Supporting Information

Synthesis of Pyridopyrimidines by Palladium-Catalyzed Isocyanide Insertion

Verónica Estévez, ${ }^{\dagger, \S}$ Gitte Van Baelen, ${ }^{\dagger}{ }^{\S, \perp}$ Babette H. Lentferink, ${ }^{\dagger}$ Tjøstil Vlaar, ${ }^{\dagger}$ Elwin Janssen, ${ }^{\dagger}$ Bert U. W. Maes, ${ }^{*, \hbar}$ Romano V. A. Orru*, ${ }^{\dagger}$ and Eelco Ruijter* ${ }^{\dagger}$
\dagger Department of Chemistry \& Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines \& Systems, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, the Netherlands \ddagger Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium

* E-Mail: bert.maes@ua.ac.be; r.v.a.orru@vu.nl; e.ruijter@vu.nl

Contents

General information S2
Experimental procedures and characterization data S2
Synthesis of amidines 4a-f and 5a-b S2
Synthesis of pyrido[3,2-d] pyrimidines 1a-i S3
Synthesis of pyrido[2,3- d] pyrimidines 2a-d S5
Synthesis of (E)- N-(tert-butyl)-2-phenyl-4H-pyrido[1,2-a][1,3,5]triazin-4-imine (8) S6

General information

All melting points were determined on a Stuart Scientific Melting Point Apparatus SMP3 with a heating rate of $1{ }^{\circ} \mathrm{C} / \mathrm{min}$.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded (at 400.13 or 500.23 MHz and 100.62 or 125.78 MHz , respectively) on a Bruker Avance 400 or 500 spectrometer in the solvent indicated and with the residual solvent resonance peak used as internal reference $\left(\mathrm{CHCl}_{3}, 1 \mathrm{H}: \delta=7.26 \mathrm{ppm} ; 13 \mathrm{C}\{1 \mathrm{H}\}: \delta=77.0\right)$. All coupling constants are given in Hz and chemical shifts are reported in parts per million (ppm). The assignment of the 1 H NMR signals is based on 2D NMR techniques (COSY, NOESY, HSQC, HMBC). Infrared (IR) spectra were measured with ATR on a Shimadzu FTIR-8400S and wavelengths (v) are reported in cm^{-1}. Electrospray Ionization (ESI) mass spectrometry was carried out using a Bruker micrOTOF-Q instrument in positive ion mode (capillary potential of 4500 V). Flash column chromatography was performed on Silicycle silica gel $(40-63 \mu \mathrm{~m}, 60 \AA)$ using the indicated solvent. Thin Layer Chromatography was performed using silica plates (silica on aluminum with fluorescence indicator). Compounds on TLC were visualized by UV detection.

Experimental procedures and characterization data

Synthesis of amidines 4 and 5: Method A : A solution of $\mathbf{3 a}$ (1.1 equiv.) and the appropriate nitrile (1.0 equiv.) in dry DMF was added at $0{ }^{\circ} \mathrm{C}$ to a suspension of NaH (1.5 equiv., washed with 30 mL pentane) in dry DMF. The mixture was stirred for 5 min at $0{ }^{\circ} \mathrm{C}$ and then overnight at room temperature. The reaction was quenched with ice-water. If a precipitate appeared, it was filtered and then dissolved in ethyl acetate. If there was not precipitate, the mixture was extracted with dichloromethane. In both cases, the organic phase was dried over anhydrous sodium sulphate. Removal of the solvent under reduced pressure and purification of the residue by column chromatography on silica gel, eluting with the corresponding mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EtOAc}$, afforded to the desired product 4 .

Method B: 3a or 3b (1.1 equiv.) was added at $0^{\circ} \mathrm{C}$ to a suspension of NaH (1.5 equiv., washed with pentane) in dry DMF and stirred at $0^{\circ} \mathrm{C}$ for 10 min , before the addition of a solution of the appropriate nitrile (1.0 equiv.) in dry DMF. The resulting mixture was stirred overnight at rt . The reaction was quenched with ice-water. If a precipitate appeared, it was filtered and then dissolved in ethyl acetate. If there was not precipitate, the mixture was extracted with dichloromethane. In both cases, the organic phase was dried over anhydrous sodium sulphate. Removal of the solvent under reduced pressure and purification of the residue by column chromatography on silica gel, eluting with the corresponding mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EtOAc}$, afforded to the desired amidine $\mathbf{4}$ or $\mathbf{5}$.

N-(2-Bromo-3-pyridyl)benzimidamide (4a). Method A : prepared from $\mathrm{NaH}(0.180 \mathrm{~g}, 4.50$ mmol), 2-bromopyridin-3-amine 3a ($0.571 \mathrm{~g}, 3.30 \mathrm{mmol}$) and benzonitrile ($0.411 \mathrm{~g}, 3.00 \mathrm{mmol}$); extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EtOAc}, 98: 2,95: 5,9: 1,8: 2$; yield $549 \mathrm{mg}(65 \%)$; yellow solid. mp:74-77 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=8.07\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{6}\right) ; 7.91\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{2}\right.$); 7.55-7.41 $\left(\mathrm{m}, 3 \mathrm{H}, \mathrm{H}_{3}, \mathrm{H}_{4}, \mathrm{H}_{5}\right) ; 7.31\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{4}\right) ; 7.24\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{5}\right) ; 4.92\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=145.1,144.2,136.6,134.8,131.2,130.7,128.7,128.4,127.0,123.5$; IR; HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrN}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 276.0131, found 276.0127.

