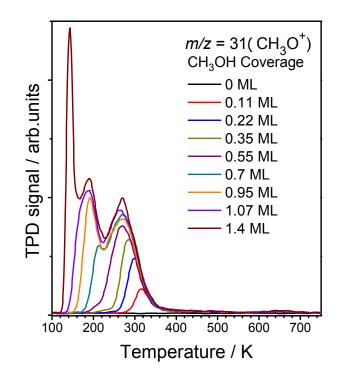
Supporting Information

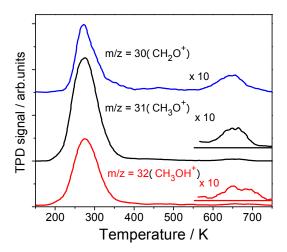
for

"Molecular Hydrogen Formation from Photocatalysis of Methanol on Anatase-TiO₂(101)"

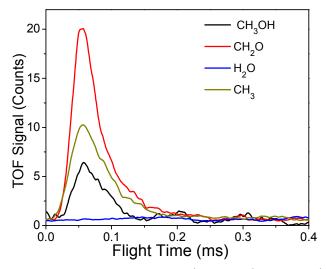

Chenbiao Xu^{1,2,a)}, Wenshao Yang^{1,a)}, Qing Guo^{1,*)}, Dongxu Dai¹, Maodu Chen², Xueming Yang^{1,*)}

¹ State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, 457 Zhongshan Road, Dalian 116023, Liaoning, P. R. China

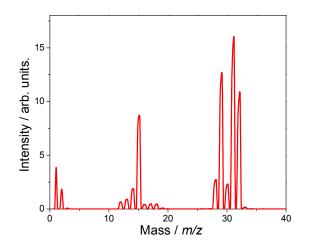
² School of Physics and Optoelectronic Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China


a) Authors who made similar contributions to this work.

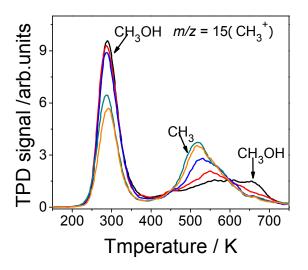
TPD spectra for CH₃OH TPD signals of CH₃OH on the A-TiO₂(101) surface as a function of coverage was observed at mass-to-charge ratios (m/z) of $31(CH_2OH^+)$ depicted in Figure S1. The desorption futures are similar to previous results.¹ Five desorption features peaked at 142 K, 188 K, 270 K, 410 K, and 650 K are observed with better resolution and higher desorption temperature than previous study. In spite of better resolution, compared to the case of CH₃OH on R TiO₂(110),² the first layer peak and the second layer peak are overlapped with each other seriously, implying that the adsorption sites and structures of A-TiO₂(101) are more complicated than the case of R-TiO₂(110).


Figure S1. CH₃OH TPD spectra (m/z = 31) spectra from various exposures of CH₃OH on the A-TiO₂(101) surface at 100 K.

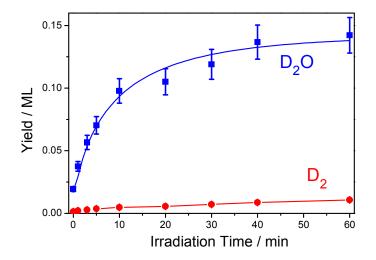
TPD spectra for m/z = 30, 31, 32 TPD signals of mass 30, 31 and 32 resulting from 0.38 ML CH₃OH on the A-TiO₂(101) surface have been collected. The area ratio of m/z = 31 and 32 at 270 K and 650 K peak in Figure S2, is the same, equal to 1.55, consistent with the cracking pattern of CH₃OH detected in our quadrupole mass spectroscopy. And this implies that the m/z = 31 and 32 650 K peak is from CH₃OH. Thus, this is likely due to CH₃O disproportionation at the five-coordinated Ti⁴⁺(Ti_{5c}) sites, as on the R-TiO₂(110) surface,³ CH₃OH-Ti_{5c} \rightarrow CH₃OH (gas) +CH₂O (gas) (1) (2)


Figure S2. TPD spectra from a vacuum-annealed anatase (101) sample for a CH₃OH coverage of 0.38 ML (m/z = 30,31, and 32).

