Tailoring Catalytic Microenvironment of Cu₂O with SiO₂ to Enhance C₂₊ Products Selectivity in CO₂ Electroreduction

Tete Zhao[†], Jinhan Li[†], Jiuding Liu[†], Fangming Liu[†], Keqiang Xu[†], Meng Yu^{†*}, Wence Xu[†], and Fangyi Cheng^{†‡*}

†Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Engineering Research Center of High-efficiency Energy Storage (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China;

#Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.

*Corresponding author

Email: 819051@nankai.edu.cn; fycheng@nankai.edu.cn

1. MD simulations

To uncover the mechanism of enhanced C_{2+} products selectivity of CO_2RR by introducing the hydrophobic SiO₂ aerosol, coarse-grained molecular dynamic simulations (CGMD) were employed in this study. All the CGMD simulations were performed using GROMACS 4.6.7 software with Martini force field.^{1,2} We aim to investigate the effect of Hydrophobic SiO₂ aerosol on the diffusion coefficients of H₂O and CO₂ both on Cu₂O and Cu₂O/SiO₂ electrodes. Before the simulations, we carefully constructed the Cu₂O by arranging several hydrophilic Ndatype (Nda is a parameter in the Martini force field, which represents hydrophilic) beads into a sheet with the shape of 8 nm in side length and 1.7 nm in height. The hydrophobic SiO₂ aerosol was constructed by arranging several hydrophobic C4-type (C4 is a parameter in the martini force field, which represents hydrophobic SiO₂) beads into a sphere with a diameter of 3 nm. The CO₂ bubbles were constructed by stacking 504 hydrophobic beads into a spherical shape with a diameter of 5 nm. The initial size of the simulation box was 8.0×8.0×16.0 nm³ and full of water molecules. NVT ensemble (constant particle number, volume, and temperature) was used in our simulations. Temperature is kept as a constant at 300 K using the Berendsen weak coupling algorithm with a time constant of 1 ps. The neighbor list for nonbonded interactions was updated every 10 steps. The Lennard-Jones potential was smoothly shifted to zero between 0.9 nm and 1.2 nm to reduce the cutoff noise. For electrostatic interactions, the coulombic potential, with a cutoff of 1.2 nm was smoothly shifted to zero from 0 to 1.2 nm. Herein, a time step of 20 fs was used for all simulations. Periodic boundary conditions were implemented in all three directions.

2. DFT calculations

Density functional theoretical (DFT) calculations were performed in Vienna Abinitio Simulation Package (VASP)³ with plane wave basis sets and projector-augmented wave (PAW) pseudopotentials.⁴ The generalized gradient approximation (GGA) developed by Perdew-Burke-Ernzerhof (PBE)⁵ was implemented for exchange-correlation functions. The kinetic cutoff energy was set as 500 eV for the calculations. The structures were fully relaxed until the energy and the force on each atom converged 1×10^{-5} eV. The forces on the individual relaxed atoms was less than 0.02 eV/Å. The anion HCO₃⁻ was placed on the 2×2 Cu₂O (111) surface to simulate the energy change, in which HCO_3^- dissociates to form the protons and carbonates. The H₂O molecular was also placed on the 2×2 Cu₂O (111) surface to calculate the dissociation energy, which forms protons and hydroxyls. To avoid the interactions between periodic slabs, a vacuum space was inserted at the z direction at least 20 Å. A tow-layer (2×2) Cu₂O (111) surface was

constructed to calculate the dissociation of HCO_3^- and H_2O . Dipole corrections were included in all surface calculations in the surface normal direction (LDIPOL = TRUE, IDIPOL = 3). Over these optimized structures, vibration frequencies were calculated to obtain zero-point energies, thermal corrections, and entropy contributions, and the convergence tolerance was set to 1×10^{-6} eV. When calculating the vibration frequencies, only the adsorbed species were allowed to relax.

The dissociation process can be written as (an asterisk * represents the active site):

$$HCO_3 + * \rightarrow H_{ads} + CO_3_{ads}$$
(s1-1)

$$H_2O + * \rightarrow H_{ads} + OH_{ads}$$
 (s1-2)

The Gibbs free energy change (ΔG) of each dissociation process was calculated by:

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S \qquad (s1-3)$$

where ΔE , ΔZPE , T, and ΔS of each adsorbed state were obtained from DFT calculation, whereas the entropy for gas-phase molecules was taken from the NIST database. Here, the temperature T is 298.15 K.

3. Experimental section

3.1 Chemicals and reagents

SiO₂ (with a specific surface area of ~300 m² g⁻¹), ascorbic acid (C₆H₈O₆, A.R. grade), cupric chloride dihydrate (CuCl₂·2H₂O, A.R. grade), sodium hydroxide (NaOH, purity≥ 98%), dimethyl sulfoxide (C₂H₆SO, G.C. grade) and isopropyl alcohol (C₃H₈O, A.R. grade) were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. Potassium bicarbonate (KHCO₃, purity ≥99.99% metals basis, 99.7-100.5% dry basis), absolute ethanol (C₂H₆O, Medicinal grade) were supplied by Shanghai Macklin Biochemical Co., Ltd. Deuterium oxide (D₂O, purity≥99.9%) was bought from Ai Lan (Shanghai) Chemical Technology Co., Ltd. Nafion D-521 dispersion, 5% W/W in water and 1-propanol, ≥0.92 meq/g exchange capacity was brought from the Alfa Aesar China Chemical Co., Ltd. Nafion 117 proton exchange membrane was bought from DuPont. All chemicals and reagents were purchased and used without further treatment.

3.2 Cu₂O synthesis

Cu₂O cubes were synthesized according to the previous report.⁶ In short, a dilute solution of CuCl₂ was obtained by adding 7 mL 0.1 M CuCl₂·2H₂O to 300 mL of deionized water. Subsequently, 21 mL 0.2 M NaOH solution was added dropwise to the light blue solution for 10 minutes under continuous stirring. When the small light blue particles appeared, 14 mL 0.1 M $C_6H_8O_6$ solution was further added into the mixture solution drop by drop in less than 10 minutes.

The suspension was then stirred strictly for another hour after the color turned yellow. The Cu_2O cubes were precipitated by centrifugation and washed three times with deionized water and two times with absolute ethanol. Then the earthy yellow precipitation was transferred to a vacuum oven and dried at 60 °C overnight.

