Controlled Radical Polymerization of 3-Methylenecyclopentene with N-Substituted Maleimides To Yield Highly Alternating and Regiospecific Copolymers

Daisuke Yamamoto ${ }^{\dagger}$ and Akikazu Matsumoto**
${ }^{\dagger}$ Department of Applied Chemistry and Bioengineering, Graduate School of Engineering,
Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
${ }^{\ddagger}$ Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan

CONTENTS

Table S1. Radical copolymerization of MCP with RMIs.
Table S2. Production of alternating copolymer and Diels-Alder adduct during reaction of IP with PhMI.
Table S3. Solubility of poly(MCP-alt-RMI)s
Table S4. Radical copolymerization for determination of monomer reactivity ratios.

Figure S1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of MCP synthesized by the ring-close metathesis reaction of myrcene.
Figure S2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the isolated IP-PhMI Diels-Alder adduct.
Figure S3-S6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of poly(MCP-alt-RMI)s.
Figure S7. TG curves of the poly(MCP-alt-RMI)s.
Figure S8. DSC curves of the poly(MCP-alt-RMI)s.
Figure S9. Wavelength dispersion of poly(MCP-alt-RMI)s.
Figure S10. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the hydrogenated poly(MCP-alt-PhMI).
Figure S11. TG curves of poly(MCP-alt-PhMI) and the hydrogenated poly(MCP-alt-PhMI).
Figure S12. DFT calculation results for the model reactions.
Figure S13. Fineman-Ross and Kelen-Tüdõs plots for MCP and IP $\left(\mathrm{M}_{1}\right)-\mathrm{PhMI}\left(\mathrm{M}_{2}\right)$ copolymerizations.
Figure S14. ${ }^{13} \mathrm{C}$ NMR spectrum of poly(IP-alt-PhMI).
Figure S15. HHCOSY spectrum of BT/MCP/PhMI-1,4-adduct (Isomer II).
Figure S16. Expanded ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{BT} / \mathrm{MCP} / \mathrm{PhMI}-1,4$-adducts: (a) Isomer I, (b) Isomer II.

Table S1. Radical Copolymerization of MCP with RMIs

time (h)	MMI			CHMI			PhMI		
	yield (\%)	$M_{\mathrm{n}} / 10^{5}$	$M_{\mathrm{w}} / M_{\mathrm{n}}$	yield (\%)	$M_{\mathrm{n}} / 10^{5}$	$M_{\text {w }} / M_{\mathrm{n}}$	yield (\%)	$M_{\mathrm{n}} / 10^{5}$	$M_{\mathrm{w}} / M_{\mathrm{n}}$
0.5	20.3	1.28	1.96	18.6	3.48	2.03	36.7	1.74	2.88
1.0	40.3	1.23	1.91	35.8	3.61	2.15	56.7	1.98	2.24
1.5	57.2	0.96	2.33	48.3	3.53	2.24	73.0	1.92	2.43
2.0	66.5	1.04	2.03	58.9	3.45	2.22	77.9	1.97	2.32
3.5	87.8	0.84	2.42	84.3	2.92	2.49	93.7^{b}	1.69^{b}	2.65^{b}
6.0	99.3	0.77	2.42	97.1	2.31	2.84	97.3	1.47	2.97

${ }^{a}$ Copolymerization conditions: $([\mathrm{MCP}]+[\mathrm{RMI}])=0.5 \mathrm{~mol} / \mathrm{L},[\mathrm{AIBN}]=1.0 \mathrm{mmol} / \mathrm{L}$ in 1,2-dichloroethane at 60 ${ }^{\circ}$ C. ${ }^{b}$ Polymerized for 4 h .

Table S2. Production of Alternating Copolymer and Diels-Alder Adduct During Reaction of IP with PhMI in CDCl_{3} at $60^{\circ} \mathrm{C}^{a}$

time (h)	PhMI conversion (\%)	copolymer yield (\%)	Diels-Alder adduct yield $(\%)$	$M_{\mathrm{n}} / 10^{3}$	$M_{\mathrm{w}} / 10^{3}$	$M_{\mathrm{w}} / M_{\mathrm{n}}$
	68.1	8.7	59.9	34.6	56.9	1.65
1.0	79.8	10.2	69.6	26.8	46.1	1.72
1.5	85.0	12.3	74.4	23.3	43.9	1.88
2.0	87.6	13.1	76.9	23.9	39.9	1.67
3.0	91.2	14.9	80.3	28.4	46.1	1.62