TOF signals for m/z = 15, 18, 30, 32 Photo desorbed signals of CH₃ (m/z = 15), H₂O (m/z = = 18), CH₂O (m/z = 30), CH₃OH (m/z = 32) and HCOOCH₃ (m/z = 60) were monitored during 10 min laser irradiation (by time-of-flight methods, as shown in Figure. S3), a big desorption signal of formaldehyde (CH₂O) was detected, as well as methyl radical (CH₃) and methanol (CH₃OH). However, CH₂O and CH₃ signals are much bigger than CH₃OH signal. Considering ionizer fragmentation patterns of CH₃OH, the CH₃ signal has two components: the parent ion signal of methyl radical (CH₃), and the ion-fragment signal of the parent CH₃OH molecule, as well as the CH₂O signal. No H₂O desorption signal was detected. As shown in the picture, the ratio of density flux of CH₂O and CH₃OH is 4:1, the electron-impact ionization cross section of CH₃OH.


Figure S3. Time of flight signals of $m/z = 15 \text{ (CH}_3^+)$, $18(\text{H}_2\text{O}^+)$, $30(\text{CH}_2\text{O}^+)$, and $32(\text{CH}_3\text{OH}^+)$ during 10 min 266 nm irradiation with a photon flux of 1.9×10^{17} photons cm⁻² s⁻¹.

Mass fragmentation pattern of CH₃OH Mass fragmentation pattern of CH₃OH was collected by our quadrupole mass detector; the cracking signal of CH₃OH to m/z = 30 is only 1/5 of the parent mass ion.


Figure S4. Mass fragmentation pattern of CH₃OH in the TOF mass detector in our surface photocatalysis apparatus.

TPD spectra for m/z = 15 TPD signals of m/z = 15 resulting from 0.38 ML CH₃OH on the A-TiO₂(101) surface as a function as irradiation time were collected. The 550 K peak has two components: one component is CH₃ radical desorption, and this part is about 0.03 ML, other one is the fragment of CH₃OH at 650 K. After irradiation, the 550 K shifted toward lower temperature and the peak width is narrowed, as the peak intensity is also increased after UV irradiation. The high temperature side of the 550 K CH₃ peak decreases rapidly in the first 1 min., which is due to the fast depletion of CH₃O-Ti_{5c} at 650 K.

Figure S5. TPD spectra collected at m/z = 15, from the photocatalysis of CH₃OH/A-TiO₂(101) with a photon flux of 1.9×10^{17} photons cm⁻² s⁻¹.

Product yields for D₂O versus D₂ on rutile-TiO₂(110) Product yields of D₂O and D₂ on a 0.5 ML CD₃OD covered R-TiO₂(110) surface as a function of irradiation time were measure, as depicted in Figure S5. The rate of D₂O product formation as a function of laser irradiation time is quite different from that of D₂ product. The D₂O yield increases very fast first and then reaches a plateau. Since one oxygen defect is created for one D₂O molecule formed during TPD, it appears that BBO defects make D₂O formation more difficult. The D₂ yield, however, increases faster than that of D₂O as the number of BBO defects increases. Hence, more BBO defects created by D₂O recombinative desorption on the surface can make formation of D₂ easier than D₂O formation.

Figure S6. Yields of the molecular hydrogen (D_2), water (D_2O) TPD product as a function of laser irradiation time on 0.5 ML of CD₃OD covered R-TiO₂(110) surface.

S1 Herman, G. S.; Dohnálek, Z.; Ruzycki, N.; Diebold, U. J. Phys. Chem. B 2003, 107, 2788-2795.

S2 Henderson, M. A.; Otero-Tapia, S.; Castro, M. E. Faraday Discuss. 1999, 114, 313-319.

S3 Shen, M.; Henderson, M. A. J. Phys. Chem. Lett. 2011, 2, 2707-2710.