SUPPORTING INFORMATION

A Novel Small Molecule Methyltransferase is Important for Virulence in *Candida albicans*

Elena Lissina¹, David Weiss², Brian Young², Antonella Rella³, Kahlin Cheung-Ong¹, Maurizio Del Poeta³, Steven G. Clarke², Guri Giaever⁴, and Corey Nislow^{4*}

Supplementary Figure Legends:

Supplementary Figure 1

- A. Diagram of cloning and subcloning steps of the synthesized *CaCRG1* onto BG1805 vector.
- B. Analysis of the levels of wt and mutated CaCrg1 proteins by immunoblotting. Cells were grown overnight in SD-ura, diluted to OD₆₀₀ of 0.2 and grown to mid-exponential stage (OD₆₀₀ of 0.8). The expression was induced in YP and galactose (2%) for 3 hours. The cell lysates were analyzed by anti-HA antibody.

Supplementary Figure 2

Possible effectors of CaCrg1 enzyme activity show little effect on methylation of cantharidin. Addition of 1 mM DTT, 2 mM EGTA, 0.5 mM imidazole, or 0.2 mM sodium chloride to reactions with 0.0225 μ g of CaCrg1 enzyme do not significantly alter enzyme activity as measured by acid-labile methylation assays. Error bars represent standard deviation from duplicate samples in one single experiment.

Supplementary Figure 3

CaCRG1 is required for adhesion of cells to plastic surface at log phase at 37°C. Wt and *cacrg1\Delta/\Delta* mutants were grown overnight in liquid YPD, diluted to OD₆₀₀ of 0.2 and grown to mid-exponential stage (OD₆₀₀ of 0.8) in SC media. Cells were diluted to 0.5 OD₆₀₀ in SC media and incubated at 30°C or 37°C for 2hrs. * *p*-value <0.01.

- A. Simplified diagram of endocytic pathway. CaCrg1 interacts with phosphoinositides PI(3)P and PI(3,5)P2 known to be associated with the membranes of early and later endosomes.
- B. Fluorescence imaging of co-localization of GFP-tagged ScCrg1 and vacuolar membrane stain FM4-64 in the baker's yeast after overnight treatment with cantharidin (50 μ M).

- A. C16-ceramide CaCrg1 overlay assay. Biologically active C16-ceramide was spotted onto nitrocellulose membrane. Affinity purified CaCrg1 (19 pmol; 1 ug/ml) was incubated with C16-ceramide overnight at 4°C and its binding was assessed with anti-HA antibody. Quantification of relative binding of CaCrg1 to ceramide was performed with ImageJ software.
- B. Sphingolipid-protein overlay assay of CaCrg1. 6xHis tagged CaCrg1 was expressed in baker's yeast followed by affinity purification. CaCrg1 (38 pmol; 2ug/ml) was incubated with lipid-spotted membrane overnight at 4°C. After rigorous washing, the binding of CaCrg1 to sphingolipids (100 pmol per spot) was detected using anti-HA antibody.

- A. *CaCRG1* interacts with GlcCer-related genes in a condition-dependent manner. Overnight cultures were 10-fold diluted, spotted onto SC defined medium with or without cantharidin and incubated at various temperatures (37 °C and 43 °C). The unexpected phenotypes for double deletion mutants (relative to wt and *crg1* Δ/Δ mutant) are highlighted: "+" denotes positive genetic interactions, "-" denotes negative genetic interaction.
- B. Morphology of *C. albicans* wt and mutant cells. Cells were streaked onto solid YPD media and incubated at 37 °C for 5 days. Bar, 2mm.

Supplementary Table 1. Differentially expressed genes in *C. albicans* wt cells treated with cantharidin (2 mM, 30 min).

Supplementary Table 2. Bioactive lipids present on the array.

Supplementary Table 3. Yeast strains used in this study.

Supplementary Table 4. Plasmids used in this study.

Supplementary Table 5. Primers used in this study.

Supplementary Table 1. Differentially expressed genes in *C. albicans* wt cells treated with cantharidin (2 mM, 30 min).

ORF	GENE	Mean DMSO	Mean drug	Log2 (drug/DMSO)	T-test, <i>p</i> -val (2,2)
orf19.6475		53.03	9379.51	7.5	0.00010
orf19.1048	IFD6	18.93	3283.63	7.4	0.00571
orf6.2005		2.54	316.44	7.0	0.00875
orf19.4173	ScDPH2	55.97	6731.72	6.9	0.00434
orf19.2713	ScMSH5	8.39	868.15	6.7	0.00355
orf19.5604	MDR1	16.94	1338.45	6.3	0.00347
orf19.629	IFD7	6.67	425.83	6.0	0.00150
orf19.3848		53.61	1814.50	5.1	0.00922
orf19.4309	GRP2	44.31	993.20	4.5	0.00012
orf19.7296		29.42	618.37	4.4	0.00319
orf6.4916		12.31	210.82	4.1	0.00016
orf19.2451	PGA45	32.88	533.30	4.0	0.00431
orf19.3735		18.27	228.68	3.6	0.00100
orf19.4477	CSH1	33.28	369.28	3.5	0.00157
orf19.2023	HGT7	133.77	1039.73	3.0	0.02302
orf19.7085		78.12	525.47	2.7	0.01160
orf19.633	CaCRG1	200.37	986.84	2.3	0.00090
orf19.251	ScHSP31	119.47	544.13	2.2	0.00274
orf19.5806	ALD5	609.95	2671.22	2.1	0.00336
orf19.4631	ERG251	327.36	1410.31	2.1	0.00686
orf19.1426		534.51	137.64	-2.0	1.9E-04
orf19.7492	SWC4	233.12	59.97	-2.0	2.6E-05
orf19.5599	MDL2	243.86	62.69	-2.0	9.1E-04
orf19.1607	ALR1	374.28	96.22	-2.0	4.8E-03
orf6.1737		773.62	198.45	-2.0	6.7E-03
orf19.1490	MSB2	310.23	79.38	-2.0	3.3E-03
orf19.6114		1517.96	387.56	-2.0	8.5E-03
orf19.1623	CAPI	247.04	62.60	-2.0	2.4E-03
orf19.866	RAD32	312.07	78.96	-2.0	5.5E-04
orf19.3752	RAD51	360.51	91.11	-2.0	1.4E-02
orf19.5676		210.81	53.23	-2.0	1.5E-03
orf19.5148	CYRI	284.23	71.69	-2.0	6.6E-03
orf19.6476	SCAVL9	245.29	61.80	-2.0	6.8E-04
orj19.789	PYC2	241.54	60.77	-2.0	2.5E-02
orf19.5908	TECI	486.13	122.17	-2.0	4.5E-03

