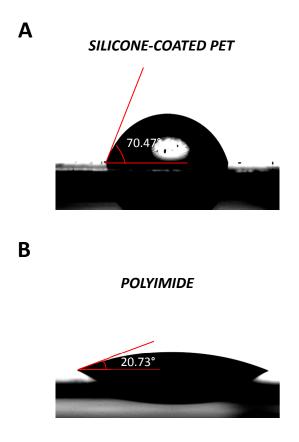
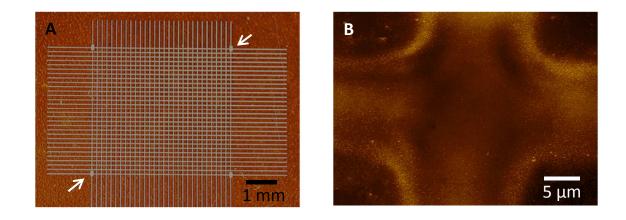

Supporting Information


A Facile Method for Fabricating Flexible Substrates with Embedded, Printed Silver Lines

Ankit Mahajan, Lorraine F. Francis*, and C. Daniel Frisbie*

A. Mahajan, Prof. L.F. Francis and Prof. C.D. Frisbie
Department of Chemical Engineering and Materials Science
University of Minnesota
421 Washington Avenue S.E. Minneapolis, MN 55455, USA
E-mail: frisbie@umn.edu, lfrancis@umn.edu


Figure S1. AFM tapping mode height images of a) printed (and sintered) silver (root mean square (rms) roughness 81.8 nm), b) embedded silver (rms roughness 8.3 nm), c) s-PET (rms roughness 1.80 nm) and d) epoxy coating (rms roughness 1.83 nm). Scan areas in both c and d are $25 \ \mu m^2$.

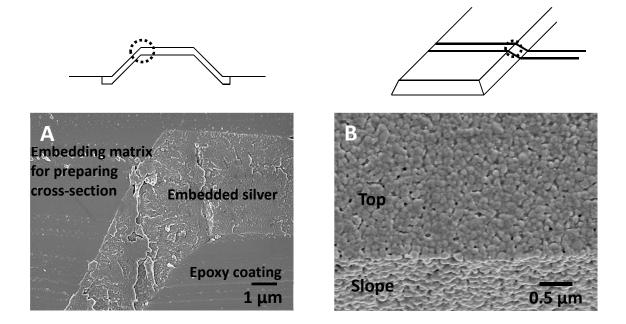

Figure S2. Comparison of contact angle of epoxy pre-polymer mixture on a) silicone-coated PET and b) polyimide substrates, suggesting stronger adhesion of the cured epoxy with the latter.

Figure S3. Optical micrograph of embedded silver lines and contact pads wrapped around 1 mm radius polyethylene tubing.

Figure S4. a) Optical microscope image of an embedded square grid of silver lines (width: 20 μ m, line spacing: 160 μ m) comprising of 900 cross-overs. The measured electrical resistance between the highlighted points of the grid was 30.01 Ω , close to its as-printed value. b) AFM tapping mode height image revealing a buried cross-over in the above grid. Image height range is 100 nm.

Figure S5. ICD on non-planar surfaces. a) Cross sectional SEM image displaying an embedded silver line over a sloped step. b) Top view SEM image showing the transition of the embedded silver line near the edge, free from cracks or other discontinuities.