Supporting information for:

A pyrene-based N-heterocyclic carbene: study of its coordination chemistry and stereoelectronic properties

Hugo Va	ldés, Ma	carena Po	oyatos and	Eduardo	Peris
---------	----------	-----------	------------	---------	-------

1. Spectra	S1-S15
1.1. Spectroscopic data of 2	S 1
1.2. Spectroscopic data of 3	S2
1.3. Spectroscopic data of 4	S3
1.4. Spectroscopic data of 5a	S4
1.5. Spectroscopic data of 6a	S6
1.6. Spectroscopic data of 7	S8
1.7. Spectroscopic data of 8b	S9
1.8. Spectroscopic data of 9a	S10
1.9. Spectroscopic data of 10	S12
2. UV-Vis absorption and emission spectra of 3 and 4	S14-S15

3. X-Ray Crystallography S15-S16

Table S1. Summary of crystal data, data collection, and structure refinement details

4. References

S16

1. Spectra

1.1. Spectroscopic data of 2

¹H NMR spectrum of **2** in DMSO- d_6

¹³C NMR spectrum of **2** in DMSO- d_6

	131.49 127.63 127.50 126.23 126.23 123.94 121.68 118.70
1	1-11-1-1

40.35 39.52 39.52 38.97 38.68

1.2. Spectroscopic data of **3**

¹H NMR spectrum of **3** in CDCl₃

1.3. Spectroscopic data of 4

¹H NMR spectrum of **4** in DMSO-*d*₆

1.4. Spectroscopic data of 5a

¹H NMR spectrum of **5a** in CDCl₃

¹H-¹H COSY NMR spectrum of **5a** in CDCl₃

1.5. Spectroscopic data of 6a

¹H NMR spectrum of **6a** in CDCl₃

¹H-¹H COSY NMR spectrum of **6a** in CDCl₃

¹³C-¹H HSQC NMR spectrum of **6a** in CDCl₃

1.6. Spectroscopic data of 7

¹H NMR spectrum of 7 in CDCl₃

1.7. Spectroscopic data of 8b

 1 H NMR spectrum of **8b** in CD₂Cl₂

1.8. Spectroscopic data of 9a

6.1

9.0

3.0

8.0

1.3

7.5

¹H NMR spectrum of **9a** (*syn* isomer) in CD₂Cl₂

5.0 4.5 ppm

2.1

3.0

3.5

4.0

 $^{1}\text{H-}^{1}\text{H}$ COSY NMR spectrum of **9a** (syn isomer) in CD₂Cl₂

6.5

7.0

4.1 1.2

5.5

19.0-

1.0

0.5

1.5

5.1 1.8 9.7

2.5

2.0

¹H NMR spectrum of **9a** (mixture of isomers *syn* and *anti*) in CD₂Cl₂

1.9. Spectroscopic data of 10

¹H NMR spectrum of **10** (mixture of isomers *syn* and *anti*) in CD₂Cl₂

¹H-¹H COSY NMR spectrum of **10** (mixture of isomers *syn* and *anti*) in CD₂Cl₂

 13 C NMR spectrum of **10** (mixture of isomers *syn* and *anti*) in CD₂Cl₂

2. UV-Vis absorption and emission spectra of 3 and 4

2.1. UV-Vis absorption spectra of **3** (monoBr) and **4** (monoPF6) recorded using MeCN under ambient conditions.

2.2. Emission spectra of 3 (monoBr) and 4 (monoPF6) recorded using degassed MeCN

S14

Compound	$\lambda_{max} (nm) (log(\epsilon))^a$	$\Phi_{ m f}^{ m b}$
3	245 (4.50), 275 (4.47)	0.31
4	245 (4.59), 275 (4.55)	0.28

Supplementary Table S1. Photophysical properties of 3 and 4

^aMesurements were performed in MeCN under ambient conditions. Molar extinction coefficients (ε , in M⁻¹cm⁻¹) were determined from Beer's law plots. ^bEmission quantum yield was measured in degassed MeCN, with recrystallized anthracene in degassed EtOH as standard ($\Phi_f = 0.27$), exciting at 317 nm.

