Supporting Information

Manuscript Title:

Reaction of Titanacyclobutene-Silacyclobutene Fused-Ring Complexes with Nitriles via Formal Insertion of the C-N Triple Bond of Nitrile into the Silacyclobutene Ring

Authors:

Jing Zhao, ${ }^{\dagger}$ Shaoguang Zhang, ${ }^{\dagger}$ Wen-Xiong Zhang,** ${ }^{*}$ and Zhenfeng Xi ${ }^{*}{ }^{*, \%}$

Affiliations:

${ }^{\dagger}$ Beijing National Laboratory of Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China;
*Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China;
${ }^{\text {§ }}$ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China E-mail: wx_zhang@pku.edu.cn; zfxi@pku.edu.cn

Contents:

1) Experimental details and characterization data for $\mathbf{5 b}$ and $\mathbf{6 a - e}$
2) ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of All New Compounds
3) X-ray Crystallographic Studies for $\mathbf{6 a}, \mathbf{6 d}, \mathbf{6 e}$
S11-S14

1) Experimental details and characterization data for $5 b$ and 6a-e.

General Procedures. All reactions were carried out under a slightly positive pressure of dry and oxygen-free nitrogen by using standard Schlenk line techniques or under a nitrogen atmosphere in a glovebox. The nitrogen in the glovebox was constantly circulated through a copper/molecular sieves catalyst unit. The oxygen and moisture concentrations in the glovebox atmosphere were monitored to ensure both were always below 1 ppm . Unless otherwise noted, all starting materials were commercially available and were used without further purification. Solvent was distilled from sodium/benzophenone under a nitrogen atmosphere. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker-400 spectrometer (FT, 400 MHz for ${ }^{1} \mathrm{H} ; 100$ MHz for ${ }^{13} \mathrm{C}$) and a Bruker-500 spectrometer (FT, 500 MHz for ${ }^{1} \mathrm{H}$; 125 MHz for ${ }^{13} \mathrm{C}$) at room temperature. Organometallic samples for NMR spectroscopic measurements were prepared in the glovebox by use of J. Young valve NMR tubes (Wilmad 528-JY).

Isolation of Complex 5b. In a 20 mL Schlenk tube, $\mathrm{Et}_{2} \mathrm{Si}(\mathrm{C} \equiv \mathrm{CPh})_{2}$ $(288 \mathrm{mg}, 1.0 \mathrm{mmol})$ was added to the solution of $\left[\mathrm{Ti}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\eta^{2}-\right.\right.$ btmse)] ($348 \mathrm{mg}, 1.0 \mathrm{mmol}$) in benzene and the resulting mixture was heated to $80^{\circ} \mathrm{C}$ for $3 \mathrm{~h} .{ }^{1}$ All volatiles were distilled off at $80^{\circ} \mathrm{C}$ in vacuum to give red solids $\mathbf{5 b}(354 \mathrm{mg}, 76 \%$ based on 1 mmol scale). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=0.89-0.92\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{SiEt}_{2}\right), 5.32\left(\mathrm{~s}, 10 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$, 7.18-7.23 (m, 2H, C ${ }_{6} \mathrm{H}_{5}$), 7.37-7.45 (m, 4H, C ${ }_{6} \mathrm{H}_{5}$), $7.65\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $7.89\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=7.75\left(\mathrm{~s}, 2 \mathrm{CH}_{2}\right), 7.97$ (s, $2 \mathrm{CH}_{3}$), 76.16 (s, 1 quat. C), $105.95(\mathrm{~s}, 10 \mathrm{CH}), 127.09(\mathrm{~s}, 1 \mathrm{CH}), 127.23(\mathrm{~s}, 2 \mathrm{CH})$, 127.80 (s, 1 CH), 128.85 (s, 2 C), $129.10(\mathrm{~s}, 2 \mathrm{CH}), 129.73$ (s, 2 CH), 141.14 (s, 1 quat. C), 141.31 ($\mathrm{s}, 1$ quat. C), 152.19 (s, 1 quat. C), 212.10 ($\mathrm{s}, 1$ quat. C), 261.62 ($\mathrm{s}, 1$ quat. C).

