 (1H, s), 2.73 (6H, s), 2.66 (1H, s), 2.30 (3H, s), 2.15 (3H, s); ¹³C NMR (101 MHz, CDCl₃) δ142.8, 139.8, 138.7, 135.2, 133.1, 132.8, 131.9, 128.4, 128.1, 127.8,

126.5, 126.4, 125.6, 124.6, 51.2, 42.1, 23.3, 21.2, 20.9; IR 3472, 2932, 2658, 1314, 1130, 935, 854, 696 cm⁻¹; HRMS (ESI) Calcd for $C_{22}H_{24}NO_2S^+$ ([M+H]⁺) 366.1522. Found 366.1523.; HPLC conditions for the recovered aziridine **2k** (Scheme 1), AD3, Hex/IPA = 10:1, flow rate = 1.0 mL/min, λ = 210 nm, 6.9 min (*S*), 8.1 min (*R*); $[\alpha]_D^{22} = +11.5$ (c = 1.5, CHCl₃, 76% ee).

General Procedure for 1d·Br-Catalyzed Asymmetric Ring-Opening Alkylation of 2,2-Disubstituted Aziridines 2 with Oxindole 3:

A solution of **1d**·**Br** (4.76 mg, 0.005 mmol), aziridine **2b** (63.1 mg, 0.20 mmol), and oxindole **3a** (24.7mg, 0.10 mmol) in Et₂O (1.0 mL) was degassed by alternating vacuum evacuation/Ar backfill. To this solution was added K_2CO_3 (13.8 mg, 0.10 mmol) and the mixture was stirred for 24 h at room temperature. The reaction mixture was diluted with a saturated aqueous solution of NH₄Cl and the extractive work-up was performed with CHCl₃. After drying over Na₂SO₄, filtration, and removal of solvent, the resulting crude residue was purified by column chromatography (Hex/CHCl₃/EtOAc = 8:2:1 as eluent) to afford **4b** (55.7 mg, 0.10 mmol, 99% yield) as a white solid.

Characterization of Alkylation Products 4:

4b: ¹H NMR (400 MHz, C₆D₆) δ 7.97 (1H, d, *J* = 7.8 Hz), 6.96-6.90 (2H, m), 6.83 (2H, t, *J* = 7.6 Hz), 6.63 (1H, td, *J* = 7.8, 1.0 Hz), 6.58 (2H, s), 6.54 (2H, d, *J* = 7.6 Hz), 6.03 (1H, d, *J* = 7.6 Hz), 4.26 (1H, dd, *J* = 8.7, 5.5 Hz), 3.90 (1H, dd, *J* = 12.4, 8.7 Hz), 3.71 (1H, dd, *J* = 12.4, 5.5 Hz), 2.59 (6H, s), 1.91 (3H, s), 1.42 (9H, s), 1.24 (3H, s), 1.05

(3H, s); ¹³C NMR (101 MHz, C₆D₆) δ 177.0, 149.4, 141.8, 140.3, 139.6, 139.4, 134.5, 132.1, 130.7, 128.5, 127.3, 125.1, 123.3, 114.7, 83.3, 54.1, 47.4, 46.8, 28.0, 23.2, 20.7, 18.9, 18.5, two peaks for aromatic carbons were not found probably due to overlapping; IR 2978, 2371, 1732, 1605, 1479, 1348, 1153, 754 cm⁻¹; HRMS (ESI) Calcd for C₃₂H₃₈N₂O₅NaS⁺ ([M+Na]⁺) 585.2394. Found 585.2390.; HPLC ID3, Hex/IPA = 10:1, flow rate = 0.5 mL/min, λ = 210 nm, 40.7 min (major isomer of major diastereomer), 63.8 min (minor diastereomer), 78.6 min (minor diastereomer).

4c: ¹H NMR (400 MHz, C₆D₆) δ 7.95 (1H, brd, J = 6.0 Hz), 6.94 (1H, t, J = 8.0 Hz), 6.83-6.77 (2H, m), 6.65 (1H, t, J = 7.6 Hz), 6.58 (2H, s), 6.44 (1H, brd, J = 7.4 Hz), 6.35 (1H, s), 6.12 (1H, brd, J = 6.9 Hz), 4.35-4.19 (1H, m), 3.88 (1H, dd, J = 12.4, 8.7 Hz), 3.70 (1H, dd, J = 12.4, 4.6 Hz), 2.58 (6H, s), 1.92 (3H, s), 1.91 (3H, s), 1.41 (9H, s), 1.30 (3H, s), 1.07 (3H, s); ¹³C NMR (101 MHz, C₆D₆) δ 176.9, 149.4, 141.7, 140.4,

139.5, 139.2, 137.2, 134.5, 134.4, 132.1, 130.8, 128.9, 128.5, 125.3, 125.1, 123.2, 114.6, 83.2, 54.1, 47.5, 46.8, 27.9, 23.1, 21.5, 20.7, 18.8, 18.5, one peak for aromatic carbon was not found probably due to overlapping; IR 3319, 2978, 1730, 1605, 1479, 1290, 847, 652 cm⁻¹; HRMS (ESI) Calcd for $C_{33}H_{40}N_2O_5NaS^+$ ([M+Na]⁺) 599.2550. Found 599.2549.; HPLC ID3, Hex/IPA = 19:1, flow rate = 0.5 mL/min, λ = 210 nm, 70.5 min (major isomer of major diastereomer), 106 min (minor isomer of major diastereomer), 124 min (minor diastereomer), 132 min (minor diastereomer).

