Supporting Information

for

Yttrium- and Aluminum-Bis(phenolate)pyridine Complexes : Catalysts and Model Compounds of the Intermediates for the Stereoselective Ring-Opening Polymerization

of racemic Lactide and β -Butyrolactone

Joice S. Klitzke, Thierry Roisnel, Evgeny Kirillov, Osvaldo Casagrande Jr and Jean-François Carpentier

Figure S1. ¹H NMR spectrum (300 MHz, CDCl₃, 298 K) of 1-(methoxymethyl)-4-methyl-2-(2-phenylpropan-2-yl)benzene.

Figure S2. ¹H NMR spectrum (500 MHz, CDCl₃, 298 K) of {ONO^{Me,Cumyl}}H₂.

Figure S3. ${}^{13}C{}^{1}H$ NMR spectrum (125 MHz, CDCl₃, 298 K) of {ONO^{Me,Cumyl}}H₂.

Figure S4. ¹H NMR spectrum (500 MHz, toluene- d_8 , 298 K) of {ONO^{Me,Cumy1}}Y[N(SiHMe₂)₂](THF)(Et₂O) (1).

Figure S5. ¹H NMR spectrum (500 MHz, pyridine- d_5 , 298 K) of {ONO^{Me,Cumyl}}Y[N(SiHMe₂)₂](THF)(Et₂O) (**1**)

Figure S6. ¹³C{¹H} NMR spectrum (125 MHz, pyridine- d_5 , 298 K) of {ONO^{Me,Cumyl}}Y[N(SiHMe₂)₂](THF)(Et₂O) (**1**).

Figure S7. Details of the aliphatic region of the VT ¹H NMR spectra (500 MHz, toluene- d_8 , 298–363 K) of {ONO^{Me,Cumyl}}Y[N(SiHMe₂)₂](THF)(Et₂O) (**1**).

Figure S8. ¹H NMR spectrum (500 MHz, toluene- d_8 , 258 K) of {ONO^{Me,Cumyl}}Y((*R*)-OCH(CH₃)CH₂COOMe) (**2**).

Figure S9. ¹³C{¹H} NMR (100 MHz, toluene- d_8 , 258 K) of {ONO^{Me,Cumyl}}Y((*R*)-OCH(CH₃)CH₂COOMe) (2).

Figure S10. ¹H–¹H NOESY NMR spectrum (400 MHz, toluene- d_8 , 258 K) of {ONO^{Me,Cumyl}}Y((*R*)-OCH(CH₃)CH₂COOMe) (**2**).

Figure S11. ¹H NMR spectrum (500 MHz, THF- d_8 , 298 K) of {ONO^{Me,Cumyl}}Y((*S*,*S*)-OCH(CH₃)OCH(CH₃)COOMe)(THF) (**3**).

Figure S12. ¹³C-¹H HMQC NMR spectrum (500 MHz, THF- d_8 , 298 K) of {ONO^{Me,Cumyl}}Y((*S*,*S*)-OCH(CH₃)OCH(CH₃)COOMe)(THF) (**3**).

Figure S13. ¹³C-¹H HMBC NMR spectrum (500 MHz, THF- d_8 , 298 K) of {ONO^{Me,Cumyl}}Y((*S*,*S*)-OCH(CH₃)OCH(CH₃)COOMe)(THF) (**3**).

Figure S14a. ¹H NMR (500 MHz, THF- d_8 , 298K) spectrum of the 1:1 reaction mixture of **1** and methyl (*S*,*S*)-lactyllactate at room temperature after 30 min (bottom spectrum) and after 18 h reaction, evaporation of volatiles and addition of fresh THF- d_8 (bottom spectrum).

Figure S15. ¹H NMR spectrum (500 MHz, CD₂Cl₂, 298 K) of {ONO^{Me,Cumyl}}AlMe (4).

Figure S16. ${}^{13}C{}^{1}H$ NMR spectrum (125 MHz, CD₂Cl₂, 298 K) of {ONO^{Me,Cumyl}}AlMe (4)

Figure S17. ¹H NMR spectrum (500 MHz, toluene- d_8 , 298 K) of {ONO^{Me,Cumyl}}Al(*i*Pr (*S*)-lactate) (5).

Figure S18. ¹³C{¹H} NMR spectrum (125 MHz, toluene- d_8 , 298 K) of {ONO^{Me,Cumyl}}Al(*i*Pr (*S*)-lactate) (**5**).

Figure S19. ¹H–¹H NOESY NMR spectrum (400 MHz, toluene- d_8 , 298 K) of {ONO^{Me,Cumyl}}Al(*i*Pr (*S*)-lactate) (**5**).

Figure S20. ¹H NMR spectrum (500 MHz, CD₂Cl₂, 298 K) of {ONO^{Me,Cumyl}}Al((*R*)-OCH(CH₃)CH₂COOMe) (**6**).

Figure S21. ¹³C{¹H} NMR spectrum (100 MHz, C_6D_6 , 298 K) of {ONO^{Me,Cumyl}}Al((*R*)-OCH(CH₃)CH₂COOMe) (6).

Figure S22. ¹H NMR spectrum (500 MHz, CD₂Cl₂, 298 K) of {ONO^{Me,Cumyl}}Al((*rac*)-OCH(CF₃)CH₂COOEt) (**7**).

Figure S23. ¹³C{¹H} NMR spectrum (125 MHz, CD₂Cl₂, 298 K) of $\{ONO^{Me,Cumyl}\}Al((rac)-OCH(CF_3)CH_2COOEt)$ (7).