Formation of complexes 6a-c from complex 5 a and arylnitriles. A general procedure for preparation of 6a: In a 20 mL Schlenk tube, $\operatorname{PhCN}(75 \mu \mathrm{~L}, 0.75$ mmol) was added to the benzene solution (5 mL) of compound $\mathbf{5 a}(219 \mathrm{mg}, 0.5$ mmol). After the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 5 h , it was dried up under vacuum and the residue was washed with hexane. After filtering, the solid was dried up under vacuum to precipitate $\mathbf{6 a}$ as dark green solids.
 $126.78(\mathrm{~s}, 2 \mathrm{CH}), 127.18(\mathrm{~s}, 2 \mathrm{CH}), 127.48(\mathrm{~s}, 2 \mathrm{CH}), 127.83(\mathrm{~s}, 2 \mathrm{CH}), 128.24(\mathrm{~s}, 2$ CH), 128.47 ($\mathrm{s}, 1 \mathrm{CH}$), 129.09 ($\mathrm{s}, 2 \mathrm{CH}$), 141.60 ($\mathrm{s}, 1$ quat. C), 144.60 ($\mathrm{s}, 1$ quat. C), 145.56 (s, 1 quat. C), 147.75 (s, 1 quat. C), 174.12 (s, 1 quat. C), 214.26 (s, 1 quat. C), 214.85 ($\mathrm{s}, 1$ quat. C). Single crystals of $\mathbf{6 a}$ suitable for X-ray analysis were grown in THF at room temperature. Elemental Analysis Calcd (\%) for $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{NSiTi}$ C, 77.62; H, 5.77; N, 2.59; Found: C, 77.24; H, 5.91; N, 2.28.

6b

Dark green solid, $180 \mathrm{mg}, 63 \%$ based on 0.5 mmol scale. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=0.67$ (s, $6 \mathrm{H}, \mathrm{SiMe}_{2}$), 3.15 (s, 3 H , OCH_{3}), $5.75\left(\mathrm{~s}, 10 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 6.58(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.67-$ $7.26(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}), 7.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=0.65\left(\mathrm{~s}, 2 \mathrm{CH}_{3}\right), 54.59\left(\mathrm{~s}, 1 \mathrm{CH}_{3}\right), 95.83(\mathrm{~s}, 1$ quat. C), 112.67 (s, 2 CH), 113.23 ($\mathrm{s}, 10 \mathrm{CH}$), 125.51 (s, 1 CH$)$, 125.83 (s, 1 CH), 127.09 (s, 2 CH), 127.48 (s, 2 C), 127.89 (s, 2 CH), $128.23(\mathrm{~s}, 2 \mathrm{CH}), 130.77(\mathrm{~s}, 2 \mathrm{CH}), 137.05$ (s, 1 quat. C), 141.77 (s, 1 quat. C), 145.50 (s, 1 quat. C), 147.84 (s, 1 quat. C), 160.48 (s, 1 quat. C), 173.49 (s, 1 quat. C), 213.83 ($\mathrm{s}, 1$ quat. C), 214.87 (s, 1 quat. C).