4d: ¹H NMR (400 MHz, C₆D₆) δ 7.93 (1H, d, J = 8.2 Hz), 6.93 (1H, td, J = 7.8, 1.4 Hz), 6.78 (1H, t, J = 7.8 Hz), 6.66 (1H, t, J = 7.3 Hz), 6.59-6.56 (3H, m), 6.28 (1H, brs), 6.25 (1H, d, J = 7.3 Hz), 6.19 (1H, d, J = 7.8 Hz), 4.42 (1H, dd, J = 8.7, 4.8 Hz), 3.85 (1H, dd, J = 12.5, 8.7 Hz), 3.70 (1H, dd, J = 12.5, 4.8 Hz), 3.19 (3H, s), 2.58 (6H, s), 1.92 (3H, s), 1.41 (9H, s), 1.33 (3H, s), 1.08 (3H, s); ¹³C NMR (101 MHz, C₆D₆) δ 176.8, 159.5, 149.4, 141.8, 140.9, 140.4, 139.5, 134.4, 132.1, 130.8, 128.9, 128.5,

125.1, 123.3, 120.3, 114.7, 114.1, 113.3, 83.2, 54.5, 54.0, 47.7, 46.9, 27.9, 23.1, 20.7, 18.8, 18.5; IR 3315, 2978, 1730, 1602, 1290, 1147, 750 cm⁻¹; HRMS (ESI) Calcd for $C_{33}H_{40}N_2O_6NaS^+$ ([M+Na]⁺) 615.2499. Found 615.2495.; HPLC ID3, Hex/EtOH = 10:1, flow rate = 1.0 mL/min, λ = 210 nm, 16.1 min (major isomer of major diastereomer), 18.5 min (minor isomer of major diastereomer), 21.5 min (minor diastereomer).

4e: ¹H NMR (400 MHz, C_6D_6) δ 7.92 (1H, d, J = 8.2 Hz), 6.93 (1H, td, J = 8.2, 1.4 Hz), 6.89 (1H, dd, J = 7.8, 1.4 Hz), 6.70-6.66 (2H, m), 6.57 (2H, s), 6.48 (1H, t, J = 7.8 Hz), 6.24 (1H, brd, J = 7.3 Hz), 6.18 (1H, brd, J = 6.9 Hz), 4.32 (1H, dd, J = 7.8, 6.2 Hz), 3.71 (1H, dd, J = 12.7, 7.8 Hz), 3.58 (1H, dd, J = 12.7, 6.2 Hz), 2.54 (6H, s), 1.91 (3H, s), 1.42 (9H, s), 1.19 (3H, s), 0.99 (3H, s); ¹³C NMR (101 MHz, C₆D₆) δ 176.4, 149.3,

142.0, 141.8, 140.3, 139.5, 134.0, 132.2, 130.2, 128.9, 128.8, 127.4, 125.8, 124.9, 123.4, 114.9, 83.4, 53.9, 47.5, 46.8, 27.9, 23.1, 20.7, 18.2, 18.1, two peaks for aromatic carbons were not found probably due to overlapping; IR 3273, 2980, 1730, 1605, 1477, 1147, 750, 583 cm⁻¹; HRMS (ESI) Calcd for $C_{32}H_{37}N_2O_5NaSCl^+$ ([M+Na]⁺) 619.2004. Found 619.2004.; HPLC OZ3, Hex/IPA = 10:1, flow rate = 1.0 mL/min, λ = 210 nm, 17.2 min (major isomer of major diastereomer), 25.3 min (minor diastereomer), 28.3 min (minor diastereomer), 35.0 min (minor diastereomer).

4f: ¹H NMR (400 MHz, C₆D₆) δ 7.92 (1H, d, J = 8.2 Hz), 7.04 (1H, d, J = 8.0 Hz), 6.96 (1H, t, J = 8.2 Hz), 6.86-6.80 (1H, m), 6.70 (1H, t, J = 7.8 Hz), 6.57 (2H, s), 6.42 (1H, t, J = 8.2 Hz), 6.24 (2H, brd, J = 6.2 Hz), 4.41 (1H, dd, J = 7.8, 6.2 Hz), 3.71 (1H, dd, J = 12.7, 7.8 Hz), 3.57 (1H, dd, J = 12.7, 6.2 Hz), 2.54 (6H, s), 1.92 (3H, s), 1.43 (9H, s), 1.20 (3H, s), 1.00 (3H, s); ¹³C NMR (101 MHz, C₆D₆) δ 176.4, 149.3, 142.1,

142.0, 140.3, 139.5, 134.1, 132.3, 131.4, 130.4, 130.2, 129.2, 128.8, 126.3, 124.9, 123.4, 122.4, 114.9, 83.4, 53.9, 47.5, 46.8, 27.9, 23.1, 20.7, 18.2, 18.2; IR 3273, 2978, 1732, 1605, 1477, 1150, 754, 536 cm⁻¹; HRMS (ESI) Calcd for $C_{32}H_{37}N_2O_5NaSBr^+$ ([M+Na]⁺) 663.1499. Found 663.1500.; HPLC OD3, Hex/IPA = 97:3, flow rate = 0.5 mL/min, λ = 210 nm, 30.1 min (major isomer of major diastereomer), 33.0 min (minor diastereomer), 38.4 min (minor isomer of major diastereomer), 62.9 min (minor diastereomer).