Figure S23bis. DEPT 135 NMR spectrum (125 MHz, CD_2Cl_2 , 298 K) of $\{ONO^{Me,Cumyl}\}Al((rac)-OCH(CF_3)CH_2COOEt)$ (7).

Figure S24. ¹⁹F{¹H}NMR spectrum (185 MHz, CD_2Cl_2 , 298 K) of { $ONO^{Me,Cumyl}$ }Al((*rac*)-OCH(CF₃)CH₂COOEt) (7).

Figure S25. ${}^{1}\text{H}-{}^{1}\text{H}$ NOESY NMR spectrum (400 MHz, CD₂Cl₂, 298 K) of {ONO^{Me,Cumyl}}Al((*rac*)-OCH(CF₃)CH₂COOEt) (7).

Figure S26. ${}^{1}H-{}^{1}H$ COSY NMR spectrum (500 MHz, CDCl₃, 298 K) of a PLA produced from {ONO^{Me,Cumyl}}Y((*R*)-OCH(CH₃)CH₂COOMe) (**2**).

Figure S27. Detail of the MALDI-ToF mass spectrum of a PLA sample produced from **2** using IAA as matrix (Table 1, entry 10).

Figure S28. ${}^{1}\text{H}-{}^{1}\text{H}$ COSY NMR spectrum (500 MHz, CDCl₃, 298 K) of a PHB produced from {ONO^{Me,Cumyl}}Y((*R*)-OCH(CH₃)CH₂COOMe) (**2**).

Figure S29: Methine region of ¹H NMR and ¹H homo-decoupled NMR spectra of different PLAs.

Figure S30. Carbonyl (left) and methylene (right) regions of the ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CDCl₃, 298 K) of a PHB produced from {ONO^{Me,Cumyl}}Y((*R*)-OCH(CH₃)CH₂COOMe) (**2**).

Figure S31. Detail of the MALDI-ToF mass spectrum of a PHB sample produced from **2** using IAA as matrix (Table 1, entry 20).

Table S1. Summary of crystal and refinement data for $\{ONO^{Me,Cumyl}\}H_2$, 1 and 6.

Figure S32. Molecular structure of proligand {ONO^{Me,Cumyl}}H₂.

Figure S1. ¹H NMR spectrum (300 MHz, CDCl₃, 298 K) of 1-(methoxymethyl)-4-methyl-2-(2-phenylpropan-2-yl)benzene.

Figure S2. ¹H NMR spectrum (500 MHz, CDCl₃, 298 K) of {ONO^{Me,Cumyl}}H₂.

Figure S3. ¹³C{¹H} NMR spectrum (125 MHz, CDCl₃, 298 K) of {ONO^{Me,Cumyl}}H₂ (*stands for residual solvent resonances).

Figure S4. ¹H NMR spectrum (500 MHz, toluene- d_8 , 298 K) of {ONO^{Me,Cumyl}}Y[N(SiHMe₂)₂](THF)(Et₂O) (1) (* stands for residual solvent resonances).

Figure S5. ¹H NMR spectrum (500 MHz, pyridine- d_5 , 298 K) of {ONO^{Me,Cumyl}}Y[N(SiHMe₂)₂](THF)(Et₂O) (**1**) (* stands for residual solvent resonance).

Figure S6. ¹³C{¹H} NMR spectrum (125 MHz, pyridine- d_5 , 298 K) of {ONO^{Me,Cumyl}}Y[N(SiHMe₂)₂](THF)(Et₂O) (1) (* stands for residual solvent resonance).

Figure S7. Details of the aliphatic region of the VT-¹H NMR spectra (500 MHz, toluene- d_8 , 298–363 K) of {ONO^{Me,Cumyl}}Y[N(SiHMe₂)₂](THF)(Et₂O) (1); from bottom to top, 298 K, 333 K, 353 K and 363 K. Markers **A** denote genuine compound **1**, and **B** and **C** unidentified species forming upon time and heating (* refers to residual solvent resonances).

Figure S8. ¹H NMR spectrum (500 MHz, toluene- d_8 , 258 K) of {ONO^{Me,Cumyl}}Y((*R*)-OCH(CH₃)CH₂COOMe) (2).

Figure S9. ¹³C{¹H} NMR (100 MHz, toluene- d_8 , 258 K) of {ONO^{Me,Cumyl}}Y((*R*)-OCH(CH₃)CH₂COOMe) (2) (* stands for residual solvent resonance).

Figure S10. Detail of the ${}^{1}H{-}^{1}H$ NOESY NMR spectrum (400 MHz, toluene- d_{8} , 258 K) of {ONO^{Me,Cumyl}}Y((*R*)-OCH(CH₃)CH₂COOMe) (2) (* stands for residual solvent resonance).

Figure S11. ¹H NMR spectrum (500 MHz, THF- d_8 , 298 K) of {ONO^{Me,Cumyl}}Y((*S*,*S*)-OCH(CH₃)OCH(CH₃)COOMe)(THF) (**3**) *in situ* generated upon addition of one equiv of methyl (S,S)-lactyllactate to **1** (after 30 min at room temperature) (* stands for residual solvent resonance).

situ generated upon addition of one equiv of methyl (S,S)-lactyllactate to 1 (after 30 min at room temperature).