3.3 Preparation of Cu₂O and Cu₂O/SiO₂ electrodes

The Cu₂O slurry was prepared by ultrasonically blending 10 mg Cu₂O, 1 mL of isopropyl alcohol, and 20 µL of 5% Nation solution for 30 minutes until forming the uniform suspension. Subsequently, 20 µL of the obtained Cu₂O slurry was carefully dropped on the surface of carbon glassy (diameter, 6mm) and thoroughly dried at room temperature. This working electrode was named Cu₂O and the loading was 0.708 mg cm⁻². To prepare the Cu₂O/SiO₂ working electrode, different dosages of hydrophobic SiO₂ aerosol were first dissolved into 1 mL of isopropyl alcohol and sonicated to form clear suspension. Secondly, different concentrations of suspensions of hydrophobic SiO₂ aerosol and the 10 mg mL⁻¹ of Cu₂O were instantly blended by sonication. The Cu₂O/SiO₂-x (x represents the concentration of hydrophobic SiO₂ aerosol, and corresponds to 1, 2, 3, 4, and 5 mg mL⁻¹) compound slurry was obtained for further use. For example, Cu₂O/SiO₂-2 electrode was prepared by mixing the hydrophobic SiO₂ solution with 2

mg mL⁻¹ and Cu₂O suspension with 10 mg mL⁻¹. For short, the Cu₂O/SiO₂-2 working electrode was abbreviated as Cu₂O/SiO₂. The Cu₂O/SiO₂-1, Cu₂O/SiO₂-3, Cu₂O/SiO₂-4, and Cu₂O/SiO₂-5 working electrodes were prepared followed by the Cu₂O/SiO₂-2 electrode. Then, we prepared the hydrophobic working electrode Cu₂O/SiO₂ by dropped the 40 μ L as-prepared suspension onto the carbon glassy and dried at room temperature. The loading of Cu₂O/SiO₂ working electrode was the same as the Cu₂O working electrode.

3.4 In situ infrared spectroscopy investigations

Electrochemical in situ FT-IR reflection spectroscopy was investigated on a Fourier transform infrared spectrometer (FTIR, Nicolet iS50, Thermo Fisher Scientific, USA) equipped with Mercury Cadmium Tellurid (MCT) detector, which was cooled with the liquid nitrogen atmosphere for protection and drove the interferential CO_2 in the atmosphere. We adopted the three electrodes test system to evaluate the change at the surface of the Cu_2O and Cu_2O/SiO_2 working electrodes. The reflective window was made up of CaF_2 crystal. The working electrodes were prepared by supporting the catalyst ink on the surface of carbon glassy (diameter 5 mm) and dried at room temperature before measurements. Real-time FTIR spectra were recorded during the chronopotentiometry test. The working potentials from open circuit potential (OCP) to -1.2 V vs. RHE in a CO₂-saturated 0.1 M KHCO₃. The stepping width and test time are 100 mV and 80 s, respectively.

3.5 Electrochemical CO₂ reduction and gaseous product analysis

The electrochemical measurements were implemented using an electrochemistry workstation (CHI760e, CH, Shanghai). We adopted the self-designed gas-tight H-type electrochemical cell separated by a proton exchange membrane (Nafion N-117, Dupont, USA) to evaluate the electrochemical performance of the Cu₂O and Cu₂O/SiO₂ working electrodes. The electrolyte solution was prepared by dissolving the specific dosage of potassium bicarbonate in Milli-Q water to form the uniform 0.1 M KHCO₃ solution. The three-electrode compartment was adopted to evaluate the performances of different working electrodes. Working electrodes were prepared by as-prepared Cu₂O dropped onto the surface of glassy carbon. A Pt foil was used as the counter electrode and an Ag/AgCl electrode (saturated KCl) as a reference electrode. All potentials were converted to scales against an RHE reference: E (vs. RHE) = E (vs. Ag/AgCl) + 0.0592 pH + 0.198 V. All the potentials are iR-compensated by 85%. The potentials were compensated as E (iR corrected vs. RHE) = E (vs. RHE) - Rs×I. Rs is the 0.1 M KHCO₃ solution resistance, which was measured by EIS performing on a CHI760e electrochemistry workstation at a frequency

range of 10^{-2} ~ 10^{5} and fitted by Z-plot software. The cathodic compartment was added to 35 mL 0.1 M KHCO₃ solution and the anodic compartment was added to 30 mL 0.1 M KHCO₃ solution to maintain the balance of the level of liquid to avoid the difference in dropout voltage. Before testing, the 0.1 M KHCO₃ solution in the cathodic compartment was saturated by bubbling CO₂ gas for 30 minutes until the 0.1 M KHCO₃ solution was saturated (pH = 6.8). In a typical electrolysis process, the reactions were maintained for a specific time with continuous CO₂ bubbling at a flow rate of 6.8 mL min⁻¹. In real-time electrolysis, the gaseous products were directly purged into the gas chromatograph (GC, Shimadzu 2010 plus) equipped with the BID detector to analyze the generated H₂, CO, CH₄, and C₂H₄. Ultrapure helium (>99.9999%) was used as carrier gas.^{7,8}

