1	Supporting Information for the manuscript "Excellent performance		
2	of one-pot synthesized Cu-SSZ-13 catalyst for the selective catalytic		
3	reduction of NO _x with NH ₃ "		
4			
5	Lijuan Xie [†] , Fudong Liu [†] , Limin Ren [‡] , Xiaoyan Shi [†] , Feng-Shou Xiao [§] , Hong He ^{*,†}		
6	[†] Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,		
7	Beijing 100085, China		
8	[‡] College of Chemistry and State Key Laboratory of Inorganic Synthesis and		
9	Preparative Chemistry, Jilin University, Changchun 130012, China		
10	[§] Department of Chemistry, Zhejiang University, Hangzhou 310028, China		
11	*Corresponding author.		
12	Fax: +86 10 62849123; Tel: +86 10 62849123;		
13	E-mail: <u>honghe@rcees.ac.cn</u>		
14	Number of Pages: 6		
15	Number of Tables: 1		
16	Number of Figures: 6		
17			

18 **1.** NH₃-SCR performance of Cu_{3.8}-SSZ-13 in the high temperature range

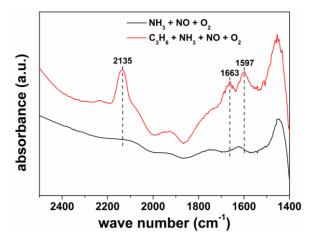
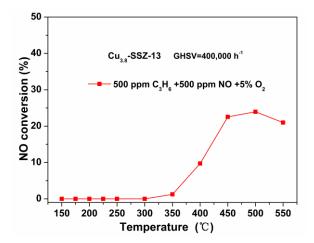

19

Table S1 NH₃-SCR performance of Cu_{3.8}-SSZ-13 in the high temperature range.

	Temperature (°C)		
-	600	650	700
NO_x conversion (%)	86.3	74.8	52.6
N ₂ selectivity (%)	99.2	98.9	99.3

20 It was observed that $deNO_x$ catalytic activity of the catalyst decreased with the

increase of reaction temperature. However, NO_x conversion exceeding 70% was achieved with GHSV at 400,000 h⁻¹ at temperatures lower than 650 °C. In addition, excellent N₂ selectivity (nearly 100%) was kept even the temperature was as high as 700 °C. The results indicated that the catalyst could also maintain good NH₃-SCR performance in such high temperature range.

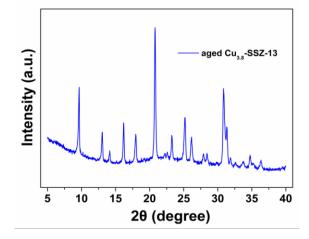


6 2. The effect of C₃H₆ on NH₃-SCR reaction for Cu_{3.8}-SSZ-13 catalyst

7

Figure S1. Comparison of species adsorbed on catalyst surface with different feed gas at 300
^oC.

The in situ DRIFTS experiments were carried out to confirm the effect of C₃H₆ at 10 300 °C. In "standard SCR" condition, few species were recorded on catalyst surface. 11 However, much species deserved in the presence of C_3H_6 . The peaks of 1597 and 12 1663 cm⁻¹ could be assigned to carboxylate and acrolein, respectively [1-2]. Both of 13 them should be caused by the oxidation of C_3H_6 . The peak of 2135 cm⁻¹ was assigned 14 to CO-Cu⁺ aroused from the reaction between -NCO and NO, meaning some Cu 15 species were occupied and could not participate in NH₃-SCR reaction [1,3]. The 16 17 above three species were all related to the partial oxidation of C_3H_6 strongly. Thus, C_3H_6 partial oxidation poisoned the catalysts severely around 300 °C. 18



1

2Figure S2. C_3H_6 -SCR activity of $Cu_{3.8}$ -SSZ-13 catalyst. Reaction conditions: $[NO] = [C_3H_6] =$ 3500 ppm, $[O_2] = 5$ vol.%, N2 balance and GHSV = 400,000 h⁻¹.

As shown in Figure S2, the NO_x conversion was relatively low over Cu_{3.8}-SSZ-13 when C₃H₆ was used as reducing agent. NO_x was converted obviously when temperature was higher than 300 °C. The phenomenon was consistent with the results that the NH₃-SCR activity increased in the high temperature range in the presence of C_3H_6 (> 300 °C).

9 3. XRD profile of aged $Cu_{3.8}$ -SSZ-13 catalyst

- 10
- 11

Figure S3. XRD profile of aged Cu_{3.8}-SSZ-13 catalyst.