Figure S13. ${}^{13}C{}^{-1}H$ HMBC NMR spectrum (500 MHz, THF- d_8 , 298 K) of {ONO^{Me,Cumyl}}Y((*S*,*S*)-OCH(CH₃)OCH(CH₃)COOMe)(THF) (**3**) *in situ* generated upon addition of one equiv of methyl (S,S)-lactyllactate to **1** (after 30 min at room temperature).

Figure S14a. Details of the aromatic region of the ¹H NMR (500 MHz, THF- d_8 , 298K) spectrum of the 1:1 reaction mixture of **1** and methyl (*S*,*S*)-lactyllactate at room temperature after 30 min (bottom spectrum) and after 18 h reaction, evaporation of volatiles and addition of fresh THF- d_8 (bottom spectrum).

Figure S14b. Details of the SiH region.

Figure S14c. Details of the aliphatic region.

Figure S15. ¹H NMR spectrum (500 MHz, CD₂Cl₂, 298 K) of {ONO^{Me,Cumyl}}AlMe (4) (*stands for residual solvent resonances).

Figure S16. ¹³C{¹H} NMR spectrum (125 MHz, CD₂Cl₂, 298 K) of {ONO^{Me,Cumyl}}AlMe (**4**) (*stands for residual solvent resonances).

Figure S17. ¹H NMR spectrum (500 MHz, toluene-*d*₈, 298 K) of {ONO^{Me,Cumyl}}Al(*i*Pr (*S*)-lactate) (**5**) (*stands for residual solvent resonances).

Figure S18. ¹³C{¹H} NMR spectrum (125 MHz, toluene- d_8 , 298 K) of {ONO^{Me,Cumyl}}Al(*i*Pr (*S*)-lactate) (5).

Figure S19. ${}^{1}\text{H}-{}^{1}\text{H}$ NOESY NMR spectrum (400 MHz, toluene- d_8 , 298 K) of {ONO}^{Me,Cumyl} Al(*i*Pr (*S*)-lactate) (5).

Figure S20. ¹H NMR spectrum (500 MHz, CD_2Cl_2 , 298 K) of { $ONO^{Me,Cumyl}$ }Al((*R*)-OCH(CH₃)CH₂COOMe) (**6**) (* stands for residual solvent resonances; a small amount of free ligand contaminates the product).

Figure S21. ¹³C{¹H} NMR spectrum (100 MHz, C_6D_6 , 298 K) of {ONO^{Me,Cumyl}}Al((*R*)-OCH(CH₃)CH₂COOMe) (**6**) (* stands for impurities and residual solvent resonances).

Figure S22. ¹H NMR spectrum (500 MHz, CD₂Cl₂, 298 K) of {ONO^{Me,Cumyl}}Al((*rac*)-OCH(CF₃)CH₂COOEt) (**7**) (* stands for residual solvent resonances).

Figure S23. ¹³C{¹H} NMR spectrum (125 MHz, CD₂Cl₂, 298 K) of { $ONO^{Me,Cumyl}$ }Al((*rac*)-OCH(CF₃)CH₂COOEt) (7) (*stands for residual solvent resonances).

Figure S23bis. DEPT 135 NMR spectrum (125 MHz, CD_2Cl_2 , 298 K) of { $ONO^{Me,Cumyl}$ }Al((*rac*)-OCH(CF₃)CH₂COOEt) (7).

Figure S24. ¹⁹F{¹H}NMR spectrum (185 MHz, CD₂Cl₂, 298 K) of { $ONO^{Me,Cumyl}$ }Al((*rac*)-OCH(CF₃)CH₂COOEt) (7).

Figure S25. $^{1}H^{-1}H$ NOESY NMR spectrum (400 MHz, CD₂Cl₂, 298 K) of {ONO^{Me,Cumyl}}Al((*rac*)-OCH(CF₃)CH₂COOEt) (7).

Figure S26. ${}^{1}H-{}^{1}H$ COSY NMR spectrum (500 MHz, CDCl₃, 298 K) of a PLA produced from {ONO^{Me,Cumyl}}Y((*R*)-OCH(CH₃)CH₂COOMe) (**2**) (Table 1, entry 10).

Figure S27. Detail of the MALDI-ToF mass spectrum of a PLA sample produced from **2** using IAA as matrix (Table 1, entry 10). Top: experimental spectrum; the observed two distributions at m/z = 4463 and 4479 Da correspond to MeOC(O)CH₂CH(CH₃)O–(LA)_n–H macromolecules ionized by Na⁺ and K⁺. Bottom: calculated isotopic distribution for macromolecules ionized with Na⁺.

Figure S28. ${}^{1}\text{H}-{}^{1}\text{H}$ COSY NMR spectrum (500 MHz, CDCl₃, 298 K) of a PHB produced from {ONO^{Me,Cumyl}}Y((*R*)-OCH(CH₃)CH₂COOMe) (**2**) (Table 1, entry 21).

Figure S29. Methine region of ¹H NMR and ¹H homo-decoupled NMR spectra of different PLAs.

Figure S30. Carbonyl (left) and methylene (right) regions of the ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CDCl₃, 298 K) of a PHB produced from {ONO^{Me,Cumyl}}Y((*R*)-OCH(CH₃)CH₂COOMe) (**2**) (Table 1, entry 21).

Figure S31. Detail of the MALDI-ToF mass spectrum of a PHB sample produced from **2** using IAA as matrix (Table 1, entry 20). Top: experimental spectrum; the observed two distributions correspond to $MeOC(O)CH_2CH(CH_3)O-(BBL)_n-H$ macromolecules ionized by Na⁺ and K⁺. Bottom: calculated isotopic distribution for macromolecules ionized with Na⁺.