N -(2-Bromo-3-pyridyl)-2'-chlorobenzimidamide (4b). Method A: prepared from NaH (0.12 g , 3.00 mmol), 2-bromopyridin-3-amine 3a ($0.381 \mathrm{~g}, 2.20 \mathrm{mmol}$) and 2-chlorobenzonitrile (0.274 g , 2.00 mmol); eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 95: 5,9: 1,8: 2$; yield: 254 mg (41%); orange solid. mp: 190-191 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=8.11\left(\mathrm{~d}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}, \mathrm{H}_{6}\right) ; 7.44\left(\mathrm{~d}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{H}_{6}\right)$; 7.41$7.35\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{3}, \mathrm{H}_{4}, \mathrm{H}_{5}\right) ; 7.32-7.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right) ; 7.28-7.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5}\right) ; 5.00\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=155.1,144.6,144.3,136.5,134.8,131.3,131.2,130.9,130.7,130.2,127.3,123.7 \mathrm{ppm} ;$ HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrClN}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 309.9741$, found 309.9730 .

N -(2-Bromo-3-pyridyl)-3'-chlorobenzimidamide (4c). Method A : prepared from NaH (0.12 g, 3.00 mmol), 2-bromopyridin-3-amine 3a $(0.381 \mathrm{~g}, 2.20 \mathrm{mmol}$) and 3-chlorobenzonitrile (0.274 $\mathrm{g}, 2.00 \mathrm{mmol}$); extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EtOAc}, 95: 5,9: 1,7: 3$; yield: 453 mg (73\%); orange solid. mp: $126-128{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=8.11(\mathrm{~d}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}$, $\left.\mathrm{H}_{6}\right) ; 7.92\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right) ; 7.79\left(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{H}_{6}\right) ; 7.50\left(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}_{4}\right) ; 7.42(\mathrm{t}, 1 \mathrm{H}, J=$ $\left.7.8 \mathrm{~Hz}, \mathrm{H}_{5}\right) ; 7.30\left(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}_{4}\right) ; 7.27\left(\mathrm{dd}, 1 \mathrm{H}, J=7.5,4.6 \mathrm{~Hz}, \mathrm{H}_{5}\right) ; 4,89\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $126 \mathrm{MHz}) \delta=154.4,144.8,144.5,136.6,136.4,134.8,131.3,130.6,130.0,127.4,125.1,123.6 \mathrm{ppm}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrClN}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 309.9741$; found 309.9732.

N-(2-Bromo-3-pyridyl)-4'-chlorobenzimidamide (4d). Method A: prepared from NaH (0.12 $\mathrm{g}, 3.00 \mathrm{mmol}$) 2-bromopyridin-3-amine ($0.381 \mathrm{~g}, 2.20 \mathrm{mmol}$) and 4-chlorobenzonitrile (0.274 g , 2.00 mmol); yield: $347 \mathrm{mg}(56 \%)$; light brown solid. mp : $160-161{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}): \delta=8.10\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{6}\right) ; 7.86\left(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3}\right.$) ; $7.45\left(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}_{2}\right)$), $7.35-$ $7.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{4}, \mathrm{H}_{5}\right), 4.87\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta=154.7,144.8$, $144.4,137.4,136.5,133.3,130.6,128.9,128.4,123.6 \mathrm{ppm}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrClN}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 309.9741$, found 309.9737.

N-(2-Bromo-3-pyridyl)-isonicotinimidamide (4e). Method A: prepared from $\mathrm{NaH}(0.24 \mathrm{~g}, 6.00$ mmol) 2-bromopyridin-3-amine ($0.761 \mathrm{~g}, 4.40 \mathrm{mmol}$) and isonicotinonitrile ($0.416 \mathrm{~g}, 4.00 \mathrm{mmol}$); eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: EtOAc, 2:1, 1:1, EtOAc; yield: $1.00 \mathrm{~g}(90 \%)$; yellow solid. mp: $158-159{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=8.76\left(\mathrm{~d}, 2 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{H}_{3}, \mathrm{H}_{5}\right.$) ; $8.11\left(\mathrm{dd}, 1 \mathrm{H}, J=4.3,2.0 \mathrm{~Hz}, \mathrm{H}_{6}\right)$; $7.79\left(\mathrm{~d}, 2 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{H}_{2}, \mathrm{H}_{6}\right) ; 7.30\left(\mathrm{dd}, 1 \mathrm{H}, J=7.7,1.9 \mathrm{~Hz}, \mathrm{H}_{4}\right) ; 7.28(\mathrm{dd}, 1 \mathrm{H}, J=7.8,2.8 \mathrm{~Hz}$, H_{5}); $5.04\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta=153.6,150.5,144.7,144.4,142.2,136.2,130.3,123.6$, 121.0 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrN}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 277.0083$; found 277.0077.

N-(2-Bromo-3-pyridyl)-furan-2-carboximidamide (4f). Method B: prepared from NaH (0.30 g, 7.50 mmol), 2-bromopyridin-3-amine ($0.952 \mathrm{~g}, 5.50 \mathrm{mmol}$) and furan-2-carbonitrile ($0.44 \mathrm{~mL}, 5.00$ $\mathrm{mmol})$; yield: $1.08 \mathrm{~g}(81 \%)$; light orange solid. $\mathrm{mp}: 171-173{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=$ $8.08\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6}\right) ; 7.51\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right)$; 7.31-7.17 (m, 3H, H4, H5, H5 $)$; $6.56\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{4}\right)$; $5.04(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, $\left.\mathrm{NH}_{2}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta=148.1,147.1,144.3,143.8,136.9,130.7,123.4,112.4$ ppm; (ESI) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 265.9924$; found 265.9916.