12 The catalyst still maintained zeolite structure after severe hydrothermal aging13 treatment even a few amount of amorphous phase appeared.

14

1 4. ²⁷ Al NMR profiles of fresh and aged $Cu_{3.8}$ -SSZ-13 catalyst

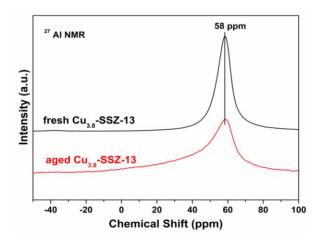
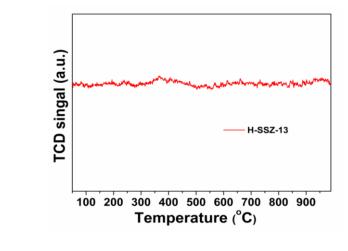
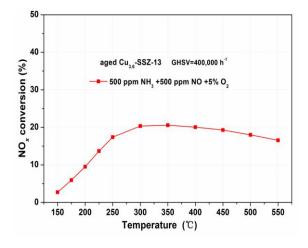


Figure S4. ²⁷ Al NMR profile of fresh and aged Cu_{3.8}-SSZ-13 catalyst.


2

3

4 Solid state ²⁷Al MAS NMR spectra were collected on a Bruker AVANCE III 5 400MHz WB Solide-State NMR spectrometer with operating at the spectral frequency 6 of 104.29 MHz. A relaxation delay 1 s was applied to collect single pulse spectra. All 7 measurements were performed at room temperature, and Al(NO₃)₃ were used as 8 external references, respectively. The ²⁷Al NMR results of Cu_{3.8}-SSZ-13 catalyst 9 before and after hydrothermal treatment were shown below.


The chemical shift of 58 ppm was resulted by the Al atom in the framework, which has a 4-fold coordination (Al^{IV}). However, if Al atom was removed from the zeolite framework, the atom can be located outside the lattice, showing a 6-fold-type coordination (Al^{VI}) with much lower chemical shift in ²⁷Al NMR spectra [4]. Compared with fresh Cu_{3.8}-SSZ-13 catalyst, the intensity area of Al^{IV} in the aged sample decreased greatly, and a broad peak at *ca*. 15 ppm appeared. The results indicated that dealumination occurred during the hydrothermal treatment.

1 5. H₂-TPR profile of H-SSZ-13

Figure S5. H₂-TPR profile of H-SSZ-13.

- 4 There was no H_2 consumption for H-SSZ-13 sample.
- 5 6. NH₃-SCR performance of aged $Cu_{3.6}$ -SSZ-13 catalyst

2

3

Figure S6. NH₃-SCR performance of aged $Cu_{3.6}$ -SSZ-13 catalyst.

After hydrothermal aging at 750 °C for 16 h, the aged $Cu_{3.6}$ -SSZ-13 sample showed poor NH₃-SCR performance. The highest NO_x conversion was only *ca.* 20%. Thus,

10 $Cu_{3.6}$ -SSZ-13 catalyst showed much lower hydrothermal stability.

11

1 References

- 2 1. Heo, I.; Lee, Y.; Nam, I.-S.; Choung, J. W.; Lee, J.-H.; Kim, H.-J., Effect of
- 3 hydrocarbon slip on NO removal activity of CuZSM5, FeZSM5 and V₂O₅/TiO₂
- 4 catalysts by NH₃. *Micropor. Mesopor. Mater.* **2011**, *141*, (1-3), 8-15.
- 5 2. Li, J.; Zhu R.; Cheng, Y.; Lambert, C. K.; Yang, R. T., Mechanism of propene
- 6 poisoning on Fe-ZSM-5 for selective catalytic reduction of NO_x with ammonia.
- 7 Environ. Sci. Technol. 2010, 44, 1799-1805.
- 8 3. Kwak, J. H.; Zhu, H.; Lee, J. H.; Peden, C. H. F.; Szanyi, J., Two different cation
- 9 positions in Cu-SSZ-13? Chem. Commun. 2012, 48, 4758-4760.
- 10 4. Schmieg, S. J.; Oh, S. H.; Kim, C. H. Brown, D. B.; Lee, J. H.; Peden, C. H. F.;
- 11 Kim, D. H., Thermal durability of Cu-CHA NH_3 -SCR catalysts for diesel NO_x
- 12 reduction. *Catal. Today.* **2011**, 184, (1), 252-261.