orf19.3858		224.49	56.14	-2.0	3.8E-06
orf19.2990	XOG1	231.64	57.89	-2.0	7.6E-03
orf6.2673		2955.41	735.23	-2.0	8.7E-05
orf19.4772	SSU81	402.77	100.17	-2.0	3.7E-04
orf19.7123		481.84	119.78	-2.0	5.3E-03
orf19.6745	TPI1	3343.17	830.10	-2.0	1.5E-03
orf19.3926		266.56	66.17	-2.0	2.4E-03
orf19.1806		214.78	53.30	-2.0	2.6E-03
orf19.1658		549.76	136.27	-2.0	2.2E-03
orf19.1135	CAS1	452.47	111.72	-2.0	8.5E-04
orf19.3630	RRP8	863.37	212.94	-2.0	6.6E-05
orf19.2051	ScRPN4	336.69	83.02	-2.0	5.9E-03
orf19.4281		310.53	76.38	-2.0	2.3E-04
orf19.3644		978.79	240.18	-2.0	8.1E-05
orf19.6121	MNL1	214.67	52.14	-2.0	4.5E-03
orf19.6493		559.48	135.80	-2.0	9.7E-04
orf19.4820		224.86	54.10	-2.1	4.9E-04
orf19.6573	BEM2	883.57	212.34	-2.1	1.7E-03
orf19.723	BCR1	358.56	85.78	-2.1	3.0E-03
orf19.5071	NRP1	450.09	106.93	-2.1	4.9E-05
orf19.6202	RBT4	394.16	93.41	-2.1	3.8E-03
orf19.4346		933.18	220.99	-2.1	4.8E-03
orf19.1685		253.81	59.98	-2.1	1.3E-02
orf19.7278		1644.19	387.85	-2.1	3.9E-02
orf19.5041		300.70	70.82	-2.1	2.7E-04
orf19.4728	ScHOS4	294.68	69.33	-2.1	9.5E-04
orf19.7079		208.27	48.97	-2.1	1.1E-03
orf6.326		498.90	117.17	-2.1	1.5E-04
orf19.5678	ScDPH2	296.46	69.58	-2.1	7.9E-04
orf19.1842		352.63	82.70	-2.1	1.2E-04
orf19.4775	CTA8	639.66	149.36	-2.1	9.8E-06
orf19.7150	NRG1	829.72	193.69	-2.1	3.1E-03
orf19.2460		231.70	53.87	-2.1	1.3E-02
orf19.6186		252.94	58.57	-2.1	3.7E-03
orf19.6713		424.30	98.23	-2.1	6.9E-05
orf19.1281		208.12	48.00	-2.1	1.3E-04
orf19.3252		219.57	50.21	-2.1	1.8E-05
orf19.4377	KRE1	702.67	160.37	-2.1	7.7E-04
orf19.182		1709.35	389.72	-2.1	5.8E-03
orf19.2331	ADA2	205.35	46.78	-2.1	3.3E-03
orf19.2877	PDC11	7456.90	1691.80	-2.1	9.4E-03
orf19.5903	RAX1	273.83	61.83	-2.1	2.9E-03
orf6.895		373.42	83.86	-2.2	6.1E-05
orf19.2812		1543.60	346.39	-2.2	7.2E-03
orf19.932		510.83	114.09	-2.2	3.9E-04
orf19.3678		281.27	62.73	-2.2	2.9E-03
orf19.1741		4474.98	996.82	-2.2	2.0E-03
orf19.5469	HPR5	447.01	99.42	-2.2	2.8E-02
orf19.3728	ScGIP4	246.09	54.60	-2.2	2.5E-03
trna6.2289.1.5prime		201.30	44.44	-2.2	7.9E-05
orf19.5483		224.08	49.33	-2.2	7.5E-05
orf6.579	1 1112	684.20	150.59	-2.2	3.9E-04
orf19.4225	LEU3	263.29	57.84	-2.2	1.8E-04
orf19.2501	FLCI	350.16	/6.46	-2.2	3.7E-02
orf19.1871	SCSWRI	432.63	94.24	-2.2	1.6E-06
orf6.30/4		938.23	204.29	-2.2	2.8E-03