6c

Dark green solid, $212 \mathrm{mg}, 71 \%$ based on 0.5 mmol scale. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=0.66\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe}_{2}\right), 0.85(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.09-1.61 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.35-1.41 (m, 2H, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.32 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 5.75\left(\mathrm{~s}, 10 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 6.64(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{Ar}), 6.73\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, 6.85-7.25 (m, 7H, Ar), $7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=0.60\left(\mathrm{~s}, 2 \mathrm{CH}_{3}\right), 14.12\left(\mathrm{~s}, 1 \mathrm{CH}_{3}\right), 22.21(\mathrm{~s}$, $1 \mathrm{CH}_{2}$), $33.62\left(\mathrm{~s}, 1 \mathrm{CH}_{2}\right), 35.53\left(\mathrm{~s}, 1 \mathrm{CH}_{2}\right), 95.53(\mathrm{~s}, 1$ quat. C), $113.22(\mathrm{~s}, 10 \mathrm{CH}), 125.51(\mathrm{~s}, 1 \mathrm{CH}), 125.59(\mathrm{~s}, 1 \mathrm{CH}), 126.90(\mathrm{~s}$, 2 CH), 127.36 ($\mathrm{s}, 2 \mathrm{C}$), $127.50(\mathrm{~s}, 2 \mathrm{CH}), 127.77(\mathrm{~s}, 2 \mathrm{CH}), 128.22(\mathrm{~s}, 2 \mathrm{CH}), 129.19(\mathrm{~s}$, 2 CH), 141.74 ($\mathrm{s}, 1$ quat. C), 142.21 ($\mathrm{s}, 1$ quat. C), 142.97 ($\mathrm{s}, 1$ quat. C), 145.65 ($\mathrm{s}, 1$ quat. C), 147.82 (s, 1 quat. C), 174.16 ($\mathrm{s}, 1$ quat. C), 214.69 (s, 1 quat. C), 214.71 (s, 1 quat. C).

Formation of complexes 6d,e from complexes 5b,c and PhCN. A general procedure for preparation of 6d: In a 20 mL Schlenk tube, $\mathrm{PhCN}(75 \mu \mathrm{~L}, 0.75$ mmol) was added to the benzene solution (5 mL) of compound $\mathbf{5 b}$ ($233 \mathrm{mg}, 0.5$ mmol). After the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 21 h , it was dried up under vacuum and the residue was washed with hexane. After filtering, the solid was dried up under vacuum to precipitate $\mathbf{6 d}$ as dark green solids.

6d

Dark green solid, $188 \mathrm{mg}, 66 \%$ based on 0.5 mmol scale. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=1.03-1.21\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{SiEt}_{2}\right), 5.77(\mathrm{~s}, 10 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right), 6.61\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.71(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)$, 6.85-6.97 (m, 6H, C ${ }_{6} \mathrm{H}_{5}$), 7.12-7.24 (m, 4H, C $\mathrm{C}_{6} \mathrm{H}_{5}$), $7.66(\mathrm{~d}$, $\left.J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=7.92(\mathrm{~s}, 2$ $\mathrm{CH}_{3} \& 2 \mathrm{CH}_{2}$), 96.23 (s, 1 quat. C), $113.30(\mathrm{~s}, 10 \mathrm{CH}), 125.45(\mathrm{~s}, 1$ $\mathrm{CH}), 125.63(\mathrm{~s}, 1 \mathrm{CH}), 126.74(\mathrm{~s}, 2 \mathrm{CH}), 127.17(\mathrm{~s}, 2 \mathrm{C}), 127.38(\mathrm{~s}$, 2 CH), 127.81 (s, 2 CH), 128.22 (s, 2 CH), 128.33 (s, 1 CH), 129.10 (s, 2 CH), 139.19 ($\mathrm{s}, 1$ quat. C), 144.87 ($\mathrm{s}, 1$ quat. C), 145.67 ($\mathrm{s}, 1$ quat. C), 148.14 ($\mathrm{s}, 1$ quat. C), 174.79 (s, 1 quat. C), 214.46 (s, 1 quat. C), 215.60 (s, 1 quat. C). Single crystals of $\mathbf{6 d}$ suitable for X-ray analysis were grown in THF at room temperature. Elemental Analysis Calcd (\%) for $\mathrm{C}_{37} \mathrm{H}_{35} \mathrm{NSiTi}$ C, 78.01 ; H, 6.19; N, 2.46; Found: C, 77.90; H, 6.21; N, 2.37.