	$\{ONO^{Me,Cumyl}\}H_2$	1	6
Empirical formula	C ₃₇ H ₃₇ NO ₂	$C_{49}H_{67}N_2O_4Si_2Y$	$C_{84}H_{88}Al_2N_2O_{10}$
Formula weight	527.68	893.14	1339.52
Crystal system	Monoclinic	Monoclinic	Triclinic
Space group	$P 2_l/n$	$P 2_1/n$	Р <i>—1</i>
<i>a</i> , Å	13.1098(12)	12.896(2)	15.8935(5)
<i>b</i> , Å	8.0072(7)	25.405(3)	16.9816(4)
<i>c</i> , Å	27.619(3)	15.536(2)	18.2728(6)
α (°)	90	90	107.2690(10)
β (°)	90.292(4)	110.122(5)	107.1600(10)
γ (°)	90	90	114.6260(10)
Volume, Å ³	2899.2(5)	4779.3(11)	3750.09(19)
Z	4	4	2
Density, g.m ⁻³	1.209	1.241	1.186
m, mm^{-1}	0.074	1.314	0.098
F(000)	1128	1896	1424
Crystal size, mm	$0.57 \times 0.08 \times 0.05$	$0.55 \times 0.46 \times 0.38$	$0.6 \times 0.3 \times 0.23$
θ range, deg	2.94 to 27.48	2.94 to 27.48	1.33 to 27.52
Limiting indices	$\begin{array}{l} -16 \leq h \leq 16, -9 \leq k \\ \leq 10, -35 \leq l \leq 35 \end{array}$	$-16 \le h \le 16, -27 \le k \le 32, -30 \le l \le 20$	$\begin{array}{l} -20 \leq h \leq 17, -20 \leq \\ k \leq 22, -23 \leq l \leq 23 \end{array}$
Reflec. Collected	26552	42223	42735
R _{int}	0.07	0.0531	0.044
Unique Refl [I>2 σ (I)]	6546	10851	17008
Data/restrains/ param.	6546 / 0 / 369	10851 / 0 / 512	17008 / 0 / 913
Goodness-of-it on F ²	1.012	1.022	1.061
$R_1 [I > 2\sigma(I)]$ (all data)	0.0546 (0.12)	0.0518 (0.0742)	0.078 (0.119)
wR ₂ [I> $2\sigma(I)$] (all data)	0.1113 (0.144)	0.1261 (0.136)	0.2223 (0.2412)
Largest diff. e.A ⁻³	0.255 and -0.243	1.397 and -0.993	0.512 and -0.450

Table S1. Summary of crystal and refinement data for $\{ONO^{Me,Cumyl}\}H_2$, 1 and 6.

Figure S32. Molecular structure of proligand {ONO^{Me,Cumyl}}H₂ (all hydrogens atoms, except those of the hydroxyl groups, are omitted for clarity; thermal ellipsoids drawn at 50% probability). Selected bond distances (Å) and angles (deg): H(O(1))–N = 1.919; H(O(2))–N = 1.985; \angle Pyr–Ph(1) = 23.55; \angle Pyr–Ph(2) = 23.21.

Computational Details

The geometry optimizations have been performed with the program package TURBOMOLE using density functional theory (DFT).¹ The gradient corrected density functional BP86 in combination with the resolution identity approximation (RI)² was applied for the geometry optimizations of stationary points. A triple- ξ zeta valence quality basis set def2-TZVP³ was used for all atoms. In the calculations have been included solvation effects using COSMO model implemented in the TURBOMOLE program package.⁴ The default optimized atomic COSMO radii and the corresponding parameters for solvent toluene ($\varepsilon = 2.38$, radius = 3.48 Å) have been used.

- (a) Ahlrichs, R.; Bar, M.; Haser, M.; Horn, H.; Kolmel, C. *Chem.Phys. Lett.* 1989, *162*, 165. (b) Treutler, O.; Ahlrichs, R. *J. Chem. Phys.* 1995, *102*, 346. (c) Eichkorn, K.; Treutler, O.; Ohm, H.; Haser, M.; Ahlrichs, R. *Chem. Phys. Lett.* 1995, *242*, 652. (d) TURBOMOLE V6.2 2010, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.
- ² (a) Sierka, M.; Hogekamp, A.; Ahlrichs, R. J. Chem. Phys. 2003, 118, 9136. (b)
 Deglmann, P.; May, K.; Furche, F.; Ahlrichs, R. Chem. Phys. Letters 2004, 384, 103.
- ³ Weigend, F.; Ahlrichs. R. *Phys. Chem. Chem. Phys.* **2005**, 7, 3297.
- ⁴ (a) Klamt, A.; Eckert, F. *Fluid Phase Equilibria* 2000, 172, 43. (b) Schafer, A.; Klamt, A.; Sattel, D.; Lohrenz, J. C.; Eckert, F. *Phys. Chem. Chem. Phys.* 2000, *2*, 2187.