N-(3-Bromo-2-pyridyl)-isonicotinimidamide (5a). Method B, prepared from NaH (0.18 g, 4.50 mmol), 3-bromopyridin-2-amine ($0.571 \mathrm{~g}, 3.30 \mathrm{mmol}$) and isonicotinonitrile ($0.312 \mathrm{~g}, 3.00 \mathrm{mmol}$); yield: $0.598 \mathrm{~g}(72 \%)$; yellow solid. $\mathrm{mp}: 134-135{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=8.75(\mathrm{~d}, 2 \mathrm{H}, J$ $=6.1 \mathrm{~Hz}, \mathrm{H}_{3^{\prime}}, \mathrm{H}_{5}$); $8.29\left(\mathrm{dd}, 1 \mathrm{H}, J=4.8,1.7 \mathrm{~Hz}, \mathrm{H}_{6}\right) ; 7.96\left(\mathrm{dd}, 1 \mathrm{H},, J=7.8,1.7 \mathrm{~Hz}, \mathrm{H}_{4}\right) ; 7.90(\mathrm{~d}$, $\left.2 \mathrm{H}, J=6.1 \mathrm{~Hz}, \mathrm{H}_{2}, \mathrm{H}_{6}\right) ; 6.86\left(\mathrm{dd}, 1 \mathrm{H}, J=7.8,4.8 \mathrm{~Hz}, \mathrm{H}_{5}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta=$ $158.8,156.3,150.4,145.0,144.0,141.4,121.2,119.3,119.0 \mathrm{ppm}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrN}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 277.0083; found 277.0078.

\boldsymbol{N}-(3-Bromo-2-pyridyl)-furan-2-carboximidamide (5b). Method B, prepared from $\mathrm{NaH}(0.30 \mathrm{~g}$, $7.50 \mathrm{mmol})$, 3-bromopyridin-2-amine ($1.038 \mathrm{~g}, 6.00 \mathrm{mmol}$) and furan-2-carbonitrile ($0.469 \mathrm{~g}, 5.00$ mmol); eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ (95:5); yield: 0.997 g (75%); green oil. $\mathrm{mp}: 88-90^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=8.22\left(\mathrm{dd}, 1 \mathrm{H}, J=4.5,1.5 \mathrm{~Hz}, \mathrm{H}_{6}\right) ; 7.90\left(\mathrm{dd}, 1 \mathrm{H}, J=7.5,1.5 \mathrm{~Hz}, \mathrm{H}_{4}\right) ; 7.51(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}_{3}$) ; $7.31\left(\mathrm{~d}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}, \mathrm{H}_{5}\right.$) ; $6.76\left(\mathrm{dd}, 1 \mathrm{H}, J=7.5,4.5 \mathrm{~Hz}, \mathrm{H}_{5}\right) ; 6.54(\mathrm{dd}, 1 \mathrm{H}, J=3.5,1.5$ $\left.\mathrm{Hz}, \mathrm{H}_{4} \cdot\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta=159.5,150.6,149.9,144.9,144.0,141.1,118.2,117.9,113.0,112.5 \mathrm{ppm} ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrN}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 265.9850$; found 265.9903.

Synthesis of pyrido[3,2-d] pyrimidines 1: A round-bottomed flask was charged with $\operatorname{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$ and Cy JohnPhos ($10 \mathrm{~mol} \%$) followed by 5 mL of dry DMF. The mixture was flushed with N_{2} for 10 min . In another roundbottomed flask, KOAc (3 equiv.), the appropriate amidine (1 equiv.) and isocyanide (1.5 equiv.) were weighed. To this mixture, the Pd catalyst solution was added and the flask was flushed with N_{2}. Then, the mixture was stirred and heated at $160^{\circ} \mathrm{C}$ for 7 h . After cooling down to room temperature, the resulting mixture was filtered over a pad of Celite and rinsed with ethyl acetate. The solvent was removed under reduce pressure and the obtained residue was purified by flash column chromatography on silica gel using the appropriate mixture of solvents as the eluent.

\boldsymbol{N}-tert-Butyl-(2-phenyl)pyrido[3,2-d]pyrimidin-4-amine (1a). Prepared from $\mathrm{Pd}(\mathrm{OAc})_{2}(0.011 \mathrm{~g}$, 0.05 mmol), Cy JohnPhos ($0.035 \mathrm{~g}, 0.10 \mathrm{mmol}$), N -(2-bromo-3-pyridyl)benzimidamide 4 a (0.276 g , 1 mmol), tert-butyl isocyanide ($0.125 \mathrm{~g}, 1.5 \mathrm{mmol}$); eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \%)$, then $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ (95:5); yield $0.201 \mathrm{~g}(72 \%)$; yellow solid. mp: 93-95 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=8.61$ (dd, $1 \mathrm{H}, J=4.0,1.5 \mathrm{~Hz}, \mathrm{H}_{6}$); $8.55\left(\mathrm{dd}, 2 \mathrm{H}, J=8.5,2.0 \mathrm{~Hz}, \mathrm{H}_{2}, \mathrm{H}_{6}\right) ; 8.12\left(\mathrm{dd}, 1 \mathrm{H}, J=8.5,1.5 \mathrm{~Hz}, \mathrm{H}_{8}\right) ;$ $7.61\left(\mathrm{dd}, 1 \mathrm{H}, J=8.5,4.0 \mathrm{~Hz}, \mathrm{H}_{7}\right) ; 7.50-7.47\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{3}, \mathrm{H}_{4}, \mathrm{H}_{5}\right.$); $7.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) ; 1.70(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{CCH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=160.9,159.0,147.1,144.8,138.9,136.1,131.5$, 130.2, 128.5, 128.3, 127.3, 52.1, 28.7 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 279.1531$; found 279.1608 .

N-tert-Butyl-2-(2'-chloro-phenyl)pyrido[3,2-d]pyrimidin-4-amine (1b).