3.6 Liquid products identification and quantification

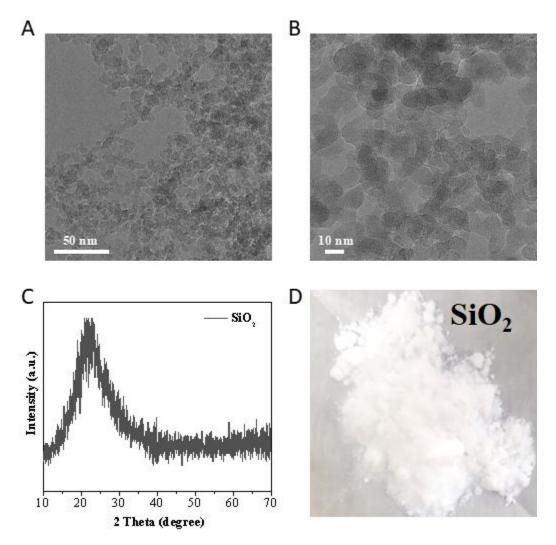
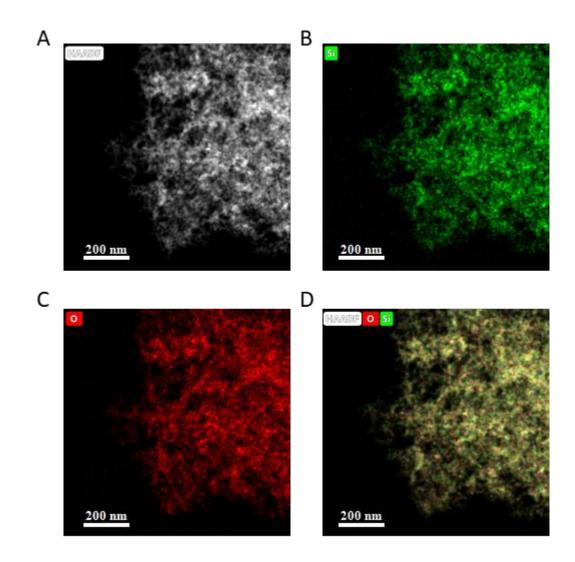
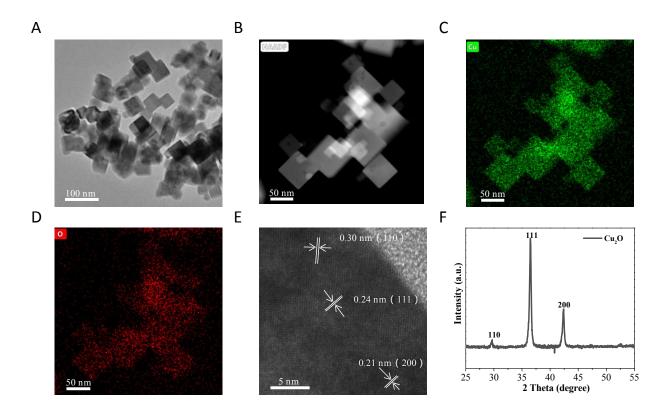
After each electrolysis at different potentials, 30 mL electrolyte was taken out from the H-type electrochemical cell for further analysis. Then, 20 μ L DMSO as the internal standard was added into the 30 mL electrolyte solution. Afterwards, 450 μ L mixed electrolyte and 50 μ L D₂O were transferred to a nuclear magnetic resonance (NMR) sample tube and analyzed by ¹H NMR spectroscopy using the 400 MHz spectrometers (Quantum-1, Zhongke-Niujin MR Tech Co.Ltd,

China) and identifying the liquid products in an electrolyte. The signal of water was suppressed. The ¹H peak area of each product in the electrolyte was calculated by the ¹H peak area of the confirmed concentration of DMSO to quantity the concentration of products.^{9,10}

4. Material characterization

Morphologies and microstructures of as-prepared Cu₂O were performed on a Field emission scanning electron microscopy (SEM, JSM-7900F, JEOL, Japan) at an accelerating voltage of 1.0 kV and high-resolution transmission electron microscopy (HRTEM, Talos F200X G2, FEI Czech Republic, Czech Republic) equipped with EDS. Surface compositions and chemical valence of the catalysts were characterized with X-ray photoelectron spectroscopy (XPS, PHI5000VersaProbe, Ulvac-phi, Japan) with an Al K α X-ray source at a power of 44.9 W. Highresolution spectra of Cu 2p and Cu auger LMM were recorded with a 23.5 eV pass energy and 187.85 eV for the XPS survey. The XPS spectra were aligned to the binding energy of C 1s at 284.8 eV for all samples and fitted by XPSPEAK41 software. Ex-situ Fourier transforms infrared spectra were recorded on a Nicolet iS50 infrared spectrometer (Thermo Fisher Scientific, USA) equipped with Mercury Cadmium Telluride (MCT) detector and KBr beam splitter. The crystal structures of the samples were analyzed by X-ray diffraction (XRD,

MimFLex600, Rigaku, Japan) spectroscopy with Cu K α radiation (40 kV, λ =1.5406 Å and 15 mA) at a scan rate of 8° min⁻¹ with 2 theta degree range from 5° to 85°. Nitrogen adsorptiondesorption measurements and surface area were studied on a Micromeritics ASAP 2460 analyzer (USA). Pore volumes and pore sizes were calculated using the density functional theory (DFT) methods according to the pore-size distribution curves from the desorption isotherms. The carbon dioxide adsorption-desorption curves were performed on surface area and microporous analyzer (BSD-PM, Beishied instrument technology, China) at 298.15 K. The contact angles were obtained on dataphysics (OCA25, dataphysics, Germany) with 10 μ L electrolyte dropped onto the surface of the working electrodes, hydrophobic SiO₂ aerosol, and the glassy carbon electrode. 5. Additional results and discussion

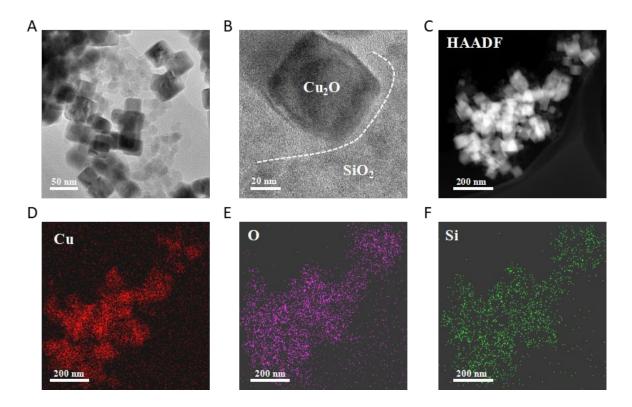

Figure S1. (A, B) TEM and HRTEM images, (C) XRD pattern and (D) digital photograph of amorphous SiO₂.

Figure S2. (A) HADDF-STEM and corresponding elemental mapping images of (B) Si (green) and (C) O (red) and (D) the elements mixed of amorphous SiO₂.

Figure S3. (A) TEM and (B) HAADF-STEM and corresponding elemental mapping images with (C) Cu (green), (D) O (red), (E) HRTEM images and (F) XRD pattern of Cu₂O.