2-I			С	-
93			Н	-
En	ergy = -2097.356473883		С	-
Y	0.9827209 -10.7511209	11.6754176	С	-
Ν	-0.0285550 -9.6738647	9.7334433	С	-
0	2.7071417 -9.8359767	10.7904770	Н	-
0	1.8141504 -11.8892817	13.5904832	Н	-
0	-0.4695819 -9.4695831	12.6263954	Н	-
0	0.5552253 -12.7221000	11.1730372	С	-
0	2.3283733 -13.6349986	14.9014887	Н	-
С	0.7894324 -14.0032800	11.6628549	Н	-
Н	1.8130599 -14.3375029	11.3853424	Н	-
С	0.7036653 -14.0281105	13.2196482	С	-
Н	0.8631761 -15.0394981	13.6154672	С	
Н	-0.3147072 -13.7067706	13.4985022	Н	-
С	1.6518883 -13.0814349	13.8955605	С	_
С	3.2259308 -12.7569583	15.6376450	С	-
Н	4.0036360 -12.3737105	14.9672684	Н	-
Н	3.6576512 -13.3863295	16.4206489	Η	-
Н	2.6552004 -11.9266378	16.0696811	Η	-
С	-2.0731248 -11.5739340	15.2920934	С	-
Н	-2.8942386 -11.7512261	14.5945297	Η	-
С	-1.5257861 -12.6476629	15.9975094	С	-
Н	-1.9262606 -13.6526099	15.8497237	С	-
С	-0.4797975 -12.4368282	16.9017577	С	-
Н	-0.0582134 -13.2717617	17.4634311	С	-
С	0.0140137 -11.1421650	17.0768433	Н	-
Н	0.8265807 -10.9567977	17.7824754	С	-

С	-0.5374321	-10.0703256	16.3667215
Η	-0.1346358	-9.0707023	16.5283210
С	-1.5988882	-10.2626323	15.4698322
С	-2.3475916	-9.0866920	14.8155775
С	-3.5857837	-8.8378281	15.7166141
Η	-4.2246028	-9.7269234	15.8053773
Η	-4.1925437	-8.0036713	15.3341757
Η	-3.2436239	-8.5762178	16.7276643
С	-1.5318527	-7.7719746	14.8250336
Η	-1.3355892	-7.4364299	15.8535358
Η	-2.1157641	-6.9831399	14.3299221
Η	-0.5803946	-7.8837390	14.2940935
С	-2.7570075	-9.4097751	13.3635868
С	-4.0953440	-9.5897652	13.0134544
Η	-4.8552603	-9.5702318	13.7957473
С	-4.5273119	-9.8024431	11.6918810
С	-5.9763938	-10.0909386	11.3856364
Η	-6.1887389	-9.9728029	10.3141350
Η	-6.6486597	-9.4190093	11.9402333
Η	-6.2512862	-11.1214844	11.6638080
С	-3.5689596	-9.7246129	10.6897508
Η	-3.8797215	-9.8340487	9.6481343
С	-2.1997846	-9.5291721	10.9688039
С	-1.7630949	-9.4849441	12.3311577
С	-1.3121405	-9.2127985	9.8209970
С	-1.8469603	-8.3853293	8.8153105
Η	-2.8535272	-7.9894733	8.9309186
С	-1.0678757	-8.0321313	7.7222654

Η	-1.4600653	-7.3611226	6.9562983
С	0.2301833	-8.5160619	7.6367207
Η	0.8767262	-8.2216746	6.8131863
С	0.7377824	-9.3564924	8.6464231
С	2.1209200	-9.8665852	8.4652241
С	2.5232767	-10.1568699	7.1437835
Η	1.7675200	-10.1576775	6.3554015
С	3.8355146	-10.4688766	6.8154291
С	4.2363481	-10.8415994	5.4090886
Η	3.4278231	-10.6314652	4.6955950
Η	4.4781888	-11.9137287	5.3277949
Η	5.1284563	-10.2861487	5.0820361
С	4.7855509	-10.4260765	7.8504555
Η	5.8262224	-10.6185439	7.5876899
С	4.4591130	-10.1696007	9.1822642
С	3.0805392	-9.9630170	9.5225844
С	5.5533173	-10.0938386	10.2654874
С	5.4458357	-8.7336455	11.0003260
Η	4.5049693	-8.6498461	11.5534229
Η	5.4897461	-7.9207688	10.2612900
Η	6.2869609	-8.5888951	11.6927363
С	6.9746784	-10.1451818	9.6448989
Η	7.7184634	-10.0403262	10.4467137
Η	7.1253540	-9.3227299	8.9299190
Η	7.1734352	-11.0978473	9.1350740
С	5.4878960	-11.2973526	11.2268127
С	6.0861370	-11.2452830	12.4970710
Η	6.5044424	-10.3075190	12.8641881
С	6.1812466	-12.3835680	13.3024618

C 5.6682267 -13.6068737 12.861568 H 5.7492548 -14.4986840 13.485079 C 5.0531376 -13.6714120 11.608864	6
H5.7492548-14.498684013.485079C5.0531376-13.671412011.608864	9
C 5.0531376 -13.6714120 11.608864	91
	-1
H 4.6475284 -14.6180701 11.246710)7
C 4.9681418 -12.5315698 10.804289	0
Н 4.4974204 -12.6021954 9.822468	8
C -0.2088143 -15.0109038 11.082973	6
Н -0.0063664 -16.0349802 11.432111	15
Н -0.1426511 -14.9954278 9.986818	0
Н -1.2350077 -14.7339093 11.367507	75

2-II

En	ergy = -2097.	356995094	
Y	0.3540211	-2.0558538	8.5042054
Ν	-1.8936349	-2.7774292	7.9293365
0	-0.2802888	-2.8509438	10.3854588
0	0.7937327	-3.3630313	6.8692681
0	0.1670266	-0.0065147	8.1493584
0	2.5495781	-1.2649090	9.1026515
0	4.1774218	0.2772797	9.2364246
С	2.8915682	-0.0789431	9.2458886
С	5.1508692	-0.7901317	9.0565629
Η	5.0466691	-1.5322246	9.8564937
Η	6.1246382	-0.2961515	9.1049826
Η	5.0045055	-1.2711449	8.0826278
С	-0.4416665	-4.8506599	13.1801104
Н	-1.5072910	-4.6510024	13.3097063