Prepared from $\mathrm{Pd}(\mathrm{OAc})_{2}(0.011 \mathrm{~g}, 0.05 \mathrm{mmol})$, Cy JohnPhos $(0.035 \mathrm{~g}, 0.10 \mathrm{mmol}), N$-(2-bromo-3-pyridyl)-2-chloro-benzimidamide $\mathbf{4 b}(0.310 \mathrm{~g}, 1 \mathrm{mmol})$, tert-butyl isocyanide ($0.125 \mathrm{~g}, 1.5 \mathrm{mmol}$); eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ (99:1), then $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ (95:5); yield: $0.090 \mathrm{~g}(29 \%)$; yellow paste. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=8.67\left(\mathrm{dd}, 1 \mathrm{H}, J=4.5,1.5 \mathrm{~Hz}, \mathrm{H}_{6}\right) ; 8.13\left(\mathrm{dd}, 1 \mathrm{H}, J=8.0,1.5 \mathrm{~Hz}, \mathrm{H}_{8}\right) ;$ 7.78-7.76 (m, 1H, H6 $)$; $7.63\left(\mathrm{dd}, 1 \mathrm{H}, J=8.5,4.0 \mathrm{~Hz}, \mathrm{H}_{7}\right.$); 7.49-7.47 (m, 1H, H3 $)$; 7.36- 7.33 (m, $2 \mathrm{H}, \mathrm{H}_{4}, \mathrm{H}_{5}$); 7.29 (br s, 1H, NH); 1.69 (s, 9 H$) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta=162.4,158.9$, 147.7, 144.3, 139.5, 136.1, 132.6, 131.4, 131.0, 130.3, 129.6, 127.4, 126.5, 52.3, 28.7 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClN}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 313.1141$; found 313.1220.

N-tert-Butyl-2-(3'-chloro-phenyl)pyrido[3,2-d]pyrimidin-4-amine (1c). Prepared from Pd $(\mathrm{OAc})_{2}(0.011 \mathrm{~g}, 0.05 \mathrm{mmol})$, Cy JohnPhos $(0.035 \mathrm{~g}, 0.10 \mathrm{mmol}), N$-(2-Bromo-3-pyridyl)-3chlorobenzimidamide $4 \mathbf{c}(0.310 \mathrm{~g}, 1 \mathrm{mmol})$, tert-butyl isocyanide ($0.125 \mathrm{~g}, 1.5 \mathrm{mmol}$); eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100%); yield $0.222 \mathrm{~g}(71 \%)$; light yellow solid. mp: $119-121^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$ MHz): $\delta=8.62\left(\mathrm{dd}, 1 \mathrm{H}, J=4.5,1.5 \mathrm{~Hz}, \mathrm{H}_{6}\right) ; 8.53\left(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{H}_{2}\right.$) ; $8.43(\mathrm{dt}, 1 \mathrm{H}, J=7.0,1.5$ $\mathrm{Hz}, \mathrm{H}_{4}$); $8.10\left(\mathrm{dd}, 1 \mathrm{H}, J=8.5,1.5 \mathrm{~Hz}, \mathrm{H}_{8}\right) ; 7.61\left(\mathrm{dd}, 1 \mathrm{H}, J=8.5,4.0 \mathrm{~Hz}, \mathrm{H}_{7}\right) ; 7.44-7.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{5}\right.$, H_{6}); 7.24 (br s, $1 \mathrm{H}, \mathrm{NH}$); 1.69 (s, 9 H) ppm; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=159.6,159.1,147.4$, 144.6, 140.8, 136.1, 134.3, 131.5, 130.1, 129.5, 128.6, 127.4, 126.6, 52.2, 28.7 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClN}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 313.1141; found 313.1218.

\boldsymbol{N}-tert-Butyl-2-(4'-chloro-phenyl)pyrido[3,2-d]pyrimidin-4-amine (1d). Prepared from Pd $(\mathrm{OAc})_{2}(0.011 \mathrm{~g}, 0.05 \mathrm{mmol})$, Cy JohnPhos ($0.035 \mathrm{~g}, 0.10 \mathrm{mmol}$), N-(2-bromo-3-pyridyl)-4chlorobenzimidamide $\mathbf{4 d}(0.310 \mathrm{~g}, 1 \mathrm{mmol})$, tert-butyl isocyanide ($0.125 \mathrm{~g}, 1.5 \mathrm{mmol}$); eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ (98:2), then $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ (95:5); yield 0.207 g (66%); orange crystals. mp : $131-133{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=8.62\left(\mathrm{dd}, 1 \mathrm{H}, J=4.3,1.6 \mathrm{~Hz}, \mathrm{H}_{6}\right) ; 8.49(\mathrm{~d}, 2 \mathrm{H}, J=$ $\left.8.6 \mathrm{~Hz}, \mathrm{H}_{2}, \mathrm{H}_{6}\right) ; 8.10\left(\mathrm{dd}, 1 \mathrm{H}, J=8.4,1.5 \mathrm{~Hz}, \mathrm{H}_{8}\right) ; 7.62\left(\mathrm{dd}, 1 \mathrm{H}, J=8.4,4.2 \mathrm{~Hz}, \mathrm{H}_{7}\right) ; 7.45(\mathrm{~d}$, $2 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{H}_{3}, \mathrm{H}_{-5}$) ; $7.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) ; 1.69(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta$ $=159.9,159.0,147.3,144.7,137.4,136.3,136.0,131.5,129.9,129.8,128.5,128.4,127.4,52.1,28.7 \mathrm{ppm}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClN}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 313.1141$; found 313.1213.