Figure S4. (A) TEM, (B) HRTEM, (C) HADDF-STEM images of Cu₂O/SiO₂ composites, the corresponding elemental mapping images with (D) Cu (red), (E) O (purple), (F) Si (green).

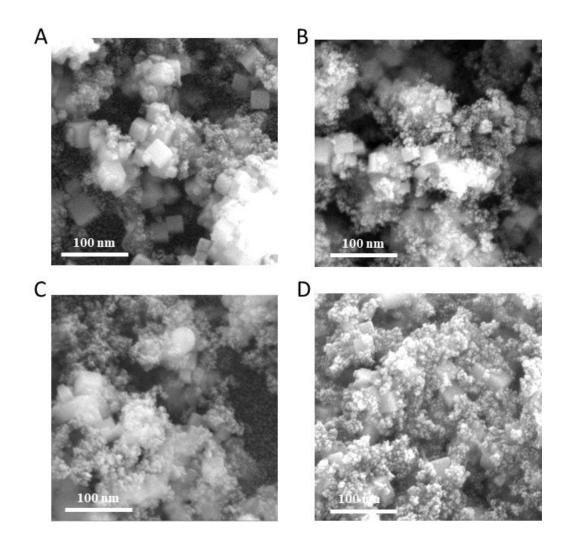


Figure S5. SEM images of (A) Cu_2O/SiO_2-1 , (B) Cu_2O/SiO_2-3 , (C) Cu_2O/SiO_2-4 and (D)

 Cu_2O/SiO_2-5 .

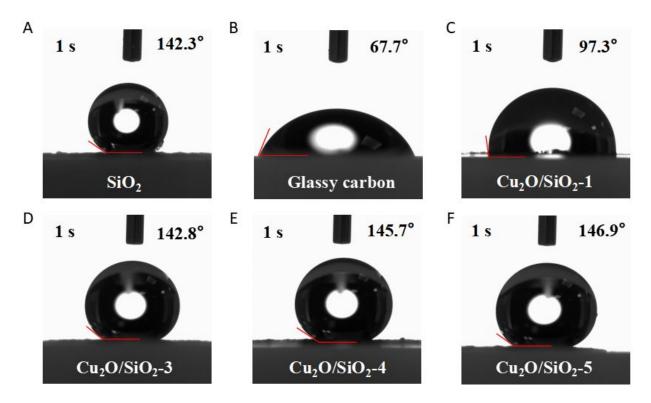


Figure S6. Contact angle of (A) SiO₂, (B) glassy carbon, (C) Cu₂O/SiO₂-1, (D) Cu₂O/SiO₂-3, (E) Cu₂O/SiO₂-4 and (F) Cu₂O/SiO₂-5.

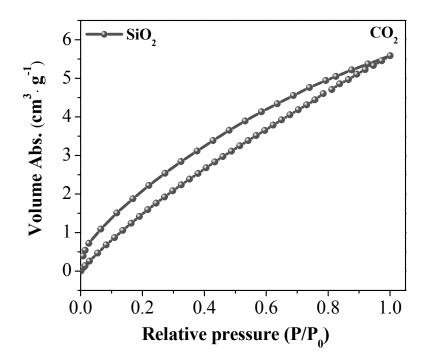
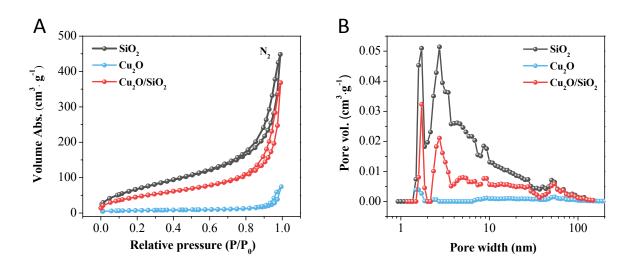



Figure S7. CO₂ adsorption-desorption curves of SiO₂.

Figure S8. (A) N₂ adsorption-desorption curves of Cu₂O, Cu₂O/SiO₂, and SiO₂ and (B) corresponding pore diameter distribution curves.

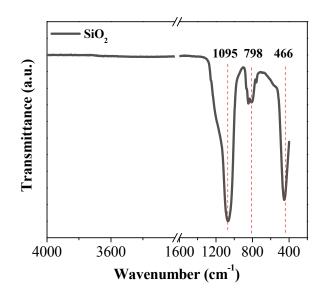
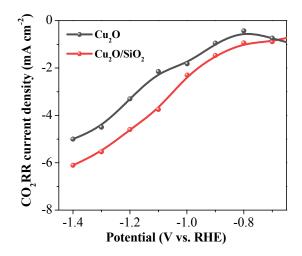



Figure S9. FTIR spectrum of SiO₂.

Figure S10. Partial current densities for CO₂RR on the Cu₂O and Cu₂O/SiO₂ electrodes at various potentials with CO₂-saturated 0.1M KHCO₃.

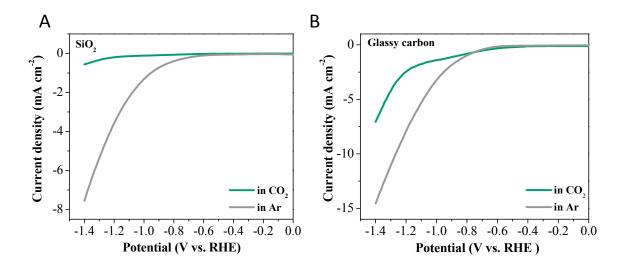
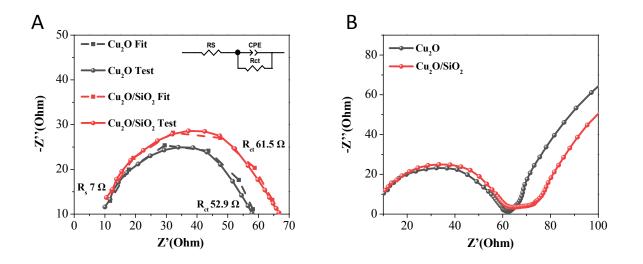



Figure S11. LSV curves of (A) SiO₂ and (B) glassy carbon in CO₂/Ar-saturated 0.1 M KHCO₃.