4g: ¹H NMR (400 MHz, C₆D₆) δ 7.98 (1H, d, J = 8.2 Hz), 6.95 (1H, td, J = 8.2, 1.4 Hz), 6.69 (2H, d, J = 7.8 Hz), 6.64 (1H, td, J = 7.8, 0.9 Hz), 6.59 (2H, s), 6.49 (2H, d, J = 7.8 Hz), 6.11 (1H, d, J = 7.8 Hz), 4.37 (1H, dd, J = 8.7, 5.0 Hz), 3.89 (1H, dd, J = 12.8, 8.7 Hz), 3.73 (1H, dd, J = 12.8, 5.0 Hz), 2.60 (6H, s), 2.03 (3H, s), 1.92 (3H, s), 1.42 (9H, s), 1.26 (3H, s), 1.07 (3H, s); ¹³C NMR (101 MHz, C₆D₆) δ 177.1, 149.5, 141.8,

140.3, 139.6, 136.7, 136.3, 134.6, 132.1, 130.8, 128.7, 128.5, 125.2, 123.3, 114.7, 83.2, 54.1, 47.4, 46.5, 27.9, 23.2, 20.8, 20.7, 19.0, 18.6, one peak for aromatic carbon was not found probably due to overlapping; IR 3283, 2978, 2359, 1730, 1605, 1292, 1152, 754, 658 cm⁻¹; HRMS (ESI) Calcd for $C_{33}H_{40}N_2O_5NaS^+$ ([M+Na]⁺) 599.2550. Found 599.2573.; HPLC OD3, Hex/EtOH = 98:2, flow rate = 1.0 mL/min, λ = 210 nm, 10.9 min (minor diastereomer), 11.5 min (major isomer of major diastereomer), 13.1 min (minor isomer of major diastereomer).

4h: ¹H NMR (400 MHz, C₆D₆) δ 7.86 (1H, d, J = 8.0 Hz), 6.95 (1H, t, J = 8.0 Hz), 6.75 (2H, d, J = 7.8 Hz), 6.68 (1H, t, J = 7.8 Hz), 6.54 (2H, s), 6.29-6.20 (3H, m), 4.63 (1H, dd, J = 7.4, 6.8 Hz), 3.74 (1H, dd, J = 12.9, 7.4 Hz), 3.63 (1H, dd, J = 12.9, 6.8 Hz), 2.52 (6H, s), 1.93 (3H, s), 1.39 (9H, s), 1.25 (3H, s), 1.03 (3H, s); ¹³C NMR (101 MHz, C₆D₆) δ 176.5, 149.1, 142.1, 140.3, 139.6, 138.0, 134.2, 133.2, 132.1, 130.3, 129.3, 128.7, 125.0, 123.5, 114.8, 83.4, 53.9, 47.6, 46.6, 27.9, 23.1, 20.7, 18.5, 18.3,

one peak for aromatic carbon was not found probably due to overlapping; IR 3273, 2978, 1730, 1605, 1290, 1148, 750, 536 cm⁻¹; HRMS (ESI) Calcd for $C_{32}H_{37}N_2O_5NaSCl^+$ ([M+Na]⁺) 619.2004. Found 619.2003.; HPLC OD3, Hex/IPA = 97:3, flow rate = 1.0 mL/min, λ = 210 nm, 15.0 min (minor diastereomer), 17.6 min (major isomer of major diastereomer), 21.4 min (minor isomer of major diastereomer), 31.7 min (minor diastereomer).

4i: ¹H NMR (400 MHz, C₆D₆) δ 7.88 (1H, d, *J* = 8.0 Hz), 6.94 (1H, td, *J* = 8.0, 0.9 Hz), 6.89 (2H, d, *J* = 8.7 Hz), 6.66 (1H, td, *J* = 8.0, 0.9 Hz), 6.54 (2H, s), 6.22-6.16 (3H, m), 4.48 (1H, dd, *J* = 7.3, 6.9 Hz), 3.72 (1H, dd, *J* = 13.3, 7.3 Hz), 3.61 (1H, dd, *J* = 13.3, 6.9 Hz), 2.52 (6H, s), 1.93 (3H, s), 1.40 (9H, s), 1.21 (3H, s), 1.00 (3H, s); ¹³C NMR (101 MHz, C₆D₆) δ 176.5, 149.1, 142.1, 140.3, 139.6, 138.5, 134.2, 132.1, 130.7, 130.3, 129.6, 128.7, 125.0, 123.4, 121.5, 114.8, 83.4, 53.8, 47.5, 46.6, 27.9, 23.1, 20.8, 18.4,

18.3; IR 3279, 2978, 1732, 1605, 1290, 1055, 750, 536 cm⁻¹; HRMS (ESI) Calcd for $C_{32}H_{37}N_2O_5NaSBr^+$ ([M+Na]⁺) 663.1499. Found 663.1497.; HPLC ID3, Hex/IPA/EtOH = 92:5:3, flow rate = 1.0 mL/min, λ = 210 nm, 16.2 min (major isomer of major diastereomer), 22.8 min (minor isomer of major diastereomer), 25.0 min (minor diastereomer), 27.4 min (minor diastereomer).