\boldsymbol{N}-tert-Butyl-2-(pyridin-4'-yl)pyrido[3,2-d]pyrimidin-4-amine (1e). Prepared from Pd (OAc) ${ }_{2}$ $(0.011 \mathrm{~g}, 0.05 \mathrm{mmol})$, Cy JohnPhos ($0.035 \mathrm{~g}, 0.10 \mathrm{mmol}$), (Z)- N^{\prime}-(2-bromo-3-pyridyl)isonicotinimidamide $4 \mathrm{e}(0.277 \mathrm{~g}, 1 \mathrm{mmol})$, tert-butyl isocyanide ($0.125 \mathrm{~g}, 1.5 \mathrm{mmol}$); eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(8: 2)$, then $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(1: 1), \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(1: 2)$, then EtOAc (100%); yield $0.196 \mathrm{~g}(70 \%)$; reddish crystals. mp: 131-133 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=8.76(\mathrm{dd}, 2 \mathrm{H}, J=$ $4.4,1.2 \mathrm{~Hz}, \mathrm{H}_{3^{\prime}}, \mathrm{H}_{5}$); $8.67\left(\mathrm{dd}, 1 \mathrm{H}, J=4.0,1.6 \mathrm{~Hz}, \mathrm{H}_{6}\right), 8.36\left(\mathrm{dd}, 2 \mathrm{H}, J=4.4,1.6 \mathrm{~Hz}, \mathrm{H}_{2}, \mathrm{H}_{6}\right.$) ; 8.14 (dd, 1H, $J=8.4,1.2 \mathrm{~Hz}, \mathrm{H}_{8}$); 7.65 (dd, $1 \mathrm{H}, J=8.4,4.4 \mathrm{~Hz}, \mathrm{H}_{7}$); 7.28 (br s, 1H, NH); 1.70 (s, 9H) $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=159.2,158.8,150.1,148.0,146.3,144.5,136.3,133.0,131.7,127.6,122.4,52.3$, 28.6 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{5}[\mathrm{M}+\mathrm{H}]+: 280.1484$, found 280.1571 .

\boldsymbol{N}-tert-Butyl-2-(furan-2'-yl)pyrido[3,2-d]pyrimidin-4-amine (1f). Prepared from Pd (OAc) ${ }_{2}$ $(0.011 \mathrm{~g}, 0.05 \mathrm{mmol})$, Cy JohnPhos ($0.035 \mathrm{~g}, 0.10 \mathrm{mmol}$), N-(2-bromo-3-pyridyl)-furan-2carboximidamide $4 \mathrm{f}(0.266 \mathrm{~g}, 1 \mathrm{mmol})$, tert-butyl isocyanide ($0.125 \mathrm{~g}, 1.5 \mathrm{mmol}$); eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(9: 1)$; yield $0.094 \mathrm{~g}(35 \%)$; yellow paste. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=8.57(\mathrm{dd}$, $1 \mathrm{H}, J=4.0,1.5 \mathrm{~Hz}, \mathrm{H}_{6}$); 8.15 (dd, $1 \mathrm{H}, J=8.0,1.5 \mathrm{~Hz}, \mathrm{H}_{8}$); $7.63\left(\mathrm{~d}, 1 \mathrm{H}, J=1.0 \mathrm{~Hz}, \mathrm{H}_{3}\right.$) ; 7.58 (dd, $1 \mathrm{H}, J=8.5,4.5 \mathrm{~Hz}, \mathrm{H}_{7}$); $7.31\left(\mathrm{~d}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}, \mathrm{H}_{4}\right.$) ; 7.18 (br s, $1 \mathrm{H}, \mathrm{NH}$); 6.55 (dd, $1 \mathrm{H}, J=3.0,1.5$ $\mathrm{Hz}, \mathrm{H}_{5}$) ; $1.64(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=158.9,154.0,153.3,147.0,144.7$, $144.5,135.9,133.6,131.5,127.5,111.8,52.2,28.6 \mathrm{ppm}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 269.1324; found 269.1406.

\boldsymbol{N}-cyclohexyl-2-phenylpyrido[3,2-d]pyrimidin-4-amine (1g). Prepared from $\operatorname{Pd}(\mathrm{OAc})_{2}(0.011 \mathrm{~g}$, 0.05 mmol), Cy JohnPhos ($0.035 \mathrm{~g}, 0.10 \mathrm{mmol}$), N-(2-bromo-3-pyridyl)benzimidamide 1a (0.276 g , $1.00 \mathrm{mmol})$, cyclohexyl isocyanide ($0.164 \mathrm{~g}, 1.50 \mathrm{mmol}$); eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100%), then $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ (95:5); yield $0.107 \mathrm{~g}(35 \%)$; yellow powder. mp $129-131^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ MHz): $\delta=8.63$ (dd, $1 \mathrm{H}, J=4.5,1.5 \mathrm{~Hz}, \mathrm{H}_{6}$); 8.54 (dd, $2 \mathrm{H}, J=8,0,2.0 \mathrm{~Hz}, \mathrm{H}_{2}, \mathrm{H}_{6}$) ; 8.13 (dd, $1 \mathrm{H}, J=$ $8.5,1.5 \mathrm{~Hz}, \mathrm{H}_{8}$); 7.61 (dd, $1 \mathrm{H}, J=8.5,4.0 \mathrm{~Hz}, \mathrm{H}_{7}$); 7.52-7.46 (m, 3H, H $\mathrm{H}_{3}, \mathrm{H}_{4}, \mathrm{H}_{5}$); 7.07 (d, $1 \mathrm{H}, J=$ $8.0 \mathrm{~Hz}, \mathrm{NH}) ; 4.39-4.32\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Cy}-\mathrm{H}_{1}\right) ; 2.21(\mathrm{dd}, 2 \mathrm{H}, J=12.0,3.0 \mathrm{~Hz}, \mathrm{Cy}), 1.86(\mathrm{dt}, 2 \mathrm{H}, J=13.5$, $4.0 \mathrm{~Hz}, \mathrm{Cy}), 1.72\left(\mathrm{dt}, 1 \mathrm{H}, J=9.0,4.0 \mathrm{~Hz}, \mathrm{Cy}-\mathrm{H}_{4}\right) ; 1.59-1.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Cy}) ; 1.48-1.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Cy}) ;$ 1.36-1.25 (m, 1H, Сy) ppm; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=161.5,158.9,147.2,145.1,138.8,135.9,131.2,130.2$, 128.5, 128.3, 127.4, 49.4, 32.7, 25.7, 24.9 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 305.1688$, found 305.1773 .

