
Mosaic Documentation
Release 1.0.0

Konrad Hinsen

December 09, 2013

CONTENTS

1 The Mosaic data model 1
1.1 Mosaic data items . 1
1.2 Data item type “universe” . 2
1.3 Data item type “configuration” . 3
1.4 Data item type “property” . 3
1.5 Data item type “label” . 5
1.6 Data item type “selection” . 5

2 Mosaic XML files 7
2.1 Mosaic data items in an XML file . 7
2.2 Floating-point numbers . 7
2.3 Array data . 7

3 Mosaic in HDF5 files 9
3.1 Mosaic data items in a HDF5 file . 9

4 Mosaic PDB convention 13
4.1 Crystallographic structures . 13
4.2 NMR structures . 13

Index 15

i

ii

CHAPTER

ONE

THE MOSAIC DATA MODEL

1.1 Mosaic data items

Mosaic data items are the smallest units of information that can be stored in files. A Mosaic file can contain any
number of data items, each of which has a unique identifier. Identifiers are text strings whose exact specification may
vary between file formats. ASCII encoded identifiers are allowed in all file formats and are therefore preferred.

1.1.1 Some definitions used in the following

int8, int16, int32, int64 A signed integer occupying 8, 16, 32, or 64 bits in memory.

uint8, uint16, uint32, uint64 An unsigned integer occupying 8, 16, 32, or 64 bits in memory.

bool A truth value that is either True or False.

float32 An IEEE single-precision floating point number, occupying 32 bits in memory.

float64 An IEEE double-precision floating point number, occupying 64 bits in memory.

label A text string in ASCII encoding containing at most 32767 characters which are each an upper
or lower case letter, a digit, or one of the punctuation characters in the string ”!#$%&?@^_~+-
*/=,()[]”’. This includes all the ASCII punctuation characters except for the dot. Spaces and control
characters are not allowed.

list An ordered collection of items. Corresponding data structures in programming languages are typi-
cally called list, vector, or array.

set An unordered collection of items, in which each item can occur at most once.

array An n-dimensional ordered collection whose elements are of identical type.

atom A point-like particle in a molecular simulation. May represent a real atom, a united-atom particle
in a coarse-grained model, or a dummy interaction point with no physical properties.

site A point in space related to an atom. An atom has at least one site. Atoms with multiple sites can be
used for representing quantum models (path integrals, wave functions, ...), atoms with multi-modal
position distributions (as used in crystallography), etc.

fragment A hierarchical structure consisting of atoms, other fragments (subfragments), and bonds. A
fragment loosely corresponds to the concept of a functional group or moiety in chemistry, but its
definition covers a much wider range of chemical structures: the extreme use cases for fragments in
Mosaic are single atoms and whole molecules.

template The definition of the molecular structure for a species of molecules in a universe. Any fragment
can be used as a molecule template. It is important to distinguish between a molecule and a molecule

1

Mosaic Documentation, Release 1.0.0

template: every molecule has exactly one template, but a template can describe a large number of
molecules. For example, in a box of water molecules, all molecules share a single template.

1.2 Data item type “universe”

The universe is the most central Mosaic data item because all the other ones require a reference to a universe, because
their data contents can only be interpreted meaningfully in the context of their universe.

A universe describes a molecular system, defining

1. the chemical structure of the molecules it contains

2. the topology of the whole system (periodic boundary conditions etc.)

3. symmetries, if required

A Mosaic universe contains:

• a cell shape field, whose value is “infinite”, “cube”, “cuboid”, or “parallelepiped”

• a convention field, whose value is an ASCII-encoded text string naming a convention for atom
names, decomposition of standard groups (e.g. amino acid residues) into subgroups and atoms, etc.

• a (possibly empty) set of symmetry transformation. Each symmetry transformation is defined by a
rotation matrix and a translation vector. The full system consists of the explicitly represented atoms
and molecules plus their images obtained by applying all the symmetry transformations. Symmetry
transformations are defined in fractional coordinates and therefore allowed only for periodic uni-
verses.

• a list of molecules, each molecule being defined by a (fragment, count) pair, where count is a positive
integer. Fragments are defined below.

A Mosaic fragment is not a data item, because it cannot be written to a file in isolation. Fragments exist only as part
of a universe definition.