4j: ¹H NMR [400 MHz, (CD₃)₂CO] δ 7.56 (1H, d, *J* = 8.0 Hz), 7.53 (2H, d, *J* = 8.2 Hz), 7.29 (1H, td, *J* = 8.0, 1.4 Hz), 7.10 (1H, td, *J* = 8.0, 0.9 Hz), 6.92 (2H, s), 6.87 (1H, brd, *J* = 7.3 Hz), 6.68 (2H, br), 5.76 (1H, t, *J* = 6.9 Hz), 3.80 (1H, dd, *J* = 13.1, 6.9 Hz), 3.72 (1H, dd, *J* = 13.1, 6.9 Hz), 2.44 (6H, s), 2.29 (3H, s), 1.59 (3H, s), 1.57 (9H, s), 1.47 (3H, s), 1.46 (9H, s); ¹³C NMR (101 MHz, (CD₃)₂CO) δ 177.2, 165.9, 149.3, 145.0, 143.0, 140.8, 140.1, 135.1, 132.7, 131.2, 131.2, 129.5, 129.0, 128.6, 126.0,

124.4, 115.2, 84.0, 81.4, 54.8, 48.1, 48.0, 28.5, 28.2, 23.2, 21.1, 18.9, 18.7; IR 3289, 2978, 1711, 1605, 1292, 1150, 752, 538 cm⁻¹; HRMS (ESI) Calcd for $C_{37}H_{46}N_2O_7NaS^+$ ([M+Na]⁺) 685.2918. Found 685.2916.; HPLC OD3, Hex/EtOH = 97:3, flow rate = 0.5 mL/min, λ = 210 nm, 20.0 min (minor diastereomer), 22.0 min (major isomer of major diastereomer), 27.2 min (minor isomer of major diastereomer), 35.2 min (minor diastereomer).

4k: ¹H NMR (400 MHz, C₆D₆) δ 7.88 (1H, d, J = 8.2 Hz), 7.49 (1H, d, J = 7.8 Hz), 7.35 (1H, d, J = 8.2 Hz), 7.24-7.18 (4H, m), 6.94 (1H, td, J = 8.2, 1.4 Hz), 6.63-6.56 (2H, m), 6.50 (2H, s), 6.19 (1H, brd, J = 5.0 Hz), 4.33 (1H, br), 3.91 (1H, dd, J = 12.6, 8.0 Hz), 3.85 (1H, dd, J = 12.6, 5.7 Hz), 2.51 (6H, s), 1.90 (3H, s), 1.43 (3H, s), 1.25 (9H, s), 1.12 (3H, s); ¹³C NMR (101 MHz, C₆D₆) δ 176.7, 149.2, 141.8, 140.4, 139.5, 136.9, 134.4, 133.1, 132.6, 132.1, 130.7, 128.7, 128.6, 127.5, 127.2, 126.4, 126.0,

125.3, 125.1, 123.3, 114.8, 83.1, 54.2, 47.8, 47.0, 27.7, 23.1, 20.7, 18.9, 18.5, one peak for aromatic carbon was not found probably due to overlapping; IR 3273, 2978, 1730, 1605, 1344, 1148, 746, 534 cm⁻¹; HRMS (ESI) Calcd for $C_{36}H_{40}N_2O_5NaS^+$ ([M+Na]⁺) 635.2550. Found 635.2552.; HPLC OD3, Hex/IPA = 97:3, flow rate = 1.0 mL/min, λ = 210 nm, 18.8 min (minor diastereomer), 23.0 min (minor isomer of major diastereomer), 27.6 min (major isomer of major diastereomer), 50.0 min (minor diastereomer).

¹³C NMR (101 MHz, C_6D_6) δ 176.4, 149.3, 141.8, 141.5, 139.6, 139.5, 134.5, 132.1, 128.6, 127.2, 125.3, 123.3, 114.7, 83.3, 60.2, 47.5, 47.3, 27.9, 24.4, 23.2, 20.7, 19.1, 9.5, three peaks for aromatic carbons were not found probably due to overlapping; IR 3283, 2978, 1730, 1605, 1296, 1152, 754, 660 cm⁻¹; HRMS (ESI) Calcd for $C_{33}H_{40}N_2O_5NaS^+$ ([M+Na]⁺) 599.2550. Found 599.2550.; HPLC ID3, Hex/EtOH = 97:3, flow rate = 1.0 mL/min, λ = 210 nm, 23.8 min (major isomer of major diastereomer), 31.9 min (minor isomer of major diastereomer), 34.2 min (minor diastereomer), 41.9 min (minor diastereomer).

4m: ¹H NMR (400 MHz, C₆D₆) δ 7.69 (1H, d, J = 8.0 Hz), 6.97 (1H, t, J = 7.3 Hz), 6.89 (2H, t, J = 7.8 Hz), 6.81 (1H, td, J = 8.0, 1.4 Hz), 6.77-6.63 (8H, m), 6.60 (2H, s), 6.20 (1H, brd, J = 7.3 Hz), 4.43 (1H, dd, J = 8.7, 5.0 Hz), 4.23 (1H, dd, J = 12.5, 8.7 Hz), 3.92 (1H, dd, J = 12.5, 5.0 Hz), 3.45 (1H, d, J = 12.8 Hz), 2.83 (1H, d, J = 12.8

Hz), 2.64 (6H, s), 1.91 (3H, s), 1.34 (9H, s), 1.31 (3H, s); ¹³C NMR (101 MHz, C₆D₆) δ 176.1, 149.0, 141.8, 141.2, 139.8, 139.6, 135.7, 134.7, 132.2, 130.7, 128.6, 127.4, 126.7, 126.3, 122.7, 114.6, 83.2, 61.0, 47.6, 38.2, 27.9, 23.2, 20.7, 19.5, four peaks for aromatic carbons and one peak for aliphatic carbon were not found probably due to overlapping; IR 3292, 2980, 1730, 1605, 1252, 1032, 748, 654 cm⁻¹; HRMS (ESI) Calcd for C₃₈H₄₂N₂O₅NaS⁺ ([M+Na]⁺) 661.2707. Found 661.2702.; HPLC ID3, Hex/EtOH = 10:1, flow rate = 1.0 mL/min, λ = 210 nm, 15.5 min (major isomer of major diastereomer), 21.1 min (minor diastereomer), 28.9 min (minor isomer of major diastereomer), 53.1 min (minor diastereomer).