Figure S12. (A) Nyquist plots obtained at the specific potential in CO₂-saturated 0.1 M KHCO₃ and the corresponding fitting equivalent circuit diagram on Cu₂O and Cu₂O/SiO₂, (B) EIS spectra of Cu₂O and Cu₂O/SiO₂ from the 100 kHz to 0.01 Hz.

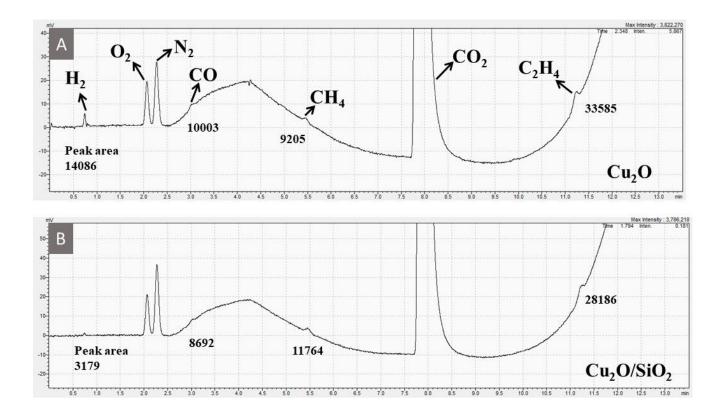


Figure S13. Gas chromatography (GC) data recorded after electrolysis on (A) Cu_2O , and (B)

Cu₂O/SiO₂ at -1.2 V vs. RHE.

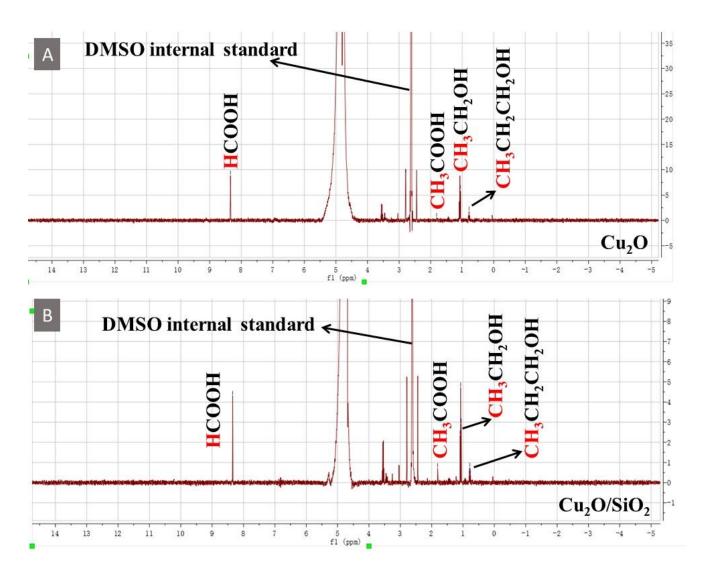
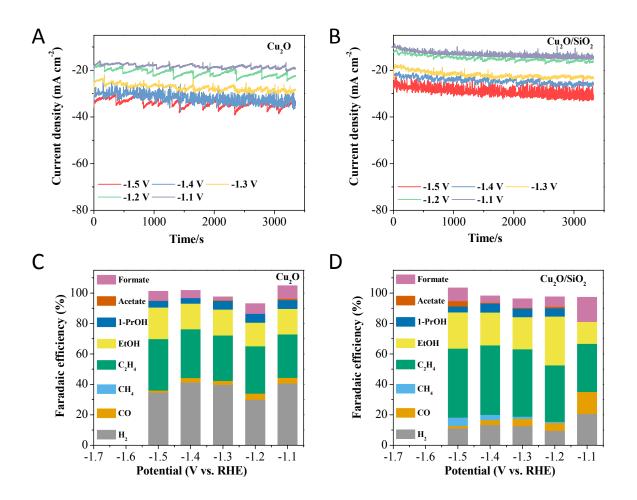



Figure S14. Spectra of ¹H NMR record after the CO_2RR on (A) Cu_2O , and (B) Cu_2O/SiO_2 at

-1.2 V vs. RHE.

Figure S15. (A, B) The i-t curves recorded in CO₂-saturated 0.1 M KHCO₃ at various potentials for Cu₂O (A), and Cu₂O/SiO₂ (B) in the H-type cell. (C, D) The corresponding Faradaic efficiency for Cu₂O (C) and Cu₂O/SiO₂ (D).

Table S1. The FE of H_2 and C_{2+} products using various copper-based catalysts for CO_2RR in the

reported literature.

Catalysts	Substrates	Cell type	Electrolyte	E (vs. RHE)		udaic y (FE, %) C ₂₊	Ref	
Cu ₂ O/SiO ₂	Glassy carbon		0.1 M KHCO ₃	-1.20 V	9.6	75.6	This work	
Cu ₂ O	Carbon paper		0.1 M KHCO ₃	-1.05 V	18.0	60	11	
Nano wrinkled Cu	Glassy carbon		0.1 M KHCO ₃	-1.10 V	-	57	12	
Cu	-	H-cell	0.1 M KHCO ₃	-1.00 V	<10%	76	13	
Cu ₂ O NP/C	Glassy carbon		0.1 M KHCO ₃	-1.20 V	30	73	14	
Polycrystalline Copper	Cu disk		0.1 M KHCO ₃	-1.10 V	15.5	78.2	15	
Cu nano cube	Glassy carbon			0.1 M KHCO ₃	-1.00 V	-	73	16
Cu ₄ Zn	Glassy carbon		0.5 M KHCO ₃	-1.05 V	42.28	51.38	17	
CuAg alloy	Carbon paper		1 M KOH	-0.70 V	9.8	85.1	18	
Cu-CuI	Carbon paper		1 M KOH	-0.87 V	10-15	71	19	
CuO-CeO ₂	PTFE membrane	Flow cell	1 M KOH	-1.12 V	-	78.2	20	
Hierarchical Copper	Cu GDE		1 M KOH	-0.68 V	17.54	63	21	
Cu nanoparticles	Carbon paper		1 M KOH	-0.87 V	7	70	22	

