Supporting Information ## Microcantilevers Bend to the Pressure of Clustered Redox Centers Eric R. Dionne,^a Violeta Toader,^b and Antonella Badia*^a ^a Department of Chemistry and FRQNT Center for Self-Assembled Chemical Structures, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada. E-mail: antonella.badia@umontreal.ca ^b Center for Self-Assembled Chemical Structures, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC H3A 2K6, Canada. Roughness Analysis **Figure S1.** STM images of the morphology of a 50 nm-thick gold film deposited on the silicon nitride microlever chip substrate. Images were acquired in air with a Pt/Ir tip. Tip bias = 497 mV and tunneling current = 620 pA. (A) 500 nm \times 500 nm, (B) 250 nm \times 250 nm, and (C) roughness analysis on a terrace of a single grain. Image statistics box indicates a root mean square roughness (Rms) of 1.074 nm over the 250 \times 250 nm² area and the box statistics shows a Rms of 0.046 nm over the terrace outlined by the black box. **Figure S2.** FcC₁₂SAu SAMs formed on gold-coated silicon wafers (Ti and Au layer thicknesses of 2 nm and 60 nm, respectively) in 0.100 M NaClO₄/0.010 M HClO_{4(aq)}. Cyclic voltammograms as a function of the scan rate for (A) $\chi_{Fc}^{soln} = 0.2$ ($\chi_{Fc}^{surf} = 0.46$) and (B) $\chi_{Fc}^{surf} = 0.1$ ($\chi_{Fc}^{surf} = 0.21$) respectively. The arrows indicate the direction of potential cycling. Corresponding plots of the anodic peak current density *i* as a function of the scan rate ν , (B) and (D). **Figure S3.** Plot of the surface mole fraction of chemisorbed $FcC_{12}SAu$ (χ_{Fc}^{surf}) as a function of the mole fraction of ferrocenyldodecanethiol in solution (χ_{Fc}^{soln}). **Figure S4.** Plot of the measured SAM redox potential $(E^{\circ\prime})$ for redox peaks I and redox peaks II as a function of the surface mole fraction of ferrocene. $E^{\circ\prime}$ is the average of the anodic (oxidation) and cathodic (reduction) peak potentials. **Figure S5.** Gaussian fit of the anodic voltammogram for $\chi_{Fc}^{surf} = 0.17$.