4n: ¹H NMR (400 MHz, C_6D_6) δ 7.90 (1H, d, J = 8.2 Hz), 6.93 (1H, t, J = 7.4 Hz), 6.83 (2H, t, J = 7.4 Hz), 6.77 (1H, dd, J = 8.2, 1.4 Hz), 6.59 (2H, s), 6.54 (2H, d, J = 7.4 Hz), 5.89 (1H, brs), 4.39-4.31 (1H, m), 3.92 (1H, dd, J = 12.6, 8.5 Hz), 3.70 (1H, dd, J = 12.6, 5.0 Hz), 2.59 (6H, s), 1.93 (3H, s), 1.91 (3H, s), 1.42 (9H, s),

1.27 (3H, s), 1.09 (3H, s); ¹³C NMR (101 MHz, C₆D₆) δ 177.1, 149.5, 141.8, 139.6, 139.5, 138.0, 134.4, 132.6, 132.1, 130.7, 129.0, 127.3, 125.9, 114.5, 83.1, 54.1, 47.4, 46.8, 28.0, 23.2, 20.9, 20.7, 18.9, 18.6, two peaks for aromatic carbons were not found probably due to overlapping; IR 3291, 2978, 1728, 1605, 1304, 1055, 750, 656 cm⁻¹; HRMS (ESI) Calcd for C₃₃H₄₀N₂O₅NaS⁺ ([M+Na]⁺) 599.2550. Found 599.2544.; HPLC AD3, Hex/IPA = 97:3, flow rate = 1.0 mL/min, λ = 210 nm, 22.6 min (minor diastereomer), 28.8 min (minor diastereomer), 36.4 min (major isomer of major diastereomer), 44.2 min (minor diastereomer).

4o: ¹H NMR (400 MHz, C₆D₆) δ 7.96 (1H, d, J = 8.7 Hz), 6.92 (1H, t, J = 7.3 Hz), 6.85 (2H, t, J = 7.3 Hz), 6.61-6.58 (5H, m), 5.62 (1H, brs,) 4.40 (1H, dd, J = 8.7, 5.0 Hz), 4.00 (1H, dd, J = 12.8, 8.7 Hz), 3.73 (1H, dd, J = 12.8, 5.0 Hz), 3.15 (3H, s), 2.61 (6H, s), 1.92 (3H, s), 1.45 (9H, s), 1.22 (3H, s), 1.06 (3H, s);

¹³C NMR (101 MHz, C_6D_6) δ 177.2, 156.2, 149.6, 141.8, 139.5, 139.5, 134.5, 133.5, 132.1, 132.0, 127.3, 115.6, 113.7, 111.5, 83.2, 54.9, 54.4, 47.2, 46.8, 28.0, 23.2, 20.7, 19.0, 18.9, two peaks for aromatic carbons were not found probably due to overlapping; IR 3283, 2978, 1726, 1605, 1277, 1150, 748, 656 cm⁻¹; HRMS (ESI) Calcd for $C_{33}H_{40}N_2O_6NaS^+$ ([M+Na]⁺) 615.2499. Found 615.2497.; HPLC ID3, Hex/EtOH = 19:1, flow rate = 1.0 mL/min, λ = 210 nm, 35.1 min (major isomer of major diastereomer), 43.5 min (minor diastereomer), 51.3 min (minor isomer of major diastereomer).

4p: ¹H NMR (400 MHz, C₆D₆) δ 7.82 (1H, dd, J = 9.1, $J_{\text{F-H}}$ = 4.6 Hz), 6.91 (1H, t, J = 7.4 Hz), 6.82 (2H, t, J = 7.4 Hz), 6.63-6.58 (3H, m), 6.48 (2H, d, J = 7.4 Hz), 5.70 (1H, brd, J = 6.4 Hz), 4.26 (1H, dd, J = 8.7, 5.0 Hz), 3.89 (1H, dd, J = 12.6, 8.7 Hz), 3.62 (1H, dd, J = 12.6, 5.0 Hz), 2.59 (6H, s), 1.92 (3H, s), 1.42 (9H, s), 1.16 (3H, s),

0.93 (3H, s); ¹³C NMR (101 MHz, C₆D₆) δ 176.6, 159.3 (d, $J_{F-C} = 247.7$ Hz), 149.4, 141.9, 139.6, 139.0, 136.1, 134.5, 132.6 (d, $J_{F-C} = 7.7$ Hz), 132.1, 127.6, 115.9 (d, $J_{F-C} = 6.8$ Hz), 114.9 (d, $J_{F-C} = 23.2$ Hz), 112.8 (d, $J_{F-C} = 25.2$ Hz), 83.6, 54.3, 47.1, 46.7, 27.9, 23.2, 20.7, 18.9, 18.4, two peaks for aromatic carbons were not found probably due to overlapping; ¹⁹F NMR (376 MHz, C₆D₆) δ –118.4; IR 3286, 2980, 1732, 1605, 1477, 1152, 754, 658 cm⁻¹; HRMS (ESI) Calcd for C₃₂H₃₇N₂O₅FNaS⁺ ([M+Na]⁺) 603.2299. Found 603.2296.; HPLC IE3, H/EtOH = 19:1, flow rate = 1.0 mL/min, λ = 220 nm, 38.7 (major isomer of major diastereomer), 42.1 min (minor isomer of major diastereomer), 48.1 (minor diastereomer), 50.4 min (minor diastereomer).