$6 \mathbf{6}$

Dark green solid, $263 \mathrm{mg}, 79 \%$ based on 0.5 mmol scale. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $5.75\left(\mathrm{~s}, 10 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 6.65(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.72\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.84-7.10(\mathrm{~m}, 13 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.18-7.37\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.72\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$, 8.05-8.13 (m, 4H, C6 H_{5}); ${ }^{13} \mathrm{C}$ NMR data were not collected because of the poor solubility of $\mathbf{6 e}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$, THF- d_{8}, toluene- d_{8}, etc. Single crystals of $\mathbf{6 e}$ suitable for X-ray analysis were grown in THF at room temperature. Elemental Analysis Calcd (\%) for $\mathrm{C}_{45} \mathrm{H}_{35} \mathrm{NSiTi}$: C, 81.19; H, 5.30; N, 2.10; Found: C, 80.82; H, 5.47; N, 1.99.

Reference:

1. Horáček, M.; Bazyakina, N.; Štepnička, P.; Gyepes, R.; Císařová, I.; Bredeau, S.; Meunier, P.; Kubišta, J.; Mach, K. J. Organomet. Chem. 2001, 628, 30-38.

2) ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of All New Compounds

${ }^{1} \mathrm{H}$ NMR-5b

${ }^{13}$ C NMR-5b

${ }^{1} \mathrm{H}$ NMR-6a

$\xrightarrow[4]{4}$
$\stackrel{\circ}{\circ}$

6a

BRUKER

${ }^{13}$ C NMR -6b

${ }^{13}$ C NMR-6c

${ }^{13}$ C NMR-6d

6 e

3) X-ray crystallographic studies

Crystals for X-ray analysis of $\mathbf{6 a}, \mathbf{6 d}$ and $\mathbf{6 e}$ were obtained as described in the preparations. Data collections for $\mathbf{6 a}, \mathbf{6 d}$ and $\mathbf{6 e}$ were performed at $100 \mathrm{~K}, 180 \mathrm{~K}$ and 180 K on a SuperNova diffractometer using graphite-monochromated Mo K α radiation ($\lambda=0.71073 \AA$). Using Olex2, the structure of $\mathbf{6 a}, \mathbf{6 d}$ and $\mathbf{6 e}$ were solved with the Superflip structure solution program using Charge Flipping and refined with the XL refinement package using Least Squares minimisation. Refinement was performed on F^{2} anisotropically for all the non-hydrogen atoms by the fullmatrix least-squares method. The hydrogen atoms were placed at the calculated positions and were included in the structure calculation without further refinement of the parameters. Crystallographic data (excluding structure factors) have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC-966743 (6a), CCDC-966742 (6d), and CCDC-966744 (6e). These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

SFigure 1. ORTEP drawing of $\mathbf{6 a}$ with 30% thermal ellipsoids. Hydrogen atoms have been omitted.

STable 1. Crystal data and structure refinement for $\mathbf{6 a}$.

Identification code	$\mathbf{6 a}$
Empirical formula	$\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{NSiTi}$
Formula weight	541.60
Temperature	$99.98(11) \mathrm{K}$
Crystal system, space group	Monoclinic, $P 21 / \mathrm{c}$
Unit cell dimensions	$\mathrm{a}=15.9762(8) \AA \quad$ alpha $=90.00^{\circ}$
	$\mathrm{b}=11.2754(4) \AA \quad$ beta $=115.916(6)^{\circ}$
	$\mathrm{c}=17.1936(9) \AA \quad$ gamma $=90^{\circ}$
Volume	$2785.8(2) \AA^{3}$
Z, Density (calculated)	$4,1.291 \mathrm{Mg} / \mathrm{m}^{\circ} 3$

Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
$0.375 \mathrm{~mm}^{\wedge}-1$
1136.0
$0.20 \times 0.20 \times 0.10 \mathrm{~mm}^{3}$
5.82 to 52.04°
$-18 \leq \mathrm{h} \leq 19,-13 \leq \mathrm{k} \leq 13,-21 \leq 1 \leq 15$

