Supplementary Material for:

Comparing counterpoise-corrected, uncorrected, and averaged binding energies in benchmarking noncovalent interactions

Lori A. Burns, Michael S. Marshall, and C. David Sherrill

Electronic Energies

- Interaction energies are derived from electronic energy terms stored in file electronic_energies.tar. Each file therein contains bimolecular complex and monomer energies for certain bimolecular complexes and computation types, which can be decoded through the README file, reproduced below.

```
FILE LABEL GUIDES
```

```
A24 A24 database, used in Figs. 2--6
MISC extra systems discussed in text, plotted in SI
    NCCN2_PD is the parallel displaced orientation of cyanogen dimer
    NBC1-\overline{BzBz_S-3.9 is the sandwich orientation of benzene dimer at equilibrium (3.9 A) separation}
    S22-3 is formic acid dimer
S22 is the S22 database, used in Figs. 5 & 6
CCSDTcorl CCSD(T) correlation energies
MP2corl MP2 correlation energies
SCFtot HF total energies
DFMP2corl DF-MP2 correlation energies
DFSCFtot DF-HF total energies
CP counterpoise-corrected monomers
unCP non-counterpoise-corrected monomers
aXz aug-cc-pVXz basis set, X = d, t, q, 5, 6
```


Example Figure for Basis Set Convergence of IE

Interaction Energy (kcal/mol)
aDZ, aTZ, aQZ, a5Z, a6Z, aDTZ, aTQZ, aQ5Z, a56Z

- Figures such as these are presented on the next pages for $\operatorname{CCSD}(\mathrm{T})$ interaction energies (IE), MP2 IE, and delta $\operatorname{CCSD}(\mathrm{T})$ terms for misc. systems (formic acid dimer, cyanogen dimer, and benzene dimer) and for the A24 database.
- In a plot such as this, CP (red), Ave (purple), and unCP (green) IE for a given basis set are plotted adjacent to one another. Read off the right axis for the IE value. Read off the left axis for the error in IE w.r.t. the reference. Usually, the reference is a (CP/unCP) weighted average of the CBS limit as obtained by fitting (orange and turquoise traces) the three highest aXZ basis sets to an exponential function (see text for details of procedure and following slide for actual values for A24).
- Basis sets run along the bottom axis: aDZ-a6Z, then aDTZ-a56Z. The latter use the SCF of the larger basis.
- Some figures may look outright wrong, such as the above plot where the unCP IE value for MP2/aDTZ looks wrong as an extrapolation of aDZ and aTZ values. Here, the aDZ is atop a $\mathrm{HF} / \mathrm{aDZ}$ SCF and so displays a weaker IE than atop the $\mathrm{HF} / \mathrm{aTZ}$ reference employed in the aDTZ extrapolation procedure.
- Magnitude of BSSE is span between the extremes of the red and green bars.

A24 Reference IE

$$
\begin{aligned}
& E_{X, \mathrm{CP}}^{\mathrm{cor}}=E_{\mathrm{CBS}, \mathrm{CP}}^{\mathrm{cor}}+A e^{-\alpha_{\mathrm{CP}} X} ; X=T Q 5^{*} \text { or } Q 56^{*} \\
& E_{X, \text { unCP }}^{\text {corl }}=E_{\mathrm{CB}, \text {,unCP }}^{\text {cor }}+A e^{-\alpha_{\mathrm{umCP}} X} ; X=T Q 5^{*} \text { or } Q 566^{*} \\
& E_{\mathrm{Ref}}=\left(\left(E_{\mathrm{CBS}, \mathrm{CP}}^{\mathrm{corl}}+E_{\mathrm{SCF} / \mathrm{XXZ}, \mathrm{CP}}\right) \cdot \alpha_{\mathrm{CP}}+\left(E_{\mathrm{CB},, \mathrm{unCP}}^{\mathrm{corl}}+E_{\mathrm{SCF} / \mathrm{aXZ}, \mathrm{unCP}}\right) \cdot \alpha_{\mathrm{unCP}}\right) /\left(\alpha_{\mathrm{CP}}+\alpha_{\mathrm{unCP}}\right) ; X=5 \text { or } 6 \text { * }
\end{aligned}
$$

*A24-1	-6.502	*A24-13	-1.376
*A24-2	-5.007	*A24-14	-1.088
*A24-3	-4.758	*A24-15	-0.505
*A24-4	-4.569	*A24-16	-1.484
*A24-5	-3.141	*A24-17	-0.831
*A24-6	-1.633	*A24-18	-0.610
* A24-7	-0.761	*A24-19	-0.534
*A24-8	-0.669	*A24-20	-0.397
*A24-9	-4.520	*A24-21	-0.347
*A24-10	-2.560	*A24-22	0.835
*A24-11	-1.618	*A24-23	0.945
* A24-12	-1.520	* A24-24	1.131

To obtain an unbiased reference, CP and unCP IE basis set series are independently fitted to an exponential form with the highest three zeta basis sets available (TQ5 or Q56), noting both the extrpolated IE limit and the decay rate toward that limit (E_CBS and alpha). The final reference IE is the weighted average of the former with weights supplied by the latter.

Basis Convergence of $\operatorname{CCSD}(\mathrm{T}) / \mathrm{aXZ}$ for A 24 CP, Ave, unCP

-0.40
-0.50
--0.60
-0.70
--0.80
-0.90
-1.00

(each graph) Basis Set: aDZ, aTZ, aQZ, a5Z, a6Z, aDTZ, aTQZ, aQ5Z, a56Z

Basis Convergence of MP2/aXZ for A24

CP, Ave, unCP

MP2 Interaction Energy (kcal/mol)

(each graph) Basis Set: aDZ, $\mathrm{aTZ}, \mathrm{aQZ}, \mathrm{a} 5 \mathrm{Z}, \mathrm{a} Z \mathrm{Z}, \mathrm{aDTZ}, \mathrm{aTQZ}, \mathrm{aQ} Q \mathrm{Z}, \mathrm{a} 6 \mathrm{Z}$

Basis Conv. of Delta Correction (ccsd(t)-Mp2)/aXZ for A24

CP, Nes mucp

60×103

Error in Delta Correction w.r.t. Ref

(each graph) Basis Set: aDZ, aTZ, aQZ, a5Z, a6Z, aDTZ, aTQZ, aQ5Z, a56Z

$\operatorname{CCSD}(\mathrm{T}) / \mathrm{aXZ}$ for Misc.

CP, Ave, unCP

MP2/aXZ for Misc.

Delta/aXZ for Misc.