4a: ¹H NMR (400 MHz, (CD₃)₂CO) δ 7.74 (2H, d, J = 8.2 Hz), 7.60 (1H, d, J = 8.0 Hz), Ph Me Me NHTs 7.41 (2H, d, J = 8.2 Hz), 7.25 (1H, td, J = 8.0, 1.4 Hz), 7.17 (1H, t, J = 7.3 Hz), 7.09 (2H, \cap t, J = 7.5 Hz), 7.01 (1H, td, J = 7.7, 0.9 Hz), 6.82 (2H, d, J = 7.3 Hz), 6.63 (1H, d, J = 7.3 Boc Hz), 5.78 (1H, brt, J = 6.6 Hz), 3.85 (1H, dd, J = 12.8, 5.6 Hz), 3.74 (1H, dd, J = 12.8, 4a 7.8 Hz), 2.44 (3H, s), 1.53 (3H, s), 1.52 (9H, s), 1.45 (3H, s); ¹³C NMR (101 MHz, (CD₃)₂CO) δ 177.5, 149.4, 143.7, 140.6, 140.0, 139.0, 131.4, 130.4, 129.0, 128.9, 128.2, 127.9, 127.7, 126.0, 124.0, 114.8, 83.8, 54.8, 48.2, 47.6, 28.1, 21.4, 19.0, 18.7; IR 3300, 2978, 1734, 1477, 1290, 1060, 754 cm⁻¹; HRMS (ESI) Calcd for $C_{30}H_{34}N_2O_5NaS^+$ ([M+Na]⁺) 557.2081. Found 557.2080.; HPLC OZ3, H/IPA/EtOH = 92:5:3, flow rate = 0.5 mL/min, $\lambda = 210$ nm, 48.8 (minor diastereomer), 59.1 min (minor diastereomer), 65.5 min (major isomer of major diastereomer), 89.0 min (minor isomer of major diastereomer).

Derivatization of 4b to Pyrrolidinoindoline 6

The alkylated product **4b** (169 mg, 0.30 mmol, dr = >20:1.0, 99% ee) was placed in a test tube and dissolved into trifluoroacetic acid (TFA) (0.3 mL). The resulting solution was stirred for 2.5 h at room temperature. After cooling to 0 °C, the reaction mixture was poured onto ice and the aqueous solution thus obtained was neutralized by NaOH. The aqueous phase was extracted with EtOAc and the organic phase was dried over Na₂SO₄. Filtration and concentration of the organic phase gave crude material. This crude material was dissolved into THF (3.0 mL), and NaH (36 mg, 0.9 mmol) was carefully introduced into the solution under Ar at 0 °C. After stirring for 30 min at room temperature, methyl iodide (0.050 mL, 0.9 mmol) was added to the solution and whole reaction mixture was stirred for 12 h at 50 °C. The mixture was then diluted with water and the extractive workup was performed with EtOAc. After drying over Na₂SO₄,

filtration, and removal of solvent, the resulting crude residue was purified by column chromatography (Hex/EtOAc = 3:1 as eluent) to afford **5** (108 mg, 0.22 mmol, 73% yield for 2 steps) as a white solid.

5: ¹H NMR (400 MHz, CDCl₃) δ 7.22 (1H, t, *J* = 7.8 Hz), 7.16-7.11 (4H, m), 6.99-6.96 (3H, m), 6.90 (2H, t, *J* = 7.8 Hz), 6.58 (1H, d, *J* = 7.8 Hz), 4.41 (1H, d, *J* = 14.1 Hz), 3.68 (1H, d, *J* = 14.1 Hz), 2.71 (3H, s), 2.65 (6H, s), 2.32 (3H, s), 2.11 (3H, s), 1.33 (6H, s).