orf19.1277		486.81	105.82	-2.2	3.7E-03
orf6.2111		203.57	43.93	-2.2	2.3E-03
orf19.4555	ALS4;	133.41	28.70	-2.2	2.4E-03
orf19.3083		337.63	72.50	-2.2	6.7E-03
orf19.1103		324.62	69.61	-2.2	9.4E-04
orf19.1393		216.91	46.48	-2.2	2.3E-03
orf19.2296		503.18	107.47	-2.2	6.8E-03
orf19.7506		210.82	45.02	-2.2	2.9E-03
orf19.469	HST7	369.95	78.94	-2.2	9.9E-04
orf19.1259		224.63	47.75	-2.2	6.4E-05
orf19.4099	ECM17	358.01	75.87	-2.2	7.1E-06
orf19.6760	MDS3	279.29	59.16	-2.2	6.5E-04
orf19.4192	CDC14	232.73	48.75	-2.3	2.8E-02
orf19.3967	PFK1	1129.72	236.63	-2.3	3.2E-03
orf19.655	PHO84	814.54	170.44	-2.3	1.9E-02
orf19.2724		211.55	43.68	-2.3	7.5E-03
orf19.1617		203.45	41.89	-2.3	5.2E-03
orf19.5877		665.62	136.78	-2.3	3.4E-04
orf19.7450		210.61	43.21	-2.3	1.1E-04
orf19.7254		212.34	43.52	-2.3	1.9E-04
orf19.1133	MSB1	232.83	47.44	-2.3	4.8E-05
orf19.6414		234.29	47.71	-2.3	1.5E-05
orf19.5372		1994.33	406.04	-2.3	2.8E-02
orf19.4076	MET10	373.72	75.64	-2.3	3.9E-05
orf19.3728		344.00	68.76	-2.3	2.3E-04
orf19.4712	FGR6-3	243.90	48.06	-2.3	4.5E-03
orf19.3211	RCF3	440.08	86.65	-2.3	8.5E-03
orf19.5406		776.40	152.72	-2.3	8.9E-03
orf19.3487		206.57	40.33	-2.4	3.8E-02
orf19.4890	CLA4	609.07	118.73	-2.4	2.8E-05
orf19.3789	RPL24A	994.33	192.29	-2.4	2.3E-03
orf19.132	ScSIF2	282.25	53.96	-2.4	2.6E-04
orf19.6960		229.99	43.77	-2.4	2.6E-02
orf19.2374		1166.05	220.97	-2.4	3.0E-03
orf19.3447		646.09	122.31	-2.4	1.2E-02
orf19.7017	YOX1	206.09	38.90	-2.4	4.9E-04
orf19.3207	CCN1	248.32	46.72	-2.4	3.1E-04
orf19.3764	GSG1	240.36	45.11	-2.4	1.1E-02
orf19.3555	BUD14	211.38	39.59	-2.4	3.2E-03
orf19.580		1248.70	233.73	-2.4	1.5E-02
orf19.7272		418.26	78.22	-2.4	9.7E-04
orf19.914		272.21	50.89	-2.4	6.7E-04
orf19.2467	PRN1	260.22	48.48	-2.4	5.0E-04
orf19.173		446.49	82.60	-2.4	2.9E-02
orf19.7506		235.88	43.56	-2.4	1.6E-04
orf19.985		474.61	87.59	-2.4	1.6E-04
orf19.6276		436.39	80.40	-2.4	2.7E-03
orf19.1409	VAC7	233.22	42.58	-2.5	1.3E-04
orf19.3624	ScDSS1	210.32	38.25	-2.5	1.4E-03
orf6.2737		262.92	47.05	-2.5	1.3E-03
orf19.5292	AXL2	498.94	88.86	-2.5	9.9E-05
orf19.2641	ARP1	441.08	78.14	-2.5	5.2E-04
orf19.2608	ADH5	38.02	6.67	-2.5	5.0E-02
orf19.2680	ScDNF3	546.73	95.12	-2.5	4.4E-04
orf19.3622	ANP1	290.44	50.36	-2.5	6.0E-03
orf19.6686	ENP2	1002.10	173.09	-2.5	6.4E-06