A fragment contains the following information:

• a label field, whose value is a label that identifies the fragment uniquely inside its parent fragment
(if any parent fragment exists)

• a species field, whose value is a label that describes the chemical entity described by the fragment

• a boolean field is_polymer, whose value is “true” if the fragment describes a polymer. A polymer
fragment has an empty atom list, i.e. it contains only sub-fragments. A polymer fragment also has
an additional polymer_type field, whose value is “”, “polypeptide”, “polyribonucleotide”, “poly-
deoxyribonucleotide”, or “polynucleotide”. The empty string is used for polymers that are not of
any other type, or for polymers of unknown type.

• a (possibly empty) list of sub-fragments

• a (possibly empty) list of atoms

• a (possibly empty) set of bonds

An atom is described by:

• a label field, whose value is a label that identifies the atom uniquely inside its parent fragment. Each
label inside a parent fragment can name an atom //or// a sub-fragment, but not both.

• a type field, whose value is “element”, “cgparticle”, “dummy”, or “”. The empty string is used for
any type other then the explicitly named ones, and for atoms of unknown type. The type “element”
refers to a physical atom with a well-defined chemical element. The type “cgparticle” refers to

2 Chapter 1. The Mosaic data model

Mosaic Documentation, Release 1.0.0

coarse-grained particles that represent several physical atoms. The type “dummy” refers to interac-
tion sites that have no physical reality.

• a name field, whose value is a label that describes the chemical nature of the atom. For atoms of type
“element”, it must be the chemical element symbol, with the first letter upper-case and the second
letter, if one exists, in lower-case.

• a number of sites field, whose value is a positive integer.

A bond is described by (1) a set of two atom references and (2) a bond order specification, whose value is “”, “single”,
“double”, “triple”, “quadruple”, or “aromatic”. The empty string is used for bonds of any other order, or for bonds of
unknown order. Bonds must be defined at the level of the smallest possible fragment that includes both atoms implied
in the bond. In other words, it must be possible to check if two atoms in a fragment are linked by a bond without
looking at parent fragments.

An atom reference is an ASCII-encoded text string naming an atom relative to the current fragment by the sequence
of labels that define the path to the atom. The labels in the sequence are separated by a dot.

1.3 Data item type “configuration”

A configuration contains:

• a reference to a universe

• one position vector for each site in the universe

• for universes with a bounded cell, the parameters of the cell, stored as an array whose shape is
determined by the universe’s cell shape: an empty shape vector (i.e. the array is a scalar) for “cube”,
shape (3) for “cuboid”, and (3,3) for “parallelepiped”.

The elements of the position vectors and the cell parameters are floats of the same precision, either float32 or float64.

1.4 Data item type “property”

A property contains:

• a type field, whose value is “atom”, “site”, “template_atom”, or “template_site”

• a reference to a universe

• one array (see details below) for each

– atom in the universe, if the type field is “atom”

– site in the universe, if the type field is “site”

– atom in the molecule templates, if the type field is “template_atom”

– site in the molecule templates, if the type field is “template_site”

• a name field, whose value is a label

• a units field, see details below

The arrays for each atom or site have identical shapes and their elements identical types. The type can be int8, int16,
int32, int64, uint8, uint16, uint32, uint32, uint64, float32, float64, or bool.

Properties of type “atom” or “site” are defined for each atom or site in the universe. Properties of type “template_atom”
or “template_site” are defined for each atom or site in the molecule templates of the universe. They are thus identical
for the corresponding atoms or sites in each molecule sharing the same template.

1.3. Data item type “configuration” 3

Mosaic Documentation, Release 1.0.0

The value of the units field is a text string in ASCII encoding. It contains a sequence of unit factors separated by a
space. A unit factor is either a number (an integer or a decimal fraction) or a unit symbol optionally followed by a
non-zero integer which indicates the power to which this factor is taken. Examples:

• “nm3” stands for cubic nanometers

• “nm ps-1” stands for nanometers per picosecond

• “60 s” stands for a minute

Each unit symbol may occur only once in the units field. There may also be at most one numeric factor, which must
be the first one.