3. X-Ray Crystallography

Crystals suitable for X-ray study were obtained by slow diffusion of hexane into a concentrated solution of the complex in chloroform (**3**, **5a**, **6b**) or dichloromethane (**9b**). Diffraction data was collected on a Agilent SuperNova diffractometer equipped with an Atlas CCD detector using Mo-K α radiation ($\lambda = 0.71073$ Å). Single crystals were mounted on a MicroMount® polymer tip (MiteGen) in a random orientation. Absorption corrections based on the multiscan method were applied.¹ The structure was solved by direct methods in SHELXS-97 and refined by the full-matrix method based on F² with the program SHELXL-97² using the OLEX software package.³

Key details of the crystal and structure refinement data are summarized in Supplementary Table S1.

	3	5a	6b	9b
Empirical formula	$C_{25}H_{27}BrN_2$	$C_{99}H_{114}Cl_3N_6Rh_3$	$C_{33}H_{38}BrIrN_2$	C43H53BrF6IrN2PRu
Formula weight	435.39	1803.04	734.76	1116.02
Temperature	293(2)	199.95(10)	200.00(10)	200.1(2)
Crystal System	monoclinic	monoclinic	monoclinic	triclinic
Space group	$P2_1/c$	$P2_1/c$	$P2_1/c$	P-1
a/Å	8.2162(3)	18.20666(12)	9.3221(3)	11.8980(3)
b/Å	12.5197(4)	21.18239(13)	21.3617(5)	12.2223(4)
c/Å	19.5121(8)	21.55681(15)	14.4693(4)	17.2260(4)
α/°	90	90	90	96.493(3)
β/°	93.037(4)	90.7989(6)	101.674(3)	101.866(2)

Supplementary Table S2. Summary of crystal data, data collection, and structure refinement details

γ/°	90	90	90	118.496(3)
Volume/Å ³	2004.27(14)	8312.80(9)	2821.75(14)	2088.52(12)
Ζ	4	4	4	2
Density (calculated)/	1.443	1.441	1.730	1.775
Absorption coefficient/mm ⁻¹	2.064	6.045	6.172	4.599
F(000)	904.0	3744.0	1448.0	1100.0
Crystal size/mm ³	0.055 × 0.135 × 0.239	0.238 × 0.149 × 0.116	0.3379 × 0.1486 × 0.1169	0.1472 × 0.1353 × 0.0549
Theta range for data collection	5.936 to 58.934°	5.85 to 145.32°	5.75 to 58.986°	5.424 to 59.05°
Index ranges	$-10 \le h \le 11$, $-15 \le k \le 17$, $-26 \le 1 \le 26$	$\label{eq:22} \begin{array}{l} -22 \leq h \leq 22, \\ -25 \leq k \leq 26, \\ -26 \leq l \leq 25 \end{array}$	$-11 \le h \le 12$, $-29 \le k \le 28$, $-19 \le l \le 18$	$-15 \le h \le 16$, $-16 \le k \le 16$, $-23 \le 1 \le 23$
Reflections collected	20273	7771	22604	45967
Independent reflections	5092 [R(int) = 0.0541]	16357 [R(int) = 0.0378]	6991 [R(int) = 0.0370]	10643 [R(int) = 0.0519]
Data / restraints / parameters	5092/0/255	16357/2/1035	6991/0/336	10643/0/512
Goodness-of-fit on F ²	1.111	1.107	0.928	1.082
Final R indices	$R_1 = 0.0511,$	$R_1 = 0.0546,$	$R_1 = 0.0380,$	$R_1 = 0.0433,$
[I>2sigma(I)]	$wR_2 = 0.1311$	$wR_2 = 0.1550$	$wR_2 = 0.0891$	$wR_2 = 0.0890$
R indices (all	$R_1 = 0.0765,$	$R_1 = 0.0720,$	$R_1 = 0.0598,$	$R_1 = 0.0753,$
data)	$wR_2 = 0.1459$	$wR_2 = 0.1691$	$wR_2 = 0.1053$	$wR_2 = 0.1069$
Largest diff. peak and hole/ e.Å ⁻³	0.81 and -0.52	2.37 and -1.36	1.42 to -1.29	2.40 to -1.42

4. References

- 1. Clark, R. C.; Reid, J. S., Acta Crystallogr. Sect. A 1995, 51, 887-897.
- 2. Sheldrick, G. M., Acta Crystallogr. Sect. A 2008, 64, 112-122.
- 3. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., J. Appl. Crystallogr. 2009, 42, 339-341.