orf19.3820		218.27	37.27	-2.6	6.1E-03
orf19.3089		484.42	82.28	-2.6	1.3E-03
orf19.5518		572.37	96.50	-2.6	8.2E-05
orf19.2372		928.93	156.31	-2.6	7.1E-03
orf19.3469		371.38	62.47	-2.6	6.1E-03
orf19.1119	MTR10	298.82	50.06	-2.6	4.9E-04
orf19.4365		830.24	139.05	-2.6	8.1E-05
orf6.279		1568.85	261.70	-2.6	2.1E-03
orf19.3144		270.44	44.67	-2.6	6.7E-04
orf19.5531	CDC37	406.64	66.93	-2.6	3.8E-03
orf19.4552		550.39	90.48	-2.6	5.0E-04
orf19.4284	BUR2	238.06	39.08	-2.6	1.6E-05
orf19.2827		310.53	50.90	-2.6	6.1E-03
orf19.2236		306.91	50.24	-2.6	2.9E-03
orf19.946	MET14	394.41	64.24	-2.6	4.7E-03
orf19.1351		205.74	33.43	-2.6	2.6E-04
orf19.7359	CRZ1	309.84	49.73	-2.6	3.1E-05
orf19.564	KAR3	269.41	43.03	-2.6	2.8E-03
orf19.4276		266.44	42.42	-2.7	3.3E-05
orf6.1533	CDC39	1021.42	162.41	-2.7	1.1E-03
orf19.3345	SIZ1	289.83	44.90	-2.7	6.2E-04
orf19.4365		663.84	102.14	-2.7	1.1E-03
orf19.1666		253.45	38.96	-2.7	8.5E-04
orf19.5280	MUP1	660.51	98.83	-2.7	7.2E-03
25S.6.3p	N/A	2066.83	309.08	-2.7	4.6E-02
orf19.68		423.42	63.31	-2.7	2.9E-03
orf19.6514	CUP9	323.39	48.20	-2.7	2.5E-03
orf19.4722		309.70	44.97	-2.8	3.4E-03
orf19.5755		291.21	42.26	-2.8	4.4E-04
orf19.6537		231.79	32.73	-2.8	6.0E-03
orf19.4643		263.80	36.29	-2.9	5.6E-03
orf19.1383		201.85	27.60	-2.9	2.5E-03
orf19.2028	MXR1	1632.44	222.54	-2.9	2.9E-03
orf19.4952		647.02	87.72	-2.9	2.4E-03
orf19.6978		244.63	33.09	-2.9	3.9E-03
orf6.4835		439.29	58.84	-2.9	3.5E-03
orf19.414		274.37	36.51	-2.9	1.7E-04
orf19.660		278.97	36.90	-2.9	1.8E-04
orf19.3111	PRA1	449.24	58.86	-2.9	4.2E-05
orf19.422	SPT20	224.95	29.41	-2.9	1.9E-03
orf19.3148		602.75	77.88	-3.0	5.5E-04
orf19.5953		569.52	73.11	-3.0	7.2E-05
orf19.4553		335.99	43.10	-3.0	1.0E-04
orf19.1479		432.98	55.50	-3.0	2.0E-04
orf19.4912		234.89	30.08	-3.0	4.1E-03
orf19.522		1516.38	193.77	-3.0	1.8E-04
orf19.5528	MOB1	1124.01	143.39	-3.0	8.1E-04
orf19.6209		1201.19	153.15	-3.0	5.8E-03
orf19.3202		268.62	34.18	-3.0	4.5E-05
orf19.3840		442.03	55.67	-3.0	6.5E-06
orf6.1268		1505.45	188.98	-3.0	1.4E-03
orf19.4666		887.20	108.32	-3.0	1.0E-03
orf19.3142		287.08	34.62	-3.1	2.8E-03
orf19.267		943.48	113.24	-3.1	3.0E-03
orf19.2550		1797.45	214.88	-3.1	4.2E-03
orf19.5056		85.29	9.97	-3.1	2.3E-02

orf6.3626		1478.49	172.21	-3.1	1.2E-03
orf19.4347		280.17	32.17	-3.1	3.0E-04
orf19.1555	SAC3	1566.52	179.34	-3.1	3.2E-03
orf19.3603		984.41	111.29	-3.1	6.6E-04
orf19.4741		1243.92	139.75	-3.2	1.8E-03
orf19.3956		2761.71	304.61	-3.2	4.0E-04
orf19.5645	MET15	994.34	109.00	-3.2	4.9E-03
orf19.750		1506.08	159.66	-3.2	4.6E-03
orf19.1353		1922.26	203.26	-3.2	1.5E-03
orf19.6309		880.34	93.02	-3.2	4.0E-03
orf19.1960	CLN3	303.77	30.57	-3.3	6.1E-03
orf19.4750		309.87	29.88	-3.4	9.0E-05
orf19.156	FGR51	259.83	23.70	-3.5	7.7E-04
orf19.176	OPT4	1212.63	110.14	-3.5	4.6E-03
orf19.4699		1255.18	113.67	-3.5	1.2E-03
orf19.6981		237.14	21.04	-3.5	5.8E-05
orf19.5842		596.72	52.35	-3.5	2.8E-03
orf19.1960	CLN3	914.76	77.71	-3.6	6.4E-03
orf19.3563		245.46	20.69	-3.6	1.1E-03
orf19.4322	DAP2	278.76	22.18	-3.7	2.0E-03
orf19.2555	URA5	1160.78	90.13	-3.7	1.0E-03
orf19.1868	RNR22	123.73	9.60	-3.7	5.2E-03
orf19.177		267.06	20.33	-3.7	2.5E-05
orf19.843		1387.07	102.46	-3.8	1.4E-04
orf19.3695		858.38	60.32	-3.8	4.9E-03
orf6.2920		1559.11	104.55	-3.9	2.6E-03
orf19.5742	ALS9	1606.72	105.02	-3.9	2.0E-03
orf6.4638		219.69	11.73	-4.2	1.7E-06
orf19.1995	ScMNN2	266.12	13.48	-4.3	6.1E-05
orf6.2374		338.80	17.03	-4.3	7.0E-04
orf19.3869		1808.51	87.68	-4.4	3.0E-05
orf19.334		468.07	10.90	-5.4	1.5E-03

Supplementary Table 2. Bioactive lipids present on the array.

Name	Conc.	MW
5(S)-HETE	0.1mM	320.2
(±)5-HETE	0.1mM	320.2
(±)5-HETE LACTONE	0.1mM	302.2
8(S)-HETE	0.1mM	320.2
9(S)-HETE	0.1mM	320.2
EMPTY		
12(S)-HETE	0.1mM	320.2
12(R)-HETE	0.1mM	320.2
15(S)-HETE	0.1mM	320.2
15(S)-HEDE	0.1mM	324.3
(±)5-HETrE	0.1mM	322.3
TETRANOR-12(R)-HETE	0.1mM	266.2
15(S)-HETrE	0.1mM	322.3
(±)5-HEPE	0.1mM	318.2
15(S)-HEPE	0.1mM	318.2
5(S)-HPETE	0.1mM	336.2
12(S)-HPETE	0.1mM	336.2
15(S)-HPETE	0.1mM	336.2