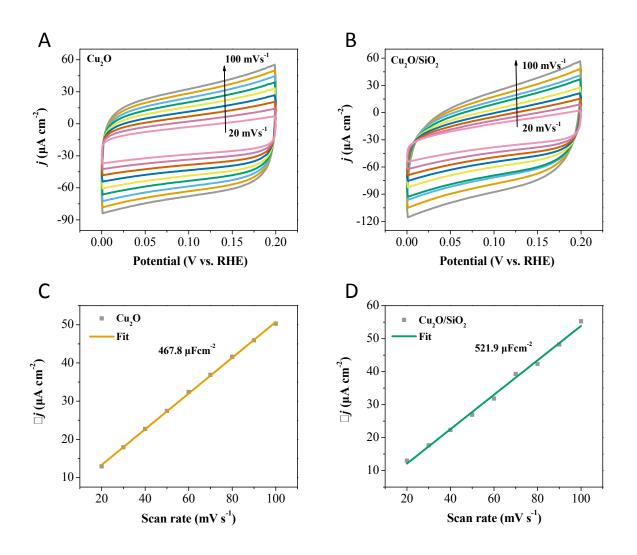


Figure S16. (A, B) Cyclic voltammograms of Cu₂O (A) and Cu₂O/SiO₂ (B) in Ar-saturated 0.1 M KHCO₃ scanned from 0.0 to 0.2 V vs. RHE at different scan rates. (C, D) Current density plotted against CV scan rates for (C) Cu₂O and (D) Cu₂O/SiO₂.

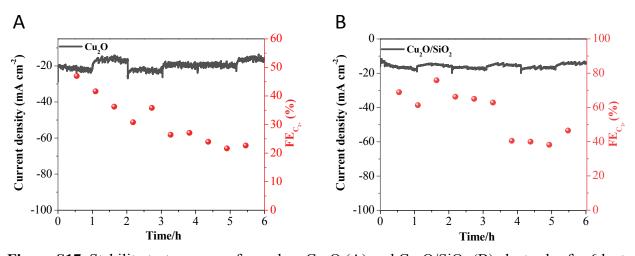


Figure S17. Stability tests were performed on Cu_2O (A) and Cu_2O/SiO_2 (B) electrodes for 6 h at -1.2 V vs. RHE in CO₂-saturated 0.1 M KHCO₃. The right axis is the corresponding Faradaic efficiency of C_{2+} products.

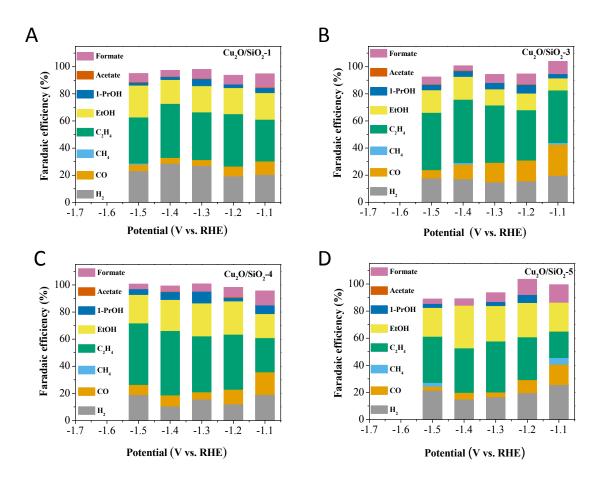


Figure S18. The products distribution of (A) Cu₂O/SiO₂-1, (B) Cu₂O/SiO₂-3, (C) Cu₂O/SiO₂-4

and (D) Cu₂O/SiO₂-5.

Catalysts	Faradaic efficiency (%)								
(Potential vs. RHE)	H ₂	СО	CH ₄	C ₂ H ₄	C ₂ H ₅ OH	C ₃ H ₇ OH	CH ₃ COOH	НСООН	Total
Cu ₂ O/SiO ₂ - 1 (-1.1 V)	20.44	9.91	0	30.78	19.61	3.71	0.4	10.02	94.87
Cu ₂ O/SiO ₂ - 1 (-1.2 V)	19.29	7.28	0	38.65	19.24	2.62	0	6.71	93.79
Cu ₂ O/SiO ₂ - 1 (-1.3 V)	26.89	4.49	0	35.2	19.3	5.16	0.33	6.77	98.14
Cu ₂ O/SiO ₂ - 1 (-1.4 V)	28.66	4.33	0	39.83	17.64	2.15	0.23	4.54	97.38
Cu ₂ O/SiO ₂ - 1 (-1.5 V)	23.17	4.84	0.75	34.00	23.50	2.10	0.46	6.27	95.09
Cu ₂ O/SiO ₂ - 3 (-1.1 V)	19.76	22.90	1.32	38.69	8.89	3.18	0	9.27	104.01
Cu ₂ O/SiO ₂ - 3 (-1.2 V)	15.47	15.47	0	37.13	12.31	6.32	0.44	7.59	94.73
Cu ₂ O/SiO ₂ - 3 (-1.3 V)	14.86	14.43	0	42.31	11.90	4.64	0	6.29	94.43
Cu ₂ O/SiO ₂ - 3 (-1.4 V)	17.17	10.82	1.21	46.59	16.90	4.17	0.44	3.51	100.81
Cu ₂ O/SiO ₂ - 3 (-1.5 V)	17.73	6.14	0	42.30	16.67	3.95	0.25	5.44	92.48
Cu ₂ O/SiO ₂ - 4 (-1.1 V)	19.00	16.74	0	25.18	17.77	6.44	0	10.52	95.65
Cu ₂ O/SiO ₂ - 4 (-1.2 V)	12.13	10.76	0	40.58	24.63	2.52	0.46	7.21	98.29
Cu ₂ O/SiO ₂ - 4 (-1.3 V)	15.65	5.36	0	41.28	24.31	8.59	0	5.70	98.19
Cu ₂ O/SiO ₂ - 4 (-1.4 V)	10.50	8.19	0	47.48	22.97	5.72	0.34	4.11	99.31

Table S2. Faradaic efficiencies of CO_2 electroreduction products on $Cu_2O/SiO_2-1/3/4/5$ composites electrodes under different applied potentials.