Reflections collected / Independent reflections $25221 / 5487[R($ int $)=0.0490]$
Data / restraints / parameters 5487/0/345
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$
1.044

Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})$]
$\mathrm{R} 1=0.0389, \mathrm{wR} 2=0.0945$
R indices (all data)
$R 1=0.0489, w R 2=0.1020$
Largest diff. peak and hole
$0.40 /-0.41$ e. \AA^{-3}

SFigure 2. ORTEP drawing of 6d with 30% thermal ellipsoids. Hydrogen atoms have been omitted for clarity.

STable 2. Crystal data and structure refinement for $\mathbf{6 d}$.
Identification code 6d

Empirical formula
Formula weight
$\mathrm{C}_{37} \mathrm{H}_{35} \mathrm{NSiTi}$

Temperature
569.65

Crystal system, space group
Unit cell dimensions
180.15 K

Monoclinic, $P 2_{1} / \mathrm{n}$
$a=10.2052(3) \AA$ alpha $=90^{\circ}$

Volume
Z, Calculated density
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Limiting indices
Reflections collected / unique
Data / restraints / parameters
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
$\mathrm{b}=17.3311(5) \AA \quad$ beta $=99.069(3)^{\circ}$
$\mathrm{c}=17.0297(6) \AA \mathrm{gamma}=90^{\circ}$
2974.35(17) \AA^{3}
$4,1.272 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
$0.355 \mathrm{~mm}^{\wedge}-1$
1200.0
$0.2 \times 0.1 \times 0.1 \mathrm{~mm}^{3}$
6.2 to 50.054°
$-8 \leq \mathrm{h} \leq 12,-20 \leq \mathrm{k} \leq 17,-18 \leq 1 \leq 20$
$11341 / 5222[\mathrm{R}(\mathrm{int})=0.0223]$
5222/0/363
1.051
$\mathrm{R} 1=0.0386, \mathrm{wR} 2=0.0935$
$R 1=0.0478, w R 2=0.1000$
0.60 and -0.39 e. \AA^{-3}

SFigure 3. ORTEP drawing of $\mathbf{6 e}$ with 30% thermal ellipsoids. Hydrogen atoms and THF have been omitted for clarity.

STable 3. Crystal data and structure refinement for $\mathbf{6 e}$.

Identification code
Empirical formula
Formula weight
Temperature

6e

$\mathrm{C}_{49} \mathrm{H}_{43} \mathrm{NSiTiO}$
737.83
180.15 K

Crystal system, space group	Monoclinic, $C 2 / \mathrm{c}$
Unit cell dimensions	$\mathrm{a}=16.2653(6) \AA \quad \mathrm{alpha}=90^{\circ}$
	$\mathrm{b}=19.3916(6) \AA \quad \mathrm{beta}=104.915(3)^{\circ}$
	$\mathrm{c}=24.7760(8) \AA \quad$ gamma $=90^{\circ}$
Volume	$7551.3(4) \AA^{3}$
Z, Calculated density	$8,1.298 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$0.298 \mathrm{~mm}^{\wedge}-1$
$\mathrm{~F}(000)$	3104.0
Crystal size	$0.20 \times 0.10 \times 0.10 \mathrm{~mm}^{3}$
Theta range for data collection	6.55 to 52.038°
Limiting indices	$-20 \leq \mathrm{h} \leq 17,-19 \leq \mathrm{k} \leq 23,-30 \leq 1 \leq 24$
Reflections collected / unique	$14417 / 7392[\mathrm{R}(\mathrm{int})=0.0218]$
Data / restraints / parameters	$7392 / 4 / 487$
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.036
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0469, \mathrm{wR} 2=0.1209$
R indices (all data)	$\mathrm{R} 1=0.0576, \mathrm{wR} 2=0.1291$
Largest diff. peak and hole	0.69 and $-0.48 \mathrm{e} . \AA^{-3}$