2-(4-chlorophenyl)- N -cyclohexylpyrido[3,2- d]pyrimidin-4-amine (1h). Prepared from $\operatorname{Pd}(\mathrm{OAc})_{2}(0.011 \mathrm{~g}, 0.05 \mathrm{mmol})$, Cy JohnPhos ($0.035 \mathrm{~g}, 0.10 \mathrm{mmol}$), N^{\prime}-(2-bromopyridin-3-yl)-4-chlorobenzimidamide $(0.310 \mathrm{~g}, 1.00 \mathrm{mmol})$, cyclohexyl isocyanide ($0.164 \mathrm{~g}, 1.50 \mathrm{mmol}$); eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \%)$, then $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(95: 5,9: 1)$; yield $0.192 \mathrm{~g}(57 \%)$; yellow solid. mp : $141.5-146.6^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=8.63$ (dd, $1 \mathrm{H}, J=4.3,1.6 \mathrm{~Hz}, \mathrm{H}_{6}$); 8.48 (d, 2H, $J=8.7 \mathrm{~Hz}, \mathrm{H}_{2^{\prime}}$); $8.11\left(\mathrm{dd}, 1 \mathrm{H}, J=8.5,1.6 \mathrm{~Hz}, \mathrm{H}_{8}\right) ; 7.62\left(\mathrm{dd}, 1 \mathrm{H}, J=8.5,4.3 \mathrm{~Hz}, \mathrm{H}_{7}\right) ; 7.45(\mathrm{~d}$, $2 \mathrm{H}, J=8.7, \mathrm{H}_{3^{\prime}}$); 7.09 (d, 1H, $J=7.9 \mathrm{~Hz}, \mathrm{NH}$); 4.37-4.28 (m, 1H, Сy); 2.23-2.15 (m, 2H, Сy); 1.90-1.81 (m, 2H, Сy); 1.76-1.68 (m, 1H, Сy); 1.62-1.39 (m, 4H, Сy); 1.37-1.26 (m, 1H, Су) ppm; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=160.4,158.8,147.4,145.0,137.2,136.6,135.9,131.2,129.9,128.4,127.5,49.4$, 32.7, 25.7, 24.9 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClN}_{4}[\mathrm{M}+\mathrm{H}]: 339.1371$, found 339.1358 .

N-cyclohexyl-2-(pyridin-4-yl)pyrido[3,2-d]pyrimidin-4-amine (1i). Prepared from $\operatorname{Pd}(\mathrm{OAc})_{2}$ $(0.011 \mathrm{~g}, \quad 0.05 \mathrm{mmol})$, Cy JohnPhos $(0.035 \mathrm{~g}, \quad 0.10 \mathrm{mmol}), \quad N^{\prime}$-(2-bromopyridin-3yl)isonicotinimidamide ($0.277 \mathrm{~g}, 1.00 \mathrm{mmol}$), KOAc ($0.294 \mathrm{~g}, 3.00 \mathrm{mmol}$), cyclohexyl isocyanide ($0.164 \mathrm{~g}, 1.50 \mathrm{mmol}$); eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(95: 5,8: 2,7: 3,6: 4,1: 1$); yield $0.167 \mathrm{~g}(55 \%)$; orange solid. mp: 170.1-173.8 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=8.70\left(\mathrm{~d}, 2 \mathrm{H}, J=6.1 \mathrm{~Hz}, \mathrm{H}_{3^{\prime}}\right) ; 8.62(\mathrm{dd}$, $\left.1 \mathrm{H}, J=4.3,1.5 \mathrm{~Hz}, \mathrm{H}_{6}\right) ; 8.29\left(\mathrm{~d}, 2 \mathrm{H}, J=6.1 \mathrm{~Hz}, \mathrm{H}_{2^{\prime}}\right) ; 8.09\left(\mathrm{dd}, 1 \mathrm{H}, J=8.5,1.6 \mathrm{~Hz}, \mathrm{H}_{8}\right) ; 7.59(\mathrm{dd}$, $\left.1 \mathrm{H}, J=8.5,4.3 \mathrm{~Hz}, \mathrm{H}_{7}\right) ; 7.09(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{NH}) ; 4.31-4.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Cy}) ; 2.17-2.09(\mathrm{~m}, 2 \mathrm{H}$, Су); 1.85-1.74 (m, 2H, Сy); 1.70-1.61 (m, 1H, Сy); 1.55-1.33 (m, 4H, Сy); 1.32-1.21 (m, 1H, Сy) ppm; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=159.4,159.0,150.2,148.1,146.1,144.8,136.2,131.5,127.7,122.4,49.6,32.7,25.7,24.9 \mathrm{ppm} ;$ HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 306.1713$, found 306.1706.