Cu ₂ O/SiO ₂ -	18.95	7.51	0	45.41	20.97	4.18	0	3.72	100.74
4 (-1.5 V)	10.93	7.51	0	43.41	20.97	4.10	U	5.72	100.74
Cu ₂ O/SiO ₂ -	25.62	15.03	5.00	19.40	21.34	0	0	13.18	99.57
5 (-1.1 V)	25.02	15.05	5.00	17.40	21.34	0	0	15.10	77.57
Cu ₂ O/SiO ₂ -	19.58	9.70	0	31.57	25.30	5.90	0	11.52	103.57
5 (-1.2 V)	17.50	9.70		51.57	25.50	5.90	Ū	11.52	105.57
Cu ₂ O/SiO ₂ -	16.61	3.59	0	37.6	26.06	3.01	0	6.78	93.65
5 (-1.3 V)	10.01	5.09	Ŭ	57.0	20.00	5.01	Ŭ	0.70	22.00
Cu ₂ O/SiO ₂ -	14.87	5.03	0	32.83	31.44	0	0	5.06	89.23
5 (-1.4 V)	11.07	0.00	Ŭ	52.05	51.11	•	Ŭ	2.00	09.25
Cu ₂ O/SiO ₂ -	21.50	2.92	2.87	34.00	21.29	2.95	0	3.51	89.04
5 (-1.5 V)	21.00	2.72	2.07		21.29	2.95		2.01	02.01

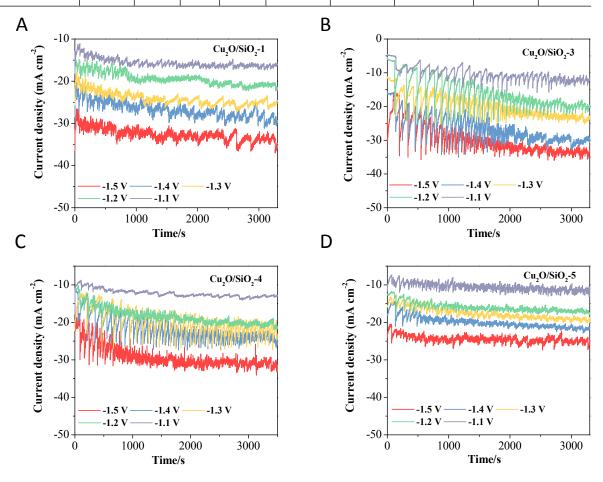


Figure S19. The i-t curves were record on (A) Cu₂O/SiO₂-1, (B) Cu₂O/SiO₂-3, (C) Cu₂O/SiO₂-4 and (D) Cu₂O/SiO₂-5 in CO₂-saturated 0.1M KHCO₃.

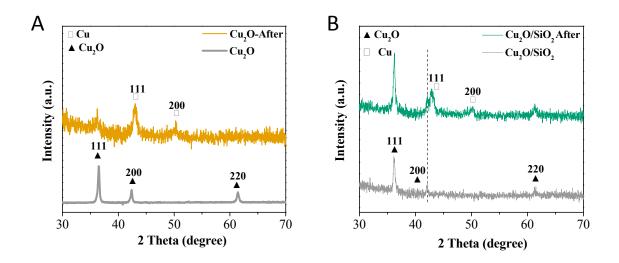
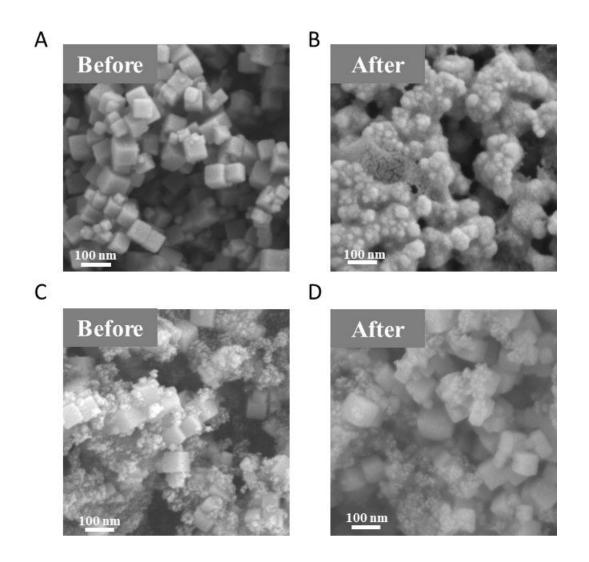



Figure S20. Crystal phase evolution analysis on (A) Cu₂O and (B) Cu₂O/SiO₂. The tests were performed on −1.2 V vs. RHE in CO₂-saturated 0.1 M KHCO₃.

Figure S21. SEM images for Cu₂O (A, B) and Cu₂O/SiO₂ (C, D) before/after electrolysis operated at -1.2 V vs. RHE in CO₂-saturated 0.1 M KHCO₃.

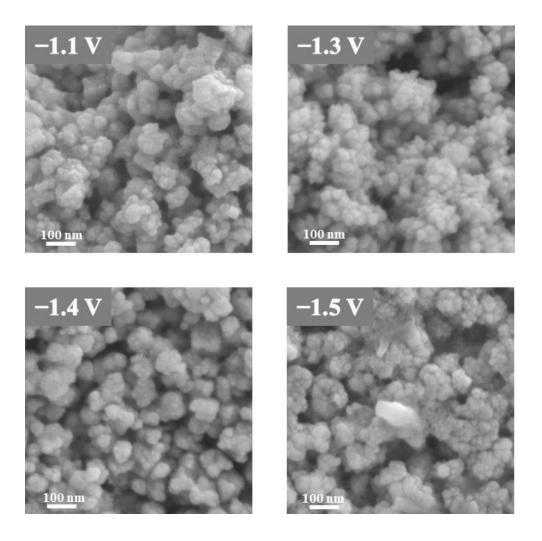


Figure S22. SEM images on the Cu₂O after electrolysis operated at various potentials in CO₂-

saturated 0.1 M KHCO₃.

