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Figure 6: a) Probability to be at the strongly coupled end |〈S|Ψ〉|2, for all energy eigenstates
|Ψ〉. b) Probability to be at the weakly coupled end |〈W |Ψ〉|2, for all energy eigenstates.
Here q = 100.

Supporting Information Available

Participation Ratio

In Fig. 6a, we show the probabilities to occupy the end sites (|S〉, |W 〉) for all energy eigen-

states. As one can see, on approaching the strong transition, STS, the superradiant state,

|SR〉, increases its probability to occupy the strongly coupled end, and this probability be-

comes one at the switching point. Of course, at the same point the probability to be at the

strongly coupled end of the other states becomes zero, so that transport to the strong sink

(S) is completely inhibited, and it switches to the weak sink (W).

One can also observe that after the STW , the same effect occurs at very large coupling
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thus inhibiting also the transport to the weakly coupled end. This is at variance with the

classical behavior, where for very large coupling one gets, ηS = ηW = 1/2.

In order to study the localization of the eigenstates, |Ψ〉, we consider their participation

ratio in the site basis |n〉,

PR =
1∑

n |〈n|Ψ〉|4
.

In Fig. 7a we show the PR of all energy eigenstates. As one can see, for κS < 1 most of the

states are approximately delocalized over the whole system (the maximal PR corresponds

to the total number of sites, 6). For 1 < κS < q both superradiant and subradiant states

tend to localize. However, while the PR of the strong superradiant state SRS becomes ≈ 1

at the switching point κS ∼
√
q (complete localization), the PR of the other states does not

decrease below ≈ 3, which means that they are approximately extended over the system,

thus allowing transport.

Even if the strong superradiant state becomes extremely localized immediately after the

STS, its width is very large. (See Fig. 7b.) This competition between localization and decay

width determines the switching point of transport.

The critical switching point

Let us first define the strong/weak partial width as follow,

ΓS,W = γS,W
∑
k

〈k| WS,W |k〉, (12)

where the sum is taken over the subradiant states, |k〉. Let us also consider the range of

parameters between the two STs, namely 1 < κS < q, and the effective Hamiltonian,

H = −iγ
S
WS + (H0 − iγW

WW ) , (13)
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Figure 7: a) Participation ratio versus κS for all states. b): Decay width versus κS for all
states. Here q = 100.

where we consider −iγ
S
WW as the unperturbed Hamiltonian, and H0 − iγ

W
WW , as the

perturbation.

Let us consider, for definiteness, the site W as the first site j = 1 and the strongly coupled

S as the last j = N . Eigenvalues for WS are 1 and 0, the latter N − 1 times degenerate; the

eigenvector correspondent to 1 is |S〉, since,

WS|S〉 = |S〉,

while, as a degenerate basis we can choose the site basis |j〉, for j = 1, ..., N − 1, since

WS|j〉 = 0.

Eigenvalues and eigenvectors of the N − 1 degenerate system can be obtained at zero

order by solving the eigenvalues problem,

〈k|H0 − iγW
WW |j〉 = εkδjk. (14)
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Since H0 is of the order of Ω, and γ
W
/Ω� 1, we can use first order perturbation theory in

γ
W
/Ω to get the eigenvalues,

εIq = ε0q − iγW
〈q|WW |q〉, (15)

and the eigenvectors,

|q〉I = |q〉 − iγ
W

2ΩN

∑
q′ 6=q

sin(qπ/N) sin(q′π/N)

sin[(q + q′)π/N ] sin[(q − q′)π/N ]
|q′〉 ≡ |q〉 − iγ

W

2ΩN

∑
q′ 6=q

cq,q′|q′〉, (16)

where we have chosen the eigenbasis by the restriction of H0 to the N−1 dimensional space,

〈k|q〉 =

√
2

N
sin

(
πkq

N

)
,

with eigenvalues ε0q = −2Ω cos(πq/N). The same eigenvectors can be considered (with the

same name) in the N -th dimensional space, by simply adding a 0 in the N -th component,

so to be orthogonal to |S〉.

To have the eigenstates at first order of the perturbation theory in Ω/γ
S

and γ
W
/γ

S
, one

should take into account the interaction between |q〉 and |S〉, mediated by the perturbation

H0 − iγW
WW , so that,

|q〉I = |q〉 − iγ
W

2ΩN

∑
q′ 6=q

cq,q′|q′〉+
〈q|H0 − iγW

WW |S〉
−iγ

S
− ε0q

. (17)

From this one gets,

〈W |q〉I = 〈W |q〉+O(γ
W
/Ω),

〈S|q〉I = i
√

2
N

Ω
γ
S

sin
(
πq
N

)
+O(Ω/γ

S
).

(18)

26



From Eq. (18) the partial widths easily follows,

ΓW =
2γ

W

N

∑
q sin2(πq/N),

ΓS = 2Ω2

Nγ
S

∑
q sin2(πq/N).

(19)

Equating Eq. (18) and Eq. (19), one gets,

γ
S
γ

W
' Ω2,

or

κS = q/κS.

Lindblad master Equation

The dynamics of the system to second order in the system-bath coupling can be described

by the Lindblad master equation in the Born-Markov and secular approximations as

dρ

dt
= − i

h̄

(
Hρ− ρH†

)
+ Lp(ρ), (20)

where the superoperator, Lp, acts on ρ as follow,

Lp(ρ) =
∑

ω,m γ(ω)[Am(ω)ρA†m(ω)− 1
2
A†m(ω)Am(ω)ρ

−1
2
ρA†m(ω)Am(ω)].

(21)

The Lindblad generators, Am(ω), are given by,

Am(ω) =
∑

E−E′=h̄ω

c∗m(E)cm(E ′)|E〉〈E ′|, (22)
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where the summation is over all transitions with frequency, ω = (E − E ′)/h̄, and |E〉 is the

eigenstate of the Hamiltonian, H0, of the closed system with eigenvalue, E. The coefficients,

cm(E), are the expansion coefficients of the energy eigenstate in the sites basis, |m〉,

|E〉 =
∑
m

cm(E)|m〉.

The rates, γ(ω), are given by,

γ(ω) = 2π[J(ω)(1 + nT (ω)) + J(−ω)nT (−ω)],

where nT (ω) is the bosonic distribution function at the temperature T ,

nT (ω) =
1

eh̄ω/kBT − 1
,

and J(ω) is the Ohmic spectral density, which we choose of the form,

J(ω) =


0 for ω < 0

ERω

h̄ωc
e−ω/ωc for ω > 0.

(23)

Eq. (23) implicitly defines the reorganization energy, ER, and the cut-off frequency, ωc.

Note that this form of master equation does not assume weak coupling to the sinks, only

to the phonon bath. We also assumed that a strong coupling to the sinks does not influence

the phonon coupling. Further work is in progress to check the validity of this assumption.

This material is available free of charge via the Internet at http://pubs.acs.org/.
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