15(S)-HPEDE	0.1mM	340.3
15(S)-HPEPE	0.1mM	334.2
(±)4-HYDROXYNON-2-ENAL	1mM	156.1
HEPOXILIN A3	0.1mM	336.2
HEPOXILIN B3	0.1mM	336.2
12(S),20-DIHETE	0.1mM	336.2
5(S),15(S)-DIHETE	0.1mM	336.2
8(S),15(S)-DIHETE	0.1mM	336.2
5(S),6(R)-DIHETE	0.1mM	336.2
5(S),12(R)-DIHETE all trans	0.1mM	336.2
8(R),15(S)-DIHETE all trans	0.1mM	336.2
5(S),12(S)-DIHETE all trans	0.1mM	336.2
8(S),15(S)-DIHETE all trans	0.1mM	336.2
5,6-EPOXYEICOSATRIENOIC ACID	0.1mM	320.2
8,9-EPOXYEICOSATRIENOIC ACID	0.1mM	320.2
11,12-EPOXYEICOSATRIENOIC ACID	0.1mM	320.2
14,15-EPOXYEICOSATRIENOIC ACID	0.1mM	320.2
5-KETOEICOSATETRAENOIC ACID	0.1mM	318.2
15-KETOEICOSATETRAENOIC ACID	0.1mM	318.2
13-KETOOCTADECADIENOIC ACID	0.1mM	294.2
LEUKOTRIENE B3	0.1mM	338.2
LEUKOTRIENE B4	0.1mM	336.2
20-HYDROXY-LEUKOTRIENE B4	0.1mM	352.2
20-CARBOXY-LEUKOTRIENE B4	0.1mM	366.2
LEUKOTRIENE C4	0.1mM	625.3
LEUKOTRIENE D4	0.1mM	496.3
LEUKOTRIENE E4	0.1mM	439.2
N-ACETYL-LEUKOTRIENE E4	0.1mM	481.2
LIPOXIN A4	0.1mM	352.2
EPOXY-OLEIC ACID	0.1mM	298.3
PROSTAGLANDIN A1	1mM	336.2
PROSTAGLANDIN A2	1mM	334.2
PROSTAGLANDIN B1	1mM	336.2
PROSTAGLANDIN B2	1mM	334.2
PROSTAGLANDIN D2	1mM	352.2
PROSTAGLANDIN E1	1mM	354.2
PROSTAGLANDIN E2	1mM	352.2
PROSTAGLANDIN F2a	1mM	354.2
PROSTAGLANDIN F1a	1mM	356.3
PROSTAGLANDIN I2 Na	1mM	352.2
15-KETO-PROSTAGLANDIN E2	1mM	350.2
15-KETO-PROSTAGLANDIN F2a	1mM	352.2
13,14-DIHYDRO-15-KETO-PGF2a	1mM	354.2
6-KETO-PROSTAGLANDIN F1a	1mM	370.2
16,16-DIMETHYL-PROSTAGLANDIN E2	lmM	380.3
U-46619	lmM	350.2
9b,11a PROSTAGLANDIN F2	lmM	354.2
9a,11b PROSTAGLANDIN F2	ImM	354.2
PROSTAGLANDIN J2	ImM	334.2
2,3-DINUK-6-KETU-PGF1a	U.IMM	542.2 250.2
		550.2 211-2
(\pm) 13-AZAPKUSTANUIC ACID 10(D) HVDDOVV DDOSTACLANDINES		511.5
19(K) - HIDKUAI - PKUSIAGLANDIN E2		308.2
19(κ)-ΠΙ DKUA I -PKUS I AGLANDIN F2a	0.1mM	370.2

17-PHENYL-TRINOR-PGE2	1mM	386.2
D12-PROSTAGLANDIN J2	1mM	334.2
13,14-DIHYDRO-PGE1	1mM	356.3
8-EPI-PROSTAGLANDIN F2a	1mM	354.2
15d-PGJ2	1mM	316.2
MISOPROSTOL, FREE ACID	1mM	368.3
THROMBOXANE B2	1mM	370.2
11-DEHYDRO-THROMBOXANE B2	1mM	368.2
ANANDAMIDE (20:4, n-6)	1mM	347.3
PALMITYLETHANOLAMIDE	1mM	299.3
ANANDAMIDE (18:2,n-6)	1mM	323.3
ANANDAMIDE (20:3,n-6)	1mM	349.3
ANANDAMIDE (22:4,n-6)	1mM	375.3
MEAD ETHANOLAMIDE	1mM	349.3
(R)-METHANANDAMIDE	1mM	361.3
BML-190	1mM	426.1
N-Arachidonylglycine	1mM	361.3
EMPTY		
WIN 55,212-2	1mM	426.2
ARACHIDONAMIDE	1mM	303.3
LINOLEAMIDE	1mM	279.3
9,10-OCTADECENOAMIDE	1mM	281.3
ACETYL-FARNESYL-CYSTEINE	1mM	367.2
S-FARNESYL-L-CYSTEINE ME	1mM	339.2
AGGC	1mM	435.3
AGC	1mM	299.2
FARNESYLTHIOACETIC ACID	1mM	296.2
9(S)-HODE	0.1mM	296.2
(±)9-HODE	0.1mM	296.2
13(S)-HODE	0.1mM	296.2
(±)13-HODE	0.1mM	296.2
13(S)-HOTE	0.1mM	294.2
9(S)-HPODE	0.1mM	312.2
13(S)-HPODE	0.1mM	312.2
LEUKOTOXIN A (9,10-EODE)	0.1mM	296.2
LEUKOTOXIN B (12,13-EODE)	0.1mM	296.2
12(S)-HHT	0.1mM	280.2
25-HYDROXYVITAMIN D3	1mM	400.3
1,25-DIHYDROXYVITAMIN D3	1mM	416.3
24,25-DIHYDROXYVITAMIN D3	1mM	416.3
RETINOIC ACID, ALL TRANS	1mM	300.2
9-CIS RETINOIC ACID	lmM	300.2
13-CIS RETINOIC ACID	ImM	300.2
4-HYDROXYPHENYLRETINAMIDE	ImM	391.3
AM-580	ImM	351.2
TINPB	1mM	348.2
METHOPRENE ACID	1mM	268.2
W 1-14043		323.0
CIGLITAZONE	1 mM	333.1 242.1
CLUTIDKATE 5 % 11 EICOS ATDIVNOIC ACID	1 IIIIVI 1	242.1
5 8 11 14 EICOSATETDAVNOIC ACID	1111IVI 1.mM	200.2 206.2
1.2 DIDECANOVI CI VCEDOI (10.0)		290.2 100 3
1 2-DIOCTANOYI -SN-GI VCFROI	1mM	344.3
1,2 DIOCITINO IL DIV-OLICLICOL	1111111	544.5