С	0.0060978	-6.1712670	13.1245332	С	-1.3947850	-2.4676433	10.9955513
Η	-0.7104677	-6.9895708	13.2183528	C	-2.8245651	-2.9466578	8.9165354
С	1.3649416	-6.4467464	12.9445930	C	-4.0176690	-3.6465362	8.6575241
Η	1.7184755	-7.4778983	12.8958047	Н	-4.7212200	-3.8188806	9.4691807
С	2.2625254	-5.3846265	12.8225556	C	-4.2635792	-4.1516113	7.3876309
Η	3.3262348	-5.5822615	12.6762394	Н	-5.1724391	-4.7208343	7.1857687
С	1.8074747	-4.0631701	12.8785952	C	-3.3236533	-3.9484858	6.3856585
Η	2.5309696	-3.2549850	12.7708751	Н	-3.4749584	-4.3596677	5.3898670
С	0.4476834	-3.7707679	13.0535743	С	-2.1368628	-3.2479027	6.6687982
С	-0.0831598	-2.3315702	13.2053893	С	-1.1825890	-3.0383790	5.5494559
С	-0.3137772	-2.1160285	14.7220179	C	-1.7306971	-2.7733306	4.2759725
Η	0.6260396	-2.3087361	15.2581257	Н	-2.8045033	-2.5884318	4.1969100
Η	-1.0743670	-2.7999313	15.1229232	С	-0.9506392	-2.7097749	3.1281233
Η	-0.6203315	-1.0824232	14.9413902	С	-1.5437431	-2.3639007	1.7840882
С	0.9434303	-1.2666537	12.7564062	Н	-1.2313718	-1.3613515	1.4495183
Η	1.8383877	-1.2803499	13.3960970	Н	-2.6417489	-2.3720909	1.8191680
Η	0.4906593	-0.2686578	12.8417611	Н	-1.2253296	-3.0747025	1.0063556
Η	1.2544804	-1.4267914	11.7175062	С	0.4235177	-2.9803051	3.2623432
С	-1.3819965	-2.1526038	12.3938781	Н	1.0310830	-2.9818374	2.3560000
С	-2.5501451	-1.6723287	12.9829198	С	1.0331776	-3.2368264	4.4889577
Η	-2.5426664	-1.4098778	14.0420219	C	0.2317803	-3.2036047	5.6768761
С	-3.7531996	-1.4986644	12.2744711	C	2.5418480	-3.5375899	4.5936190
С	-4.9664014	-0.9005833	12.9440335	C	3.2510382	-2.3427875	5.2717722
Η	-4.8336390	0.1767388	13.1347977	Н	2.9310199	-2.2248829	6.3136285
Η	-5.1674519	-1.3757352	13.9163041	Н	3.0117258	-1.4201971	4.7248371
Η	-5.8633233	-1.0164441	12.3203131	Н	4.3440899	-2.4673182	5.2502635
С	-3.7752487	-1.8951005	10.9432113	С	3.1953751	-3.7088603	3.1994338
Η	-4.7025072	-1.7887939	10.3754981	Н	4.2533599	-3.9761925	3.3300508
С	-2.6337899	-2.4019648	10.2852598	Н	3.1533193	-2.7767751	2.6164312

С	-2.8245651	-2.9466578	8.9165354
С	-4.0176690	-3.6465362	8.6575241
Η	-4.7212200	-3.8188806	9.4691807
С	-4.2635792	-4.1516113	7.3876309
Η	-5.1724391	-4.7208343	7.1857687
С	-3.3236533	-3.9484858	6.3856585
Η	-3.4749584	-4.3596677	5.3898670
С	-2.1368628	-3.2479027	6.6687982
С	-1.1825890	-3.0383790	5.5494559
С	-1.7306971	-2.7733306	4.2759725
Η	-2.8045033	-2.5884318	4.1969100
С	-0.9506392	-2.7097749	3.1281233
С	-1.5437431	-2.3639007	1.7840882
Η	-1.2313718	-1.3613515	1.4495183
Η	-2.6417489	-2.3720909	1.8191680
Η	-1.2253296	-3.0747025	1.0063556
С	0.4235177	-2.9803051	3.2623432
Η	1.0310830	-2.9818374	2.3560000
С	1.0331776	-3.2368264	4.4889577
С	0.2317803	-3.2036047	5.6768761
С	2.5418480	-3.5375899	4.5936190
С	3.2510382	-2.3427875	5.2717722
Η	2.9310199	-2.2248829	6.3136285
Η	3.0117258	-1.4201971	4.7248371
Η	4.3440899	-2.4673182	5.2502635
С	3.1953751	-3.7088603	3.1994338
Η	4.2533599	-3.9761925	3.3300508
Η	3.1533193	-2.7767751	2.6164312

