Supporting Information ## A Solution-Chemical Route to Generalized Synthesis of Metal Germanate Nanowires with Room-Temperature, Light-Driven Hydrogenation Activity of CO₂ into Renewable Hydrocarbon Fuels Qi Liu, Yong Zhou, * Wenguang Tu, Shicheng Yan, Zhigang Zou* Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Nanjing University, Nanjing 210093, P. R. China. Ecomaterials and Renewable Energy Research Center (ERERC), School of Physics, Department of Materials Science and Engineering, Nanjing University, National Laboratory of Solid State Microstructures, Nanjing 210093, P. R. China School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China Email: zhouyong1999@nju.edu.cn; zgzou@nju.edu.cn *Figure S1.* SEM images of the Cd₂Ge₂O₆ nanowire at different magnifications. (b) Magnification of the selected area marked with a square as shown in (a). *Figure S2.* XPS spectra of (a-d) Cd₂Ge₂O₆ and Co-doped Cd₂Ge₂O₆ nanowires, (e-g) Zn₂GeO₄ nanowire, and (h-j) PbGeO₃ nanowire. Figure S3. (a) XRD pattern, (b, c) corresponding FE-SEM image of the $NH_4H_3Ge_2O_6$ produced employing GeO_2 as a single reactant formed with volume ratio of $N_2H_4\cdot H_2O$: H_2O of 1:2 for 12 h. Figure S4. (a) XRD pattern and (b) FE-SEM image of the $Cd(OH)_2$ hexagonal nanoplate formed with $Cd(OAc)_2$ as single reactant with volume ratio of $N_2H_4\cdot H_2O$: H_2O of 1:2. *Figure S5.* UV-vis absorption spectra of the Cd₂Ge₂O₆ and Co-doped Cd₂Ge₂O₆ nanowires with different cobalt percentages in the reaction precursors. *Figure S6.* Relationship between the band structure of the $Cd_2Ge_2O_6$ nanowire and the redox potentials of CO_2 photoreduction Figure S7. CO_2 adsorption isotherms (273 K) of the $Cd_2Ge_2O_6$ nanowire and $SS-Cd_2Ge_2O_6$.