The following unit symbols may be used:

Length

pm picometer
Ang Ångström
nm nanometer
um micrometer
mm millimeter
m meter

Time

fs femtosecond
ps picosecond
ns nanosecond
us microsecond
ms millisecond
s second

Mass
amu gram/mole

g gram
kg kilogram
Quantity mol mole

Energy

J joule
kJ kilojoule
cal calorie
kcal kilocalorie
eV electron-volt
Temperature K Kelvin

Pressure

Pa pascal
kPa kilopascal
MPa megapascal
GPa giggapascal
atm atmosphere
bar bar
kbar kilobar

Electrical units

e proton charge
C coulomb
A ampere
V volt
Angles deg degree

Constants
c speed of light

h Planck constant
me electron mass

4 Chapter 1. The Mosaic data model

Mosaic Documentation, Release 1.0.0

Note that the only unit for angles is the degree. Contrary to SI recommendations, angles are taken to be dimensionless
in Mosaic. This corresponds to how angles are treated de facto in computational science. The unit “deg” is thus a
dimensionless conversion factor equal to 180/⇡.

1.5 Data item type “label”

A label contains:

• a type field, whose value is “atom”, “site”, “template_atom”, or “template_site”

• a reference to a universe

• one text string in ASCII encoding for each

– atom in the universe, if the type field is “atom”

– site in the universe, if the type field is “site”

– atom in the molecule templates, if the type field is “template_atom”

– site in the molecule templates, if the type field is “template_site”

• a name field, whose value is a label

Labels of type “atom” or “site” are defined for each atom or site in the universe. Labels of type “template_atom” or
“template_site” are defined for each atom or site in the molecule templates of the universe. They are thus identical for
the corresponding atoms or sites in each molecule sharing the same template.

1.6 Data item type “selection”

A selection contains:

• a type field, whose value is “atom”, “site”, “template_atom”, or “template_site”

• a reference to a universe

• an array whose values are the indices of the atoms or sites that are part of the selection.

The index array is one-dimensional and the type of its elements is one of the unsigned integer types: uint8, uint16,
uint32, uint32, uint64. The indices are stored in monotonously increasing order with no index being listed more than
once.

Selections of type “atom” or “site” contain indices for atoms or sites in the universe. Selections of type “tem-
plate_atom” or “template_site” contain indices for each atom or site in the molecule templates of the universe. They
are interpreted as a selection of all atoms or sites that correspond to the selected template atoms or template sites.

1.5. Data item type “label” 5

Mosaic Documentation, Release 1.0.0

6 Chapter 1. The Mosaic data model

CHAPTER

TWO

MOSAIC XML FILES

The Mosaic XML format is defined by a Relax NG schema. The following explanations document additional con-
straints that cannot be encoded in a schema.

2.1 Mosaic data items in an XML file

A Mosaic XML file contains a top-level element with tag mosaic whose children are Mosaic data items. Each of
these data items has a required attribute id that gives it a name through which it can be identified uniquely inside the
mosaic element. No two data items in the same top-level element may have the same id value.

References to a data item take the form of an empty element with the same tag as used for the definition of the data
item itself. The empty element contains a single attribute ref whose value is the unique identifier of the data item
that is referenced.

2.2 Floating-point numbers

Configurations and real-valued properties contain floating-point data. The Mosaic specification allows two floating-
point data types, “float32” and “float64”, which are based on IEEE binary floating point formats. In XML, numbers
are usually stored in decimal form. Since an exact conversion between binary and decimal floating-point numbers
is not possible, a compromise must be chosen. Since a main reason for using XML is its human-readable layout,
Mosaic’s XML format uses a standard XML decimal representation, at the cost of non-exact conversion from and to
binary data layouts.

Programs writing Mosaic XML files should convert floating point values using the largest possible number of digits
and then remove trailing zeros from the mantissa. They should not attempt any rounding. The symbols “NaN”,
“+inf” and “-inf” should be used for non-numbers, although such values rarely make sense in the context of molecular
simulations.

2.3 Array data

Property data items contain one array value per atom or site. The N-dimensional array values in a property are stored
as a single N+1-dimensional array, whose leading dimension is the number of atoms or sites. Likewise, the positions
in a configuration data item are stored as an array of shape (M, 3), where M is the number of sites.

The elements of an array are stored as a single list in row-major order.

7

Mosaic Documentation, Release 1.0.0

8 Chapter 2. Mosaic XML files

CHAPTER

THREE

MOSAIC IN HDF5 FILES

HDF5 files contain a tree structure whose leaves are datasets. Non-leaf nodes are called groups and work much
like a directory in a file system. Each dataset is an array whose elements can be numbers or characters, but also
compound data types (similar to record types in various programming languages) or fixed-size arrays of numbers or
characters. Groups and datasets can have metadata tags called attributes. Each group or dataset can be identified by a
path specifying how to reach it from the root group of a file. However, a path is not necessarily unique, because HDF5
provides links that effectively put a single node in several places in the tree. Moreover, HDF5 provides a data type
“reference” that allows to refer to a node or a subset of a dataset.