Η	2.7175270	-4.5085996	2.6171099
С	2.7692795	-4.8678090	5.3387734
С	3.7811338	-5.0392689	6.2935315
Η	4.4004288	-4.1930871	6.5910589
С	4.0087805	-6.2823611	6.8929484
Η	4.7979339	-6.3836428	7.6405386
С	3.2289140	-7.3869523	6.5462571
Η	3.4023046	-8.3559818	7.0169331
С	2.2188932	-7.2333618	5.5918529
Η	1.5970482	-8.0856241	5.3110037
С	1.9970471	-5.9904558	4.9972697
Η	1.1972900	-5.8833359	4.2617285
С	0.8913110	1.1730937	8.2704888
Η	0.2224703	2.0009606	8.5847563
С	1.9437288	1.0651849	9.4311274
Η	2.5053849	2.0006050	9.5456578
Η	1.3818747	0.8780498	10.3594735
С	1.5507424	1.5761609	6.9462304
Η	2.0839137	2.5350689	7.0327341
Η	0.7785791	1.6762972	6.1718427
Η	2.2633371	0.8070134	6.6103929

93

Energy = -2301.411647702

Al	0.6953634	-10.8487739	11.2744170
N	-0.1696311	-10.0054909	9.6566144

O 2.2952849 -10.1651391 10.8361823

O 1.5936931 -11.5499800 12.9436758

0	-0.3481446	-9.8980788	12.3807904
0	0.2504495	-12.4658778	10.7486107
0	2.1663195	-13.0884656	14.4656567
С	0.7013315	-13.7088974	11.2142993
Η	1.7557738	-13.8730924	10.9031997
С	0.6635482	-13.7800634	12.7607327
Η	0.9811848	-14.7599834	13.1404462
Н	-0.3759171	-13.6080808	13.0908287
С	1.5023994	-12.7073664	13.3812947
С	2.9690692	-12.0678525	15.1257691
Н	3.7472066	-11.7095215	14.4430288
Н	3.4093429	-12.5725828	15.9898259
Н	2.3233352	-11.2407405	15.4412760
С	-1.9968668	-11.6795048	15.0861932
Н	-2.7491479	-11.6912002	14.2961864
С	-1.6948244	-12.8641203	15.7643565
Н	-2.2132943	-13.7866487	15.4953922
С	-0.7430944	-12.8694645	16.7869612
Н	-0.5088962	-13.7914628	17.3210741
С	-0.0962789	-11.6757681	17.1164189
Н	0.6476725	-11.6596629	17.9153092
С	-0.3992796	-10.4945723	16.4326604
Н	0.1153798	-9.5763314	16.7178820
С	-1.3589872	-10.4700882	15.4065393
С	-1.8162619	-9.1397625	14.7747482
С	-2.8436902	-8.5442776	15.7754671
Н	-3.6729136	-9.2328899	15.9863915
Н	-3.2568302	-7.5956755	15.4014723
Н	-2.3356068	-8.3441173	16.7287591

С	-0.6694561	-8.1034305	14.6661139
Η	-0.3146885	-7.8050600	15.6625038
Η	-1.0472403	-7.1967123	14.1719334
Η	0.1723786	-8.4898353	14.0841826
С	-2.4509029	-9.3602003	13.3853164
С	-3.8329907	-9.2820044	13.2167405
Η	-4.4614987	-9.0925488	14.0870541
С	-4.4763131	-9.4652166	11.9790709
С	-5.9822992	-9.4724867	11.8846860
Η	-6.3156526	-9.4849296	10.8380448
Η	-6.4216758	-8.5865402	12.3680991
Η	-6.4141690	-10.3561002	12.3812088
С	-3.6722689	-9.6292638	10.8622655
Η	-4.1502927	-9.7494868	9.8889541
С	-2.2624547	-9.6702384	10.9472780
С	-1.6477643	-9.6586499	12.2356290
С	-1.4767984	-9.5957810	9.7012044
С	-2.0751751	-9.0265790	8.5613126
Η	-3.0916005	-8.6477661	8.6185414
С	-1.3475570	-8.8871101	7.3893964
Η	-1.8001309	-8.4232859	6.5116226
С	-0.0224457	-9.2953258	7.3617258
Η	0.5819304	-9.1285531	6.4744230
С	0.5639791	-9.8633659	8.5074476
С	1.9920576	-10.2295848	8.4563628
С	2.5761718	-10.4934635	7.1981906
Η	1.9297031	-10.6200976	6.3282531
С	3.9465018	-10.6237869	7.0337759
С	4.5601407	-10.9610265	5.6970547

Η	3.8092965	-10.9329374	4.8957258
Η	5.0050614	-11.9690009	5.6995223
Η	5.3633351	-10.2566988	5.4319627
С	4.7545522	-10.4220847	8.1670306
Н	5.8345872	-10.4668916	8.0266153
С	4.2487095	-10.2007139	9.4486910
С	2.8248035	-10.2031935	9.6164637
С	5.2102821	-9.9789601	10.6364776
С	4.7583432	-8.7456740	11.4613155
Н	3.7919027	-8.9148830	11.9437298
Н	4.6685339	-7.8748663	10.7954460
Н	5.5057455	-8.4960475	12.2270517
С	6.6460622	-9.6610114	10.1360378
Н	7.2808750	-9.4165004	10.9982946
Н	6.6438943	-8.7952126	9.4575714
Н	7.1112064	-10.5125211	9.6214707
С	5.3429580	-11.2416793	11.5134304
С	6.0227089	-11.1826452	12.7436091
Н	6.3760939	-10.2231965	13.1243571
С	6.2764064	-12.3347435	13.4920808
Н	6.8156967	-12.2547971	14.4380389
С	5.8462218	-13.5834029	13.0334373
Н	6.0453554	-14.4851565	13.6144546
С	5.1594293	-13.6586694	11.8200308
Н	4.8165410	-14.6250093	11.4451837
С	4.9152035	-12.5025503	11.0712949
Η	4.3895373	-12.5828414	10.1191680
С	-0.1479980	-14.8300029	10.6155379
Н	0.2103137	-15.8215720	10.9306580