To a solution of 5 (108 mg, 0.22 mmol) in TFA (0.2 mL) and thioanisole (0.02 mL) was added MeSO₃H (0.02 mL, 0.33 mmol) and the resulting solution was stirred for 6 h at room temperature. After cooling to 0 °C, the reaction mixture was poured onto ice and the aqueous solution thus obtained was neutralized by NaOH. The aqueous phase was extracted with EtOAc and the organic phase was dried over Na_2SO_4 . Filtration and concentration of the organic phase gave crude material. To a solution of this crude material in THF (4.4 mL) was carefully added LiAlH₄ (83 mg, 2.2 mmol) and the mixture was refluxed for 2 h. After cooling to 0 °C, the reaction was quenched by the addition of $Na_2SO_4 \cdot 10H_2O$ (3.2 g 10 mmol), and the resulting suspension was vigorously stirred overnight at room temperature. The mixture was filtered with the aid of EtOAc and the filtrates were concentrated. Purification of the crude residue by column chromatography (Hex/EtOAc = 1:1 as eluent) furnished 6 (52.6 mg, 0.18 mmol, 82% yield for 2 steps, dr = >20:1.0, 99% ee) as a white solid. 6: ¹H NMR (400 MHz, CDCl₃) δ 7.45 (2H, dd, J = 8.0, 1.4 Hz), 7.35 (2H, t, J = 8.0 Hz), 7.24 (1H, td, J = 8.0, 1.4 Hz), 7.13 (1H, td, J = 7.6, 1.4 Hz), 7.11 (1H, dd, J = 7.6, 1.1 Hz), 6.71 (1H, td, J = 7.8, 1.1 Hz), 6.43 (1H, d, J = 8.0 Hz), 4.02 (1H, s), 3.50 (1H, d, J = 8.9 Hz), 3.08 (1H, d, J = 8.9 Hz), 3.0 Hz), 2.92 (3H, s), 2.73 (3H, s), 1.32 (3H, s), 0.95 (3H, s); ¹³C NMR (101 MHz, CDCl₃) δ152.7, 145.6, 133.4, 128.3, 128.2, 127.1, 126.3, 123.7, 117.0, 106.5, 102.4, 66.4, 58.3, 51.3, 43.0, 35.2, 26.4, 26.0; IR 2926, 1605, 1491, 1240, 1022, 908, 700 cm⁻¹; HRMS (ESI) Calcd for $C_{20}H_{25}N_2^+$ ([M+H]⁺) 293.2012. Found 293.2007.; HPLC OJ3, H/IPA = 97:3, flow rate = 0.5 mL/min, λ = 210 nm, 10.6 min (major), 14.0 min (minor).

Crystallographic Structure Determination:

Recrystallization of 1a·Cl, 4b, 4k, 2k, and 6: A single crystal of **1a·Cl** was obtained from toluene at room temperature. Single crystals of **4b** and **4k** were obtained from CH_2Cl_2/Et_2O solvent system at room temperature. A single crystal of **2k** was obtained from Et_2O/Hex solvent system at room temperature. A single crystal of **6** was obtained from Hex at room temperature. The single crystals thus obtained were mounted on CryoLoop. Data of X-ray diffraction were collected at 133 K on a Brucker SMART APEX CCD diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). An absorption correction was made using SADABS. The structure was solved by direct methods and Fourier syntheses, and refined by full-matrix least squares on *F2* by using SHELXTL.² All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms bonded to oxygen atoms were located from a difference synthesis and their coordinates and isotropic thermal parameters refined. The other hydrogen atoms were placed in calculated positions. The crystallographic data were summarized in **Tables S2, S3, S4, S5,** and **S6.**

² Sheldrick, G. M. SHELXTL 5.1, Bruker AXS Inc., Madison, Wisconsin, 1997.

Table S2. Crystal data, structure refinement	ent for 1a-CI .	
Empirical formula	C43 H37 Cl N4 O	
Formula weight	661.22	
Temperature	153(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P1	
Unit cell dimensions	a = 11.727(3) Å	α= 81.252(4)°.
	b = 11.746(3) Å	$\beta = 72.971(4)^{\circ}.$
	c = 15.471(4) Å	$\gamma = 60.415(4)^{\circ}.$
Volume	1772.0(7) Å ³	
Z	2	
Density (calculated)	1.239 Mg/m ³	
Absorption coefficient	0.147 mm ⁻¹	
F(000)	696	
Crystal size	0.50 x 0.40 x 0.20 mm ³	
Theta range for data collection	1.99 to 28.42°.	
Index ranges	-13<=h<=15, -13<=k<=15,	-20<=l<=18
Reflections collected	12521	
Independent reflections	10248 [R(int) = 0.0285]	
Completeness to theta = 28.42°	96.1 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares of	n F ²
Data / restraints / parameters	10248 / 3 / 885	
Goodness-of-fit on F ²	1.062	
Final R indices [I>2sigma(I)]	R1 = 0.0801, $wR2 = 0.2197$	7
R indices (all data)	R1 = 0.0831, $wR2 = 0.2223$	5
Absolute structure parameter	0.14(8)	
Largest diff. peak and hole	1.860 and -0.398 e.Å ⁻³	
	0	

Table S2. Crystal data, structure refinement for 1a-CI.

Figure S6. Molecular structure of ion-paired ligand **1a-CI**. Calculated hydrogen atoms are omitted for clarity.

Blue = nitrogen, red = oxygen, green = chlorine, black = carbon.

Empirical formula	C32 H38 N2 O5 S	
Formula weight	562.70	
Temperature	103(2) K	
Wavelength	0.71075 Å	
Crystal system	Orthorhombic	
Space group	P_21_21_21	
Unit cell dimensions	a = 6.4319(16) Å	α= 90°.
	b = 16.382(4) Å	B= 90°.
	$c = 27.793(7) \text{ Å}$ γ	$r = 90^{\circ}$.
Volume	2928.4(13) Å ³	
Z	4	
Density (calculated)	1.276 Mg/m ³	
Absorption coefficient	0.154 mm ⁻¹	
F(000)	1200	
Crystal size	0.30 x 0.02 x 0.02 mm ³	
Theta range for data collection	3.18 to 27.48°.	
Index ranges	-8<=h<=8, -21<=k<=21, -36<	=l<=31
Reflections collected	23968	
Independent reflections	6696 [R(int) = 0.1223]	
Completeness to theta = 27.48°	99.8 %	
Absorption correction	Empirical	
Max. and min. transmission	0.9969 and 0.9553	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	6696 / 0 / 369	
Goodness-of-fit on F ²	1.035	
Final R indices [I>2sigma(I)]	R1 = 0.0933, wR2 = 0.2105	
R indices (all data)	R1 = 0.1421, $wR2 = 0.2481$	
Absolute structure parameter	-0.29(16)	
Largest diff. peak and hole	0.721 and -0.402 e.Å ⁻³	

Table S3. Crystal data and structure refinement for 4b.