The design criteria for the HDF5 representation of Mosaic data were efficiency of storage and ease of use from low-
level languages such as C or Fortran. As much as possible, Mosaic data is stored as arrays of numbers.

HDF5 has two string layouts: fixed-size strings (character arrays) and variable-length strings. The two layouts are not
interchangeable. In order to facilitate software development, Mosaic uses only variable-length strings.

3.1 Mosaic data items in a HDF5 file

A Mosaic data item in an HDF5 file can be a dataset or a group containing multiple datasets. It is identified by four
attributes, all of which are required:

DATA_MODEL a variable-length string with the value “MOSAIC”

DATA_MODEL_MAJOR_VERSION an integer

DATA_MODEL_MINOR_VERSION an integer

MOSAIC_DATA_TYPE a variable-length string

References between data items are stored as attributes whose value is an HDF5 object reference.

3.1.1 Universes

A universe is stored as a group containing several datasets. The datasets convention and cell_shape are variable-length
strings. The symmetry transformation list is stored in dataset symmetry_transformations as a one-dimensional
array, possibly empty, whose elements are of a compound data type with fields

rotation A 3x3 array of float64 numbers.

translation An array of 3 float64 numbers.

The fragment tree is stored in several arrays. All string values are stored in a one-dimensional array dataset symbols
whose elements are variable-length strings. In the fragment tree, the strings can then be replaced by integers, which
are indices into this symbol list. Ideally, each string is stored only once in the symbol array, though this is not a

9

Mosaic Documentation, Release 1.0.0

requirement. The tree data structure is stored in two integer arrays, fragments and atoms. Each node (fragment
or atom) has one array entry, which is a compound data type whose fields are unsigned integers. Any size of unsigned
integer can be used, but the same type must be used everywhere for a given universe group.

The entries of the fragments array have the fields

parent_index The index of the parent node in the fragments array. A value of 0 indicates a root node,
which has no parent.

label_symbol_index The index of the label in the symbols array.

species_symbol_index The index of the species in the symbols array.

number_of_fragments The number of sub-fragments. This is redundant information, provided to facil-
itate reading fragment-related information without analyzing the whole fragment tree.

The first entry (index 0) of the fragments array is unused, in order to allow an index value of 0 to stand for “no
parent”. The fragments array thus has one more entry than the number of fragments in the universe.

The entries of the atoms array have the fields

parent_index The index of the parent node in the fragments array.

label_symbol_index The index of the label in the symbols array.

type_symbol_index The index of the type in the symbols array.

name_symbol_index The index of the name in the symbols array.

number_of_sites The number of sites.

The entries of the bonds array have the fields

atom_index_1 The index of the first atom in the atoms array.

atom_index_2 The index of the second atom in the atoms array.

bond_order_symbol_index The index of the bond-order label in the symbols array.

The entries of the molecules array have a large number of redundant fields (all but the first two) that are provided
to allow atoms be attributed to molecules without analyzing the full fragment tree.

fragment_index The index of the fragment node in the fragments array.

number_of_copies The number of copies of the molecule in the universe.

first_atom_index The index of the first atom in the atoms array.

number_of_atoms The number of atoms in the molecule.

first_bond_index The index of the first bond in the bonds array.

number_of_bonds The number of bonds in the molecule.

first_site_index The index of the first site of the molecule.

number_of_sites The number of sites in the molecule.

Since the atoms, sites, and bonds of a molecule have consecutive indices, the redundant “first_index” and “number_of”
values are sufficient to locate atoms, sites, and bonds for each molecule. For many applications this is sufficient,
making it unnecessary to use the fragments array.

Finally, the array polymers has one entry for each polymer fragment in the universe. Its fields are

fragment_index The index of the fragment node in the fragments array.

polymer_type_symbol_index The index of the polymer-type label in the symbols array.

If the universe has no polymer fragments, the dataset polymers may be omitted.

10 Chapter 3. Mosaic in HDF5 files

Mosaic Documentation, Release 1.0.0

3.1.2 Configurations

A configuration is stored as a group containing two datasets: positions (required) and cell_parameters (re-
quired if the universe’s cell shape is not “infinite”). The reference to the universe is stored in the attribute universe
of the group.