Synthesis of pyrido[2,3-d]pyrimidines 2: A round-bottomed flask was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(3 \mathrm{~mol} \%)$ and Cy JohnPhos ($6 \mathrm{~mol} \%$) followed by 5 ml of dry DMF. The mixture was flushed with N_{2} for 10 min . In another roundbottomed flask, KOAc (3 equiv.), the appropriate amidine (1 equiv.) and isocyanide (1.5 equiv.) were weighed. To this mixture, the Pd catalyst solution was added and the flask was flushed with N_{2}. Then, the mixture was stirred and heated at $120^{\circ} \mathrm{C}$ for 7 h . After cooling down to room temperature, the resulting mixture was filtered over a pad of Celite and rinsed with ethyl acetate. The solvent was removed under reduce pressure and the obtained residue was purified by flash column chromatography on silica gel using the appropriate mixture of solvents as the eluent.

\boldsymbol{N}-tert-Butyl-2-(4-pyridyl)pyrido[2,3-d]pyrimidin-4-amine (2a). Prepared from $\mathrm{Pd}(\mathrm{OAc})_{2}$ $(0.0067 \mathrm{~g}, \quad 0.03 \mathrm{mmol}), \quad \mathrm{Cy}$ JohnPhos $(0.021 \mathrm{~g}, \quad 0.06 \mathrm{mmol}), \quad \mathrm{N}$-(3-bromo-2pyridyl)isonicotinimidamide $5 \mathbf{5 a}(0.277 \mathrm{~g}, 1.00 \mathrm{mmol})$, tert-butyl isocyanide ($0.125 \mathrm{~g}, 1.5 \mathrm{mmol}$); eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(8: 2)$, then $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(1: 1)$, then EtOAc (100%); yield $0.260 \mathrm{~g}(93 \%)$; bordeaux solid. $\mathrm{mp}>250{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=9.08\left(\mathrm{dd}, 1 \mathrm{H}, J=4.4,1.8 \mathrm{~Hz}, \mathrm{H}_{7}\right)$; $8.78\left(\mathrm{~d}, 2 \mathrm{H}, J=6.1 \mathrm{~Hz}, \mathrm{H}_{2}, \mathrm{H}_{6}\right) ; 8.47\left(\mathrm{~d}, 2 \mathrm{H}, J=6.1 \mathrm{~Hz}, \mathrm{H}_{3^{\prime}}, \mathrm{H}_{5}\right.$) , $8.07(\mathrm{dd}, 1 \mathrm{H}, J=8.2,1.8 \mathrm{~Hz}$, $\left.\mathrm{H}_{5}\right) ; 7.42\left(\mathrm{dd}, 1 \mathrm{H}, J=8.1,4.3 \mathrm{~Hz}, \mathrm{H}_{6}\right) ; 5.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) ; 1.70(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 126$ MHz): $\delta=161.5,160.1,159.2,156.0,150.2,145.8,130.1,122.6,121.2,109.2,53.4,28.8 \mathrm{ppm}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 280.1484$; found 280.1562 .

\boldsymbol{N}-tert-Butyl-2-(2-furyl)pyrido[2,3-d]pyrimidin-4-amine (2b). Prepared from $\operatorname{Pd}(\mathrm{OAc})_{2}(0.0067$ $\mathrm{g}, 0.03 \mathrm{mmol})$, Cy JohnPhos $(0.021 \mathrm{~g}, 0.06 \mathrm{mmol}), N$-(3-bromo-2-pyridyl)furan-2-carboximidamide $\mathbf{5 b}(0.264 \mathrm{~g}, 1.00 \mathrm{mmol})$, tert-butyl isocyanide $(0.125 \mathrm{~g}, 1.5 \mathrm{mmol})$; eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ ($95: 5$, 8:2, 1:1); yield $0.210 \mathrm{~g}(78 \%)$; orange solid. $\mathrm{mp}>250^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=9.00(\mathrm{dd}$, $\left.1 \mathrm{H}, J=4.4,1.6 \mathrm{~Hz}, \mathrm{H}_{7}\right) ; 7.96\left(\mathrm{dd}, 1 \mathrm{H}, J=8.0,1.6 \mathrm{~Hz}, \mathrm{H}_{5}\right) ; 7.64\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right)$; $7.41(\mathrm{~d}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}$, $\left.\mathrm{H}_{4}\right) ; 7.29\left(\mathrm{dd}, 1 \mathrm{H}, J=8.0,4.4 \mathrm{~Hz}, \mathrm{H}_{6}\right) ; 6.56\left(\mathrm{dd}, 1 \mathrm{H}, J=3.2,1.6 \mathrm{~Hz}, \mathrm{H}_{5}\right)$) $5.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) ; 1.66$ (s, 9H) ppm; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 269.1324$, found 269.1402.'

\boldsymbol{N}-cyclohexyl-2-(4-pyridiyl)pyrido[2,3- $\boldsymbol{d}]$ pyrimidin-4-amine (2c). Prepared from $\mathrm{Pd}(\mathrm{OAc})_{2}$ $(0.0067 \mathrm{~g}, \quad 0.03 \mathrm{mmol})$, Cy JohnPhos $(0.021 \mathrm{~g}, \quad 0.06 \mathrm{mmol}), \quad N$-(3-bromopyridin-2yl)isonicotinimidamide ($0.276 \mathrm{~g}, 1.00 \mathrm{mmol}$), cyclohexyl isocyanide ($0.164 \mathrm{~g}, 1.5 \mathrm{mmol}$); eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 1: 1,1: 2$, then EtOAc (100%), then $\mathrm{EtOAc} / \mathrm{MeOH}(98: 2,95: 5)$; yield $0.296 \mathrm{~g}(97 \%)$; brown solid. mp: $>250{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=9.09$ (dd, $\left.1 \mathrm{H}, J=4.4,1.8 . \mathrm{Hz}, \mathrm{H}_{7}\right) ; 8.78$ $\left(\mathrm{d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{H}_{3^{\prime}}\right) ; 8.47\left(\mathrm{~d}, 2 \mathrm{H}, J=6.1 \mathrm{~Hz}, \mathrm{H}_{2}\right) ; 8.12\left(\mathrm{dd}, 1 \mathrm{H}, J=8.2,1.8 \mathrm{~Hz}, \mathrm{H}_{5}\right) ; 7.42(\mathrm{dd}$, $\left.1 \mathrm{H}, J=8.2,4.4 \mathrm{~Hz}, \mathrm{H}_{6}\right) ; 5.76(\mathrm{~d}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{NH}) ; 4.45-4.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Cy}) ; 2.27-2.20(\mathrm{~m}, 2 \mathrm{H}$, Су); 1.91-1.84 (m, 2H, Сy); 1.70-1.50 (m, 2H, Сy); 1.44-1.28 (m, 4H, Сy) ppm; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, $126 \mathrm{MHz}): \delta=162.0,160.0,159.5,156.1,150.2,145.7,130.2,122.6,121.2,108.8,50.6,32.8,25.6,25.0 \mathrm{ppm}$; HRMS (ESI): m / z calcd $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 306.1713$; found 306.1705.