Η	-0.1059065	-14.7751703	9.5196201
Η	-1.1979561	-14.7171192	10.9245307

6-II

93

Energy = -2301.410479498

Al	-0.0420982	-1.8226902	8.3274683
N	-1.8957183	-2.4460005	7.8748001
0	-0.1693755	-2.4565489	10.0011142
0	0.6899573	-2.8666511	7.0723067
0	-0.4655085	-0.1505659	7.9807588
0	1.8893713	-1.2641458	8.8134203
0	3.4997088	0.2008448	9.3597909
С	2.2283051	-0.1065530	9.1047539
С	4.4614151	-0.8918936	9.3146237
Η	4.1403099	-1.7035277	9.9770786
Η	5.4035865	-0.4534748	9.6535948
Η	4.5511257	-1.2657969	8.2883640
С	-0.2083351	-4.9819629	12.4797345
Η	-1.2526529	-4.7486267	12.6962820
С	0.1584744	-6.3032807	12.2199523
Η	-0.5997495	-7.0884672	12.2387089
С	1.4889324	-6.6203755	11.9323703
Η	1.7785383	-7.6511742	11.7231511
С	2.4401786	-5.5994824	11.9071757
Η	3.4820896	-5.8288983	11.6768343
С	2.0663328	-4.2771765	12.1663295
Η	2.8301237	-3.5003427	12.1335559
С	0.7362833	-3.9425626	12.4554018
С	0.3072893	-2.5144035	12.8479525

С	0.2344548	-2.5035553	14.3957482
Η	1.2122715	-2.8012147	14.7992985
Η	-0.5135421	-3.2111372	14.7788809
Η	0.0015744	-1.5000835	14.7827174
С	1.3492780	-1.4471992	12.4450611
Η	2.2889932	-1.5807781	13.0008910
Η	0.9614795	-0.4482954	12.6911953
Η	1.5586116	-1.4947332	11.3718923
С	-1.0533074	-2.1759302	12.2057203
С	-2.1446668	-1.7983850	12.9858307
Η	-2.0197354	-1.7150784	14.0660880
С	-3.4122741	-1.5019615	12.4504814
С	-4.5283986	-1.0061408	13.3366191
Η	-4.3365103	0.0188417	13.6928159
Η	-4.6469188	-1.6388033	14.2293976
Н	-5.4875911	-0.9954696	12.8012315
С	-3.5896317	-1.6918522	11.0884317
Н	-4.5715685	-1.4944550	10.6546222
С	-2.5358308	-2.1020335	10.2415520
С	-1.2242938	-2.2388986	10.7846716
С	-2.8521968	-2.4864654	8.8535130
С	-4.1463819	-2.9484157	8.5536312
Н	-4.8833798	-3.0357485	9.3474898
С	-4.4569299	-3.3503545	7.2623264
Η	-5.4505333	-3.7367443	7.0299336
С	-3.4795797	-3.2956273	6.2790307
Η	-3.6908032	-3.6570930	5.2762072
С	-2.1906236	-2.8280572	6.5934495
С	-1.1616928	-2.8011806	5.5376507

С	-1.5774601	-2.7285333	4.1889266	С	2.7129416	-4.7720593	5.9667251
Η	-2.6262002	-2.5228914	3.9677078	С	3.6461704	-4.8606115	7.0083771
С	-0.6922700	-2.8782006	3.1322848	Н	4.2803632	-4.0069674	7.2464425
С	-1.1382766	-2.7485153	1.6965149	С	3.7759458	-6.0281919	7.7668736
Η	-0.7003174	-1.8592032	1.2157010	Н	4.5063097	-6.0652118	8.5771565
Η	-2.2308178	-2.6591229	1.6253985	С	2.9723584	-7.1374615	7.4993503
Η	-0.8315481	-3.6198358	1.0977692	Н	3.0684456	-8.0464041	8.0950227
С	0.6496782	-3.1649892	3.4464498	С	2.0357838	-7.0649654	6.4643614
Η	1.3372974	-3.3403062	2.6182160	Н	1.3946348	-7.9209058	6.2448998
С	1.1347436	-3.2176663	4.7514396	С	1.9125261	-5.8976061	5.7094709
С	0.2273204	-2.9466621	5.8263071	Н	1.1721296	-5.8535252	4.9082822
С	2.6134271	-3.5427274	5.0415885	С	0.2677540	1.0391086	8.0198919
С	3.3059041	-2.2916413	5.6272630	Н	-0.4284977	1.8734075	8.2325561
Η	2.8876750	-2.0309729	6.6051117	С	1.2808525	1.0447892	9.1999708
Η	3.1620029	-1.4438534	4.9422996	Н	1.8369717	1.9885139	9.2662921
Η	4.3900544	-2.4528419	5.7264641	Н	0.7093158	0.9169819	10.1340279
С	3.3870872	-3.9180725	3.7526691	С	0.9515758	1.3315629	6.6788703
Η	4.4177028	-4.1874280	4.0227275	Н	1.4608866	2.3073243	6.6908449
Η	3.4329746	-3.0736557	3.0486722	Н	0.1973160	1.3430469	5.8811252
Η	2.9410818	-4.7807749	3.2389752	Н	1.6882900	0.5527469	6.4298474