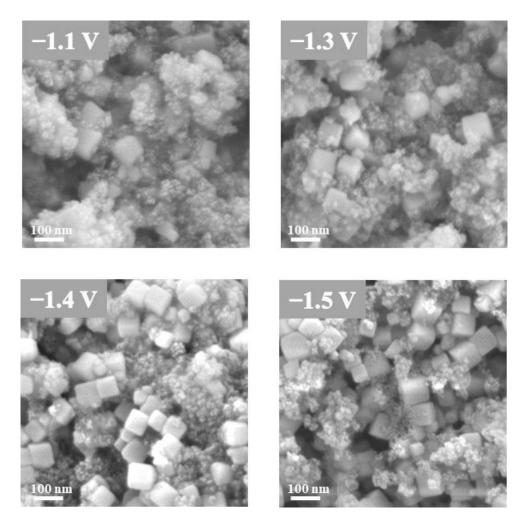
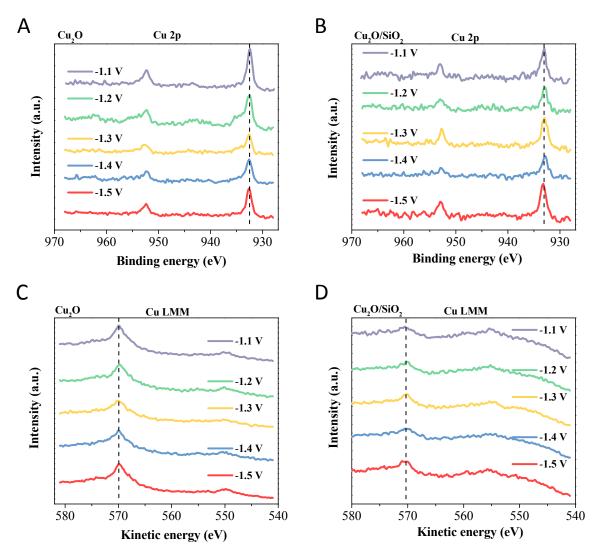



Figure S23. SEM images on the Cu₂O/SiO₂ after electrolysis operated at various potentials in

CO₂-saturated 0.1 M KHCO₃.

		Before rea	iction	After reaction			
Catalysts	Cu	Si	Mass Ratio	Cu	Si	Mass Ratio	
	(wt %)	(wt %)	(Cu/Si)	(wt %)	(wt %)	(Cu/Si)	
Cu ₂ O/SiO ₂ -1	80.74	5.07	15.93	88.10	4.20	20.98	
Cu ₂ O/SiO ₂ -2	71.59	9.90	7.23	78.80	7.10	11.10	
Cu ₂ O/SiO ₂ -3	72.37	10.30	7.02	76.90	7.30	10.53	
Cu ₂ O/SiO ₂ -4	63.80	13.90	4.59	66.90	11.30	5.92	
Cu ₂ O/SiO ₂ -5	59.30	16.40	3.62	64.00	14.20	4.51	

Table S3. Mass fraction of Cu and Si of $Cu_2O/SiO_2-1/2/3/4/5$ composites using FESEM–EDS elemental analysis before and after reaction at -1.2 V in CO_2 -saturated 0.1 M KHCO₃.

Figure S24. Cu 2p spectra (A, B) and Cu Auger LMM spectra (C, D) for Cu₂O and Cu₂O/SiO₂ after electrolysis at various potentials in CO₂-saturated 0.1 M KHCO₃ for specified periods.

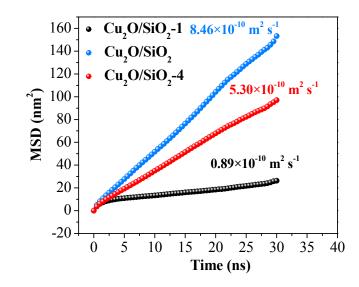
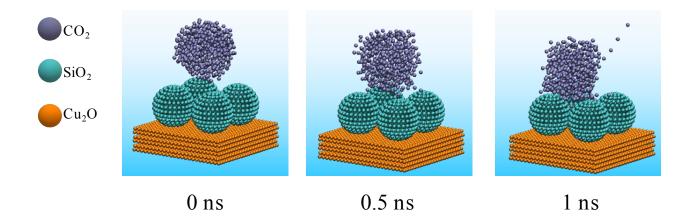
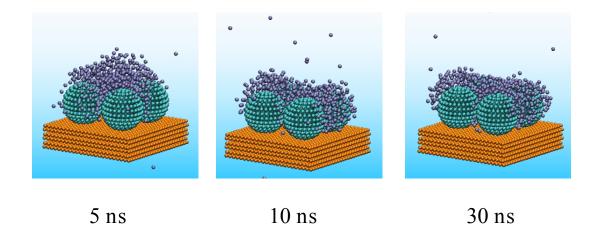
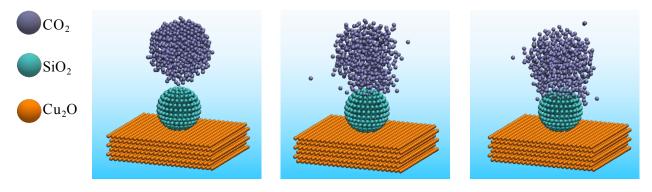
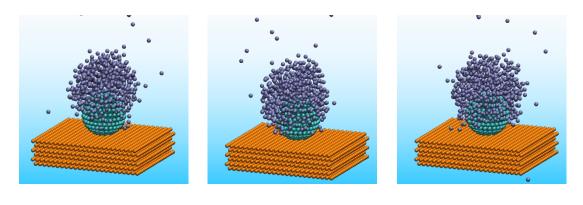



Figure S25. The dependence of mean square displacement (MSD) versus time for Cu_2O/SiO_2 -1, Cu_2O/SiO_2 and Cu_2O/SiO_2 -4.

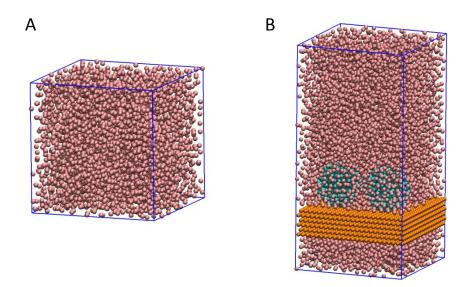




Figure S26. Evolution of typical snapshots of CO₂ diffusion dynamics on Cu₂O/SiO₂-4.

0 ns

0.5 ns

1 ns



5 ns

10 ns

30 ns

Figure S27. Evolution of typical snapshots of CO₂ diffusion dynamics on Cu₂O/SiO₂-1.

Figure S28. Water