\boldsymbol{N}-cyclohexyl-2-(2-furyl)pyrido[2,3- $\boldsymbol{d}]$ pyrimidin-4-amine (2d). Prepared from $\operatorname{Pd}(\mathrm{OAc})_{2}(0.0067$ $\mathrm{g}, 0.03 \mathrm{mmol}$), Cy JohnPhos ($0.021 \mathrm{~g}, 0.06 \mathrm{mmol}$), N-(3-bromo-2-pyridyl)furan-2-carboximidamide $\mathbf{5 b}(0.264 \mathrm{~g}, 1.00 \mathrm{mmol})$, cyclohexyl isocyanide $(0.164 \mathrm{~g}, 1.5 \mathrm{mmol})$; eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(8: 2$, 1:1), then EtOAc (100%); yield 0.212 g (72%); yellow solid. $\mathrm{mp}>250{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}): \delta=8.99\left(\mathrm{dd}, 1 \mathrm{H}, J=4.0,1.5 \mathrm{~Hz}, \mathrm{H}_{7}\right) ; 8.07\left(\mathrm{dd}, 1 \mathrm{H}, J=8.0,2.0 \mathrm{~Hz}, \mathrm{H}_{5}\right) ; 7.62(\mathrm{dd}, 1 \mathrm{H}, J=1.5$, $0.5 \mathrm{~Hz}, \mathrm{H}_{3}$) ; $7.42\left(\mathrm{~d}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}, \mathrm{H}_{4}\right.$) ; $7.29\left(\mathrm{dd}, 1 \mathrm{H}, J=8.0,4.5 \mathrm{~Hz}, \mathrm{H}_{6}\right) ; 6.55(\mathrm{dd}, 1 \mathrm{H}, J=3.5,2.0$ $\mathrm{Hz}, \mathrm{H}_{5}$); 5.74 (d, 1H, $J=7.0 \mathrm{~Hz}, \mathrm{NH}$); 4.45-4.38 (m, 1H, Cy-H1); 2.20 (dd, 2H, $J=12.0,3.0 \mathrm{~Hz}$, Cy); 1.82 (dt, $2 \mathrm{H}, J=13.5,3.5 \mathrm{~Hz}, ~ C y), 1.72$ (dt, 2H, $J=9.0,3.5 \mathrm{~Hz}, ~ C y) ; ~ 1.55-1.48$ (m, 2H, Cy); 1.37-1.25 (m, 2H, Cy) $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=159.8,159.5,157.0,155.9,152.9,145.0,130.1,120.2,114.3,112.0,108.3,50.2$, 32.8, 25.7, 24.9 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 295.1480$; found 295.1558.

(\boldsymbol{E})- N -(tert-butyl)-2-phenyl-4H-pyrido[1,2-a][1,3,5]triazin-4-imine (8): To a solution of N arylamidine $7(79 \mathrm{mg}, 0.4 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(9.6 \mathrm{mg}, 5.0 \mathrm{~mol} \%)$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(195 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.5$ equiv) in toluene (2.0 mL), tert-butyl isocyanide ($130 \mu \mathrm{l}, 1.2 \mathrm{mmol}, 3.0$ equiv) was added. The mixture was stirred at reflux temperature under balloon pressure of O_{2}. After 3 h , the consumption of amidine was complete (as monitored by TLC analysis), the mixture of reaction was cooled to room temperature and 20 mL EtOAc and $20 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ were added. The organic layer was separated, and the aqueous phase was further extracted with EtOAc $(2 \times 10 \mathrm{~mL})$. The combined organic phase was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After purification by flash column chromatography on silica gel, 8 was obtained in 95% yield $(105 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): ~ \delta=9.14\left(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}_{5}\right) ; 8.44(\mathrm{dd}, 2 \mathrm{H}, J=7.5,1.4$ $\mathrm{Hz}, \mathrm{H}_{2}{ }^{\prime}$ and H_{6}) ; $7.72\left(\mathrm{td}, 1 \mathrm{H}, J=8.5,1.4 \mathrm{~Hz}^{2} \mathrm{H}_{7}\right) ; 7.50-7.45\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{3}, \mathrm{H}_{4}\right.$, and H_{5}); $7.30\left(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{H}_{8}\right) ; 6.96$ $\left(\mathrm{t}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{H}_{6}\right) ; 1.51(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=162.3,155.7,142.9,139.9,137.3,131.2$, 130.4, 128.7, 128.2, 124.4, 115.3, 53.3, 29.5 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 279.1531$, found 279.1593 .

References

[^0]
[^0]: ${ }^{\text {i }}$ Lavecchia, G.; Raboin, B.; Guillaumet, G. Tetrahedron Lett. 2005, 46, 5851.