The dataset positions is a one-dimensional array whose length is equal to the number of sites in the universe. Its
elements are one-dimensional arrays of length 3 whose elements are of type “float32” or “float64”.

The dataset cell_parameters is an array whose elements are of type “float32” or “float64”, and whose shape is
defined in the specification.

3.1.3 Properties

A property data item is stored as a dataset that is a one-dimensional array whose length is equal to the number of atoms
or sites in the universe or the universe’s fragment list. Each element of this array is an array whose shape and element
type is defined by the property’s data. The reference to the universe is stored in the attribute universe of the group.
The property’s name and units are stored in attributes of the same name as variable-length strings. The property’s type

is stored in the attribute property_type, also as a variable-length string.

3.1.4 Labels

A label data item is stored as a dataset that is a one-dimensional array whose length is equal to the number of atoms or
sites in the universe or the universe’s fragment list. Each element of this array is a variable-length string. The reference

to the universe is stored in the attribute universe of the group. The label’s name is stored in the attribute name as
a variable-length string. The label’s type is stored in the attribute label_type, also as a variable-length string.

3.1.5 Selections

A selection is stored as a dataset that is a one-dimensional array of integers. The reference to the universe is stored
in the attribute universe of the group. The selection’s type is stored in the attribute selection_type as a
variable-length string.

Conventions:

3.1. Mosaic data items in a HDF5 file 11

Mosaic Documentation, Release 1.0.0

12 Chapter 3. Mosaic in HDF5 files

CHAPTER

FOUR

MOSAIC PDB CONVENTION

Mosaic can be used to store molecular models from the Protein Data Bank (PDB). The main application is to use
such models as the starting point for molecular simulations. The following conventions describe how a PDB structure
is stored in terms of Mosaic data items. Note that only the structure itself can be stored, but not experimental data
(structure factors etc.) or metadata describing the experiment or the refinement process.

The PDB’s official data format is called PDBx/mmCIF. In the conversion from PDBx/mmCIF to Mosaic, as much
information as possible is transposed without modification. In particular, residue and atom names are the same.

4.1 Crystallographic structures

A crystallographic structure is represented by two required data items:

• A universe defining the molecular structures and, in the case of crystals, the symmetries. The atoms in the
universe have multiple sites if the PDB structure contains alternate locations.

• A configuration providing the positions for all sites and the shape of the unit cell in the case of crystals.

Additional information from the PDB entry can be provided by optional data items:

• The occupancy of each site can be provided as a property of type “site” or “template_site” with an empty units

string. Each value is a scalar of type “float32” or “float64” in the interval [0..1]. If no occupancy values are
provided, the occupancy of all sites is assumed to be 1.

• An anisotropic displacement parameter for each site can be provided as a property of type “site” or “tem-
plate_site”. A valid units string must be provided, the preferred units are “nm2”. Each value is an array of
shape “6” and of type “float32” or “float64”, the order of the elements is [1][1], [2][2], [3][3], [2][3], [1][3],
[1][2]. For the precise definition of the anisotropic displacement parameters, see the PDB documentation for
items _atom_site.aniso_U[1][1] to _atom_site.aniso_U[3][3].

• An isotropic displacement parameter for each site can be provided as a property of type “site” or “template_site”.
A valid units string must be provided, the preferred units are “nm2”. Each value is a scalar of type “float32”
or “float64”. An isotropic displacement parameter of value x is equivalent to an anisotropic displacement
parameter of value [x x x 0 0 0].

If anisotropic displacement parameters are provided, then no isotropic displacement parameters may be given, in order
to prevent incoherencies in the data.

4.2 NMR structures

An NMR structure is represented by the following data items:

13

Mosaic Documentation, Release 1.0.0

• A universe defining the molecular structures.

• One configuration per model contained in the PDB entry.

• genindex

The Mosaic specification is licensed under a Creative Commons Attribution 3.0 Unported License.

14 Chapter 4. Mosaic PDB convention

INDEX

C
configuration

data item, 3
crystallographic structures, 13

D
data item, 1

configuration, 3
label, 5
property, 3
selection, 5
universe, 2

H
HDF5, 7

L
label

data item, 5

N
NMR structures, 13

P
PDB, 11
property

data item, 3

S
selection

data item, 5

U
universe

data item, 2

X
XML, 5

15