Figure S7. Molecular structure of ion-paired ligand **4b**. All calculated hydrogen atoms are omitted for clarity. Blue = nitrogen, red = oxygen, yellow = sulfur, black = carbon.

Table S4. Crystal data and structure refinement for 4k.		
Empirical formula	C36 H41 N2 O5 S	
Formula weight	613.77	
Temperature	293(2) K	
Wavelength	0.71075 Å	
Crystal system	Orthorhombic	
Space group	P_21_21_21	
Unit cell dimensions	a = 6.493(2) Å	<i>α</i> = 90°.
	b = 16.778(6) Å	$\beta = 90^{\circ}$.
	c = 30.179(11) Å	$\gamma = 90^{\circ}$.
Volume	3288(2) Å ³	
Z	4	
Density (calculated)	1.240 Mg/m ³	
Absorption coefficient	0.143 mm ⁻¹	
F(000)	1308	
Crystal size	0.30 x 0.05 x 0.05 mm ³	
Theta range for data collection	3.16 to 27.37°.	
Index ranges	-8<=h<=8, -19<=k<=21, -3	8<=l<=38
Reflections collected	26453	
Independent reflections	7433 [R(int) = 0.0952]	
Completeness to theta = 27.37°	99.6 %	
Max. and min. transmission	0.9929 and 0.9584	
Refinement method	Full-matrix least-squares of	n F ²
Data / restraints / parameters	7433 / 0 / 405	
Goodness-of-fit on F ²	1.016	
Final R indices [I>2sigma(I)]	R1 = 0.0784, $wR2 = 0.1907$	
R indices (all data)	R1 = 0.1011, wR2 = 0.2145	
Absolute structure parameter	0.06(13)	
Largest diff. peak and hole	0.726 and -0.540 e.Å ⁻³	

Table S4. Crystal data and structure refinement for 4k.

Table S5. Crystal data and structure refinement for 2k.

Empirical formula	C32 H38 N2 O5 S	
Formula weight	562.70	
Temperature	103(2) K	
Wavelength	0.71075 Å	
Crystal system	Orthorhombic	
Space group	P_21_21_21	
Unit cell dimensions	a = 6.4319(16) Å	<i>α</i> = 90°.
	b = 16.382(4) Å	β= 90°.
	c = 27.793(7) Å	$\gamma = 90^{\circ}.$
	S 16	

Volume	2928.4(13) Å ³
Z	4
Density (calculated)	1.276 Mg/m ³
Absorption coefficient	0.154 mm ⁻¹
F(000)	1200
Crystal size	0.30 x 0.02 x 0.02 mm ³
Theta range for data collection	3.18 to 27.48°.
Index ranges	-8<=h<=8, -21<=k<=21, -36<=l<=31
Reflections collected	23968
Independent reflections	6696 [R(int) = 0.1223]
Completeness to theta = 27.48°	99.8 %
Absorption correction	Empirical
Max. and min. transmission	0.9969 and 0.9553
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6696 / 0 / 369
Goodness-of-fit on F ²	1.035
Final R indices [I>2sigma(I)]	R1 = 0.0933, $wR2 = 0.2105$
R indices (all data)	R1 = 0.1421, $wR2 = 0.2481$
Absolute structure parameter	-0.29(16)
Largest diff. peak and hole	0.721 and -0.402 e.Å ⁻³

Table S6. Crystal data and structure refinement for 6.

Empirical formula	C20 H24 N2	
Formula weight	292.41	
Temperature	123(2) K	
Wavelength	0.71073 Å	
Crystal system	Rhombohedral	
Space group	R3	
Unit cell dimensions	a = 21.290(6) Å	α= 90°.
	b = 21.290(6) Å	$\beta = 90^{\circ}$.
	c = 9.790(4) Å	$\gamma = 120^{\circ}$.
Volume	3843(2) Å ³	
Z	9	
Density (calculated)	1.137 Mg/m ³	
Absorption coefficient	0.067 mm ⁻¹	
F(000)	1422	
Crystal size	0.30 x 0.20 x 0.10 mm ³	
Theta range for data collection	1.91 to 28.34°.	
Index ranges	-28<=h<=24, -27<=k<=28,	-13<=l<=12
Reflections collected	7069	
Independent reflections	3315 [R(int) = 0.0528]	
	S 17	

Completeness to theta = 28.34°	87.6 %
Absorption correction	Empirical
Max. and min. transmission	0.9934 and 0.9803
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3315 / 1 / 203
Goodness-of-fit on F ²	1.169
Final R indices [I>2sigma(I)]	R1 = 0.0748, wR2 = 0.1857
R indices (all data)	R1 = 0.0973, wR2 = 0.1931
Largest diff. peak and hole	0.235 and -0.220 e.Å ⁻³

HPLC Chromatograms:

4g