1,2-DIOLEOYL-GLYCEROL (18:1)	1mM	620.5
1-OLEOYL-2-ACETYL-GLYCEROL	1mM	398.3
1-STEAROYL-2-ARACHIDONOYL-		
GLYCEROL	1mM	644.5
RICINOLEIC ACID	1mM	298.3
1-HEXADECYL-2-ARACHIDONOYL-		
GLYCEROL	1mM	602.5
1-HEXADECYL-2-O-METHYL-GLYCEROL	1mM	330.3
1-HEXADECYL-2-O-ACETYL-GLYCEROL	1mM	358.3
2,3-DINOR-THROMBOXANE B2	0.1mM	342.2
14,15-DEHYDRO-LEUKOTRIENE B4	0.1mM	334.2
REV-5901	1mM	335.2
LY-171883	1mM	318.2
U-75302	0.1mM	361.3
SO-29548	1mM	387.2
FLUPROSTENOL	1mM	458.2
CLOPROSTENOL Na	1mM	424.2
EICOSAPENTAENOIC ACID (20.5 p_3)	1mM	302.2
DOCOSAHEXAENOIC ACID ($22:6 \text{ n}$ -3)	1mM	378.2
ARACHIDONIC ACID (20.4 n 6)	1mM	304.2
MEAD ACID (20.3 n 0)	1mM	304.2
I INOI ENIC A CID (19:2 n 2)	1mM	200.2 278 2
$\begin{array}{c} \text{LINOLENIC ACID (10.5 II-5)} \\ \text{CAMMA LINOLENIC ACID (19.2 m 6)} \end{array}$		270.2
$\begin{array}{c} \text{GAMMA-LINOLENIC ACID} (10.5 \text{ II-0}) \\ \text{ELCOSA} 5.9 \text{ DIENOLC ACID} (20.2 \text{ m} 12) \end{array}$	1 IIIIVI 1 M	210.2
EICOSA-3,8-DIENOIC ACID $(20:2 \text{ II}-12)$	1 IIIIVI 1 M	208.2
EICOSADIENOIC ACID (20:2 n-0)	1 mivi 1 M	308.3
/,/-DIMETHYLEICOSADIENOIC ACID	1mM	330.3
EICOSATRIENOIC ACID (20:3 n-3)	ImM	306.3
DIHOMO-GAMMA-LINOLENIC ACID	ImM	306.3
DOCOSATRIENOIC ACID (22:3 n-3)	ImM	334.3
ADRENIC ACID (22:4 n-6)	ImM	332.3
DOCOSAPENTAENOIC ACID	ImM	330.3
LINOLEIC ACID	1mM	280.2
17-OCTADECYNOIC ACID	1mM	280.2
2-HYDROXYMYRISTIC ACID	1mM	244.2
2-FLUOROPALMITIC ACID	1mM	274.2
4-OXATETRADECANOIC ACID	1mM	230.2
12-METHOXYDODECANOIC ACID	1mM	230.2
SPHINGOSINE	1mM	299.3
C2 CERAMIDE	1mM	341.3
C2 DIHYDROCERAMIDE	1mM	343.3
N,N-DIMETHYLSPHINGOSINE	1mM	327.3
C8 CERAMIDE	1mM	425.4
C8 DIHYDROCERAMIDE	1mM	427.4
C16 CERAMIDE	1mM	537.5
DIHYDROSPHINGOSINE	1mM	301.3
SPHINGOMYELIN *	100nmol	730.6
SPHINGOSINE-1-PHOSPHATE *	100nmol	379.2
SPHINGOSYLPHOSPHORYL CHOLINE *	100nmol	464.3
DIHYDROSPHINGOSINE-1-PHOSPHATE *	100nmol	381.3
C8 CERAMINE	1mM	411.4
DL-DIHYDROSPHINGOSINE	1mM	301.3
DL-PDMP	1mM	390.3
DL-PPMP	1mM	474.4
MAPP, D-erythro	1mM	361.3