[^0]Table S3. Solubility of Poly(MCP-alt-RMI)s

solvent	RMI $=$	MMI	BMI	CHMI

Table S4. Radical Copolymerization of MCP and IP with PhMI for Determination of Monomer Reactivity
Ratios in 1,2-Dichloroethane at $60^{\circ} \mathrm{C}$

diene monomer	PhMI mol\% in feed	time (h)	yield (\%)	$M_{\mathrm{n}} / 10^{4}$	$M_{\mathrm{w}} / M_{\mathrm{n}}$	PhMI mol\% in copolymer
MCP	10.0	0.2	5.4	7.3	1.93	47.9
	30.0	0.5	8.0	12.4	1.67	48.4
	50.0	0.2	3.1	45.3	1.58	49.6
	70.0	0.5	7.1	16.9	1.76	49.7
IP	90.0	0.2	2.4	4.5	1.94	51.9
	10.0	2.0	1.4	10.5	1.56	32.2
	30.0	2.0	4.9	19.1	1.97	43.6
	50.0	1.5	12.2	20.4	1.75	49.4
	70.0	0.5	13.5	80.6	1.71	51.7
	90.0	0.17	5.0	79.2	1.80	56.1

[^1]

Figure S1. (a) ${ }^{1} \mathrm{H}$ and (b) ${ }^{13} \mathrm{C}$ NMR spectra of MCP synthesized by the ring-close metathesis reaction of myrcene. Measurement solvent, CDCl_{3}.

(b)

Figure S2. (a) ${ }^{1} \mathrm{H}$ and (b) ${ }^{13} \mathrm{C}$ NMR spectra of the isolated IP-PhMI DA- Diels-Alder adduct in CDCl_{3} at room temperature.

CH_{3}
e

Figure S3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of poly(MCP-alt-MMI). Measurement solvent, CDCl_{3}.

Figure S4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of poly(MCP-alt-BMI). Measurement solvent, CDCl_{3}.

Figure S5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of poly(MCP-alt-CHMI). Measurement solvent, CDCl_{3}.

Figure S6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of poly(MCP-alt-PhMI). Measurement solvent, CDCl_{3}.

Figure S7. TG curves for poly(MCP-alt-RMI)s in a nitrogen stream at the heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$.

Figure S8. DSC curves of the poly(MCP-alt-RMI)s at the heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$. (a) poly(MCP-alt-BMI), (b) poly(MCP-alt-MMI), (c) poly(MCP-alt-CHMI), and (d) poly(MCP-alt-PhMI).

Figure S9. Wavelength dispersion of poly(MCP-alt-RMI)s: (a) poly(PhMI-alt-MCP), (b) poly(MCP-alt-CHMI), (c) poly(MCP-alt-MMI), (d) poly(MCP-alt-BMI), and (e) PMMA. Curves indicate fitting results by the simplified Cauchy formula using the two parameters, D and n_{∞}.

Figure S10. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the hydrogenated poly(MCP-alt-PhMI) in CDCl_{3} at room temperature. The conversion was 61%.

Figure S11. TG curves of poly(MCP-alt-PhMI) and the hydrogenated poly(MCP-alt-PhMI) at the heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$. The conversion was 61%.

Figure S12. DFT calculation results for the model reactions related to the preferred regiospecific propagation during the radical copolymerization of MCP with the RMIs.

Figure S13. Fineman-Ross and Kelen-Tüdõs plots for (a) MCP $\left(\mathrm{M}_{1}\right)-\mathrm{PhMI}\left(\mathrm{M}_{2}\right)$ and (b) IP $\left(\mathrm{M}_{1}\right)-\mathrm{PhMI}\left(\mathrm{M}_{2}\right)$ copolymerization systems.

Figure S14. ${ }^{13} \mathrm{C}$ NMR spectrum of poly(IP-alt-PhMI). Measurement solvent, CDCl_{3}.

Figure S15. HHCOSY spectrum of $\mathrm{BT} / \mathrm{MCP} / \mathrm{PhMI}-1,4$-adduct (Isomer II) separated from the telomerization mixture by preparative SEC, followed by purification using silica gel column chromatography. For Isomer I, see Figure 12.
(a) BT/MCP/PhMI-adduct Isomer I

(b) BT/MCP/PhMI-adduct Isomer II

Figure S16. Expanded ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{BT} / \mathrm{MCP} / \mathrm{PhMI}-1,4$-adducts: (a) Isomer I and (b) Isomer II. Separated from the telomerization mixture by preparative SEC , followed by purification using silica gel column chromatography.

[^0]: ${ }^{a}[\mathrm{IP}]=[\mathrm{PhMI}]=0.50 \mathrm{~mol} / \mathrm{L},[\mathrm{AIBN}]=10 \mathrm{mmol} / \mathrm{L}$.

[^1]: ${ }^{a}$ Copolymerization conditions: $([$ diene $]+[\mathrm{PhMI}])=1.0 \mathrm{~mol} / \mathrm{L},[\mathrm{AIBN}]=10 \mathrm{mmol} / \mathrm{L}$ in 1,2 -dichloroethane at $60^{\circ} \mathrm{C}$.

