## Supporting Information

## Highly efficient photoelectrochemical hydrogen generation using a quantum dot coupled hierarchical $\mathbf{Z n O}$ nanowires array

## Heejin Kim and Kijung Yong*

Surface Chemistry Laboratory of Electronic Materials (SCHEMA), Department of Chemical

Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea

* To whom correspondence should be addressed, E-mail: kyong@postech.ac.kr

Solar to hydrogen conversion efficiency


Figure.S1 Calculated chemical conversion efficiency of the $\mathrm{CdSe} / \mathrm{CdS}$ quantum dot modified ZnO nanostructure photoelectrodes using the obtained photocurrent densities in figure 3.

The solar to hydrogen conversion efficiency can be calculated with following equation as following equation. [Chemical Reviews 2010, 110, 6446-6473" and "Energy Environ. Sci. 2013, 6, 347"] We have measured the real bias system with working electrode as QDs modified ZnO photoelectrode and Pt as counter electrode.
$\mathrm{n}_{\mathrm{c}}(\%)=[($ energy converted to chemical reactions - energy supplied by external bias)/energy of incident light $] \times 100$
$n_{c}(\%)=\left[\frac{J_{p}\left(\Delta G^{o^{\text {rev }}}-E_{\text {bias }}\right)}{J_{0}}\right] \times 100$
where $\Delta \mathrm{G}^{\circ}{ }_{\text {rev }}$ is the Gibbs free energy per coulomb of electrons for the redox reactions on electrodes, $\mathrm{J}_{\mathrm{p}}$ is the photocurrent density and $\mathrm{J}_{0}$ is the intensity of the incident light, which is $100 \mathrm{~mW} \mathrm{~cm}{ }^{-2} . \Delta \mathrm{G}^{\circ}{ }_{\text {rev }}$ of 1.23 V is generally used for water splitting reaction. However, this value of $\Delta \mathrm{G}^{\circ}{ }_{\text {rev }}$ is not adequate in our system due to the sacrificial reagent used in our device. Thus, we have calculated the conversion efficiency using the obtained photocurrent with modified Gibbs free energy corresponding to half reaction in sacrificial reagent $(0.5 \mathrm{~V}$ vs. NHE). The calculated efficiency in figure S 1 showed the $2.45 \%$ maximum efficiency at 0.2 V with the optimized $\mathrm{CdSe} / \mathrm{CdS} / 3 \mathrm{D} \mathrm{ZnO}$ nanostructure photoelectrode. In addition, the 3D photoelectrode showed the solar to hydrogen conversion efficiency of $0.98 \%$ at zero bias.