MAPP, L-erythro	1mM	361.3
PAF C16	1mM	523.4
LYSO-PAF C16	1mM	481.4
PAF C18	1mM	551.4
LYSO-PAF C18 *	100nmol	509.4
PAF C18:1	1mM	549.4
ENANTIO-PAF C16	1mM	523.4
ARACHIDONOYL-PAF	1mM	767.6
2-EPA-PAF	1mM	751.6
2-DHLA-PAF	1mM	769.6
DCHA-PAF	1mM	791.6
1-HEXADECYL-2-METHYLGLYCERO-3 PC	1mM	495.4
1-OCTADECYL-2-METHYLGLYCERO-3 PC	1mM	523.4
C-PAF	1mM	538.4
1-ACYL-PAF	1mM	537.3
LYSOPHOSPHATIDIC ACID	1mM	436.3
L-NASPA	1mM	423.2
PHOSPHATIDIC ACID, DIPALMITOYL	1mM	648.5
AM251	1mM	554.0
2-ARACHIDONOYLGLYCEROL	1mM	378.3
6-FORMYLINDOLO [3,2-B] CARBAZOLE	1mM	284.1
DIINDOLYLMETHANE	1mM	246.1
N-LINOLEOYLGLYCINE	1mM	337.3
PALMITOYL DOPAMINE	1mM	391.3
OLEOYL DOPAMINE	1mM	417.3
ARACHIDONOYL DOPAMINE	1mM	439.3

Supplementary Table 3. Yeast strains used in this study

Name	Genotype	Source
CaLC238	SN87 derivative of SC5314 leu 2Λ /leu 2Λ his 1Λ /his 1Λ	Noble
	URA3/ura3::imm434 IRO1/iro1::imm434	
CaEL1	Isogenic to SN87, except his1::CdHIS1/his1 Δ	This study
(wild type)	$leu2::CmLEU2/leu2\Delta$	j
CaLC941	Isogenic to SN87, except	Gift from
$(orf19.633\Delta/\Delta)$	orf19.633::CdHIS1/orf19.633::CmLEU2	Leah Cowen
$sld1\Delta/\Delta$	Isogenic to CaEL1, except	This study
	sld1∆/sld1::CaNAT	-
mts $l\Delta/\Delta$	Isogenic to CaEL1, except	This study
	mts1∆/mts1::CaNAT	
orf19.752 Δ/Δ	Isogenic to CaEL1, except	This study
	orf19.752∆/orf19.752::CaNAT	
$hsx11\Delta/\Delta$	Isogenic to CaEL1, except	This study
	hsx11∆/hsx11::CaNAT	
$sld1\Delta/\Delta$	Isogenic to CaLC941, except	This study
orf19.633 Δ/Δ	sld1∆/sld1::CaNAT	
mts $l\Delta/\Delta$	Isogenic to CaLC941, except	This study

orf19.633 Δ/Δ	mts1∆/mts1::CaNAT	
orf19.752 Δ/Δ	Isogenic to CaLC941, except	This study
orf19.633 Δ/Δ	orf19.752∆/orf19.752::CaNAT	
$hsx11\Delta/\Delta$	Isogenic to CaLC941, except	This study
orf19.633 Δ/Δ	hsx11∆/hsx11::CaNAT	
BY4743	MATa/ α his3 Δ 1/his3 Δ 1 leu2 Δ 0/leu2 Δ 0 LYS2/lys2 Δ 0	Brachmann
(wild-type)	met15 Δ 0/MET15 ura3 Δ 0/ura3 Δ 0	
$crgl\Delta/\!\Delta$	Isogenic to BY4743, except for crg1::KanMX	Giaever
	crg1::KanMX	

Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, *et al.* (1998) Designer deletion strains derived from *Saccharomyces cerevisiae* S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14: 115-132. Giaever G, Chu AM, Ni L, Connelly C, Riles L, *et al.* (2002) Functional profiling of the *Saccharomyces cerevisiae* genome. Nature 418: 387-391.
Noble SM, Johnson AD (2005) Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans. Eukaryot Cell 4: 298-309.

Supplementary Table 4. Plasmids used in this study

-

Plasmid name	Plasmid name Description	
pJK863 (pLC49)	FLP-CaNAT, ampR	Shen
pUC57	With optimized sequence orf19.633, AmpR	This study
BG1805	2 μm, URA3, GAL1prom, triple affinity tag (His6-	Lissina
	terminal	
orf19.633	As BG1805, with orf19.633	This study
D48A	As BG1805, orf19.633–D48A	This study
E153A/R156G	As BG1805 orf19.633-E153A/R156G	This study
Motif III Δ	As BG1805 orf19.633–Motif III Δ	This study

Supplementary Table 5. Primers used in this study

Primer name	Purpose	Oligonucleotide sequence (5'-3')
T THILE Halle	1 01 0000	
orf19.633 (mid)_F	qRT-PCR	ATCACCGGTGGAGAAATACG
orf19.633 (mid)_R	qRT-PCR	TGATTCATATCCTGCTTCTAATGC
ACT1 (3')_F	qRT-PCR	AGGTTTGGAAGCTGCTGGTA
ACT1 (3')_R	qRT-PCR	AGCAATACCTGGGAACATGG

D48A_F	Orf19.633	
	mutagenesis	TTCAAGATTTTAGCTGTTGGGTGCGGTCCTGG
$D48A_R$	Orf19.633	GTTTGGTTTTATCAGTGGAATGACGTACTTAG
	mutagenesis	С
E153A/R156G F	Orf19.633	GAAGCCTTGAAGGCATTGAAAGGAGTTACGA
_	mutagenesis	AACCAG
E153A/R156G R	Orf19.633	GATTGGATTCTGTAAATGAATGATCACCTGG
—	mutagenesis	
	0	
Motif III F	Orf19.633	ATCTGTATTAGAGATGCAGATTTGGAATCTA
	mutagenesis	GTATAG
	8	
Motif III R	Orf19.633	CAGTTCATAGATAGAACCAATTTGAAACGAA
	mutagenesis	ATATTAGTC
MTS1 F	8	GTTTTCGTCTTTTGTCGAGTTTAACATTTCAA
	Double mutant	TTGAATATCAATTTTTGTAACAATGCGTATGT
	construction	TGTGTGGAATTGTGAG
MTS1 R	•••••••••••••	TATTCAGATCAGAATAAATAAAAATCTATAC
	Double mutant	AAATACACCATAAAAGCTCAACCAGTTTAGG
	construction	CGATTAAGTTGGGTAACG
	comburaction	TTATTTATTTATTGTTATTTTTTTTTTTCACC
SLD1 F	Double mutant	TTCGTTAACAAACCTTTATGAGATAAACCAT
	construction	GCGTATGTTGTGTGGGAATTGTGAG
SLD1 R	comburaction	GTCTCTATATATATATATCTATACCCTCATATAA
	Double mutant	ATTTGCATAAAAGTTAAGAAAACAGGATACT
	construction	GTCTAGGCGATTAAGTTGGGTAACG
HSX11 F		TACATTTGATCTTGTTTCTTTTATCAACACTG
	Double mutant	TGAAATATCGTAATCTTTTGTTCTTCTTCTA
	construction	ATGCGTATGTTGTGTGGGAATTGTGAG
HSX11 R		TTACATTTAACTTTTACTTATCTATATATACA
_	Double mutant	TGTCCTGTCTATCTATCTATAACAATTGGCGT
	construction	ATCAGGCGATTAAGTTGGGTAACG
orf19.752 F		TTCTTTGTATTATTGGTTAGATTTCCATTCCA
5	Double mutant	TATACACACAAGATGCGTATGTTGTGTGGAA
	construction	TTGTGAG
orf19.752 R	•••••••••••••	TTGAAGTGAGTTGATGTAGTAAATTATGTAT
0.9120002_10	Double mutant	GAATGTATATAAACCCTCAGGCGATTAAGTT
	construction	GGGTAACG
confirm Flip NAT F	Confirmation	CAACCACAAATGACCAGCAC
confirm Flip NAT R	Confirmation	GTGATTTGGCTGGTTTCGTT
confirm MTS1 F	Confirmation	CACATTTGCCCATCACTCTG
confirm_MTS1_R	Confirmation	CGAAGTCATGTTCGTGCATC
confirm orf19.752 F	Confirmation	CAAGCCGAGTCGGAAAACTA
confirm orf19.752_R	Confirmation	TGTGTTCGACACATCCTGGT
confirm_HSX11_F	Confirmation	TCGAACTGTCATCCTGTCCA
confirm HSX11 R	Confirmation	TACAACCAAGCTGCGAAAAA

confirm_SLD1_F	Confirmation	CTTTTGGCAGGATTCTTGGA
confirm_SLD1_R	Confirmation	CCAAAAGAACCAGAGCTTGC
confirm_SLD1_1100bp_	Confirmation	TGGACGTTGATTGTCCTGAA
F		
confirm_HSX11_430bp_	Confirmation	AATCGATTGGAGGGGAAGAC
F		
	Confirmation	AGAGACGCTTTGGAAGACGA
confirm_MTS1_990bp_F		
confirm_orf19.752_995b	Confirmation	CGACCTAATTGTTGCCAAGG
p_F		
GAL1_orf19.633_F		TTAACGTCAAGGAGAAGGAATTATCAAGTTT
	19.633 cloning	GTACAATGAGCGGTGCTAACAACAACCATCA
		AGTG
Cterm_orf19.633_R		ATGGTGATGATGATGTCTAGACACATCAACC
	19.633 cloning	ACTTTTGTACACACTTGACGTGTAGTTGTTGG
		TTTTTGGTA

Transformation into S. cerevisiae crg1 Δ/Δ

В

	-		
1			
4			
1			
1			
		•	
-			

I				
•				1
	Sphingosine	0	Ο	Monosialoganglioside-GM1
	Sphingosine-1-phosphate (S1P)	0	Ο	Disiaganglioside-GD3
	Phytosphingosine	0	Ο	Sulfatide
	Ceramide	0	0	Psychosine
	Sphingomyelin	0	Ο	Cholesterol
	Sphingosylphosphorylcholine	0	Ο	Lyso-PC
•	Lysophosphatidic Acid (LPA)	0	Ο	PC
1	Myriosine	0	0	Solvent Blank
1 C C				

А

А	30°C	2	В	مصبحة امائني		
-	no drug	50uM		wild type	SIUTA/A	THIS TAVA
wt	0 4 4 0					6.5.6
cacrg1 Δ / Δ	🗩 🏶 🖗 🛞	•		3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	- a statistic statistic	
sld1 Δ/Δ	🕘 🐮 📲 😁					
sld1 Δ / Δ cacrg1 Δ / Δ	🔵 🧶 🍝 💮	 S S 		S. Carola		$\sim - \Lambda$
mts1 Δ / Δ	i 🔿 🐔 💽				Sec	A A A A A A A A
mts1 Δ / Δ cacrg1 Δ / Δ	🕘 🏟 🛧 🌚	् 🗘 ं 🕀				
$hsx11\Delta/\Delta$) 🕸 🦾 💽				the second	Town A work
hsx11 Δ / Δ cacrg1 Δ / Δ	💿 🦊 🍀 💽	Θ		cacrg1 Δ / Δ	sld1∆/∆	$mts1\Delta/\Delta$
wt	🕘 · 🏶 🥳 🕒	í 🔵 💿 🏘			cacrg1∆/∆	cacrg1 _{Δ/Δ}
cacrg1 Δ/Δ	• • * •) 🔍 🥵 📩				
orf19.752∆/∆	🔿 🌸 🏶 🌑) 🔘 🌒 🔅				
orf19.752 Δ / Δ cacrg1 Δ / Δ	ښ په کې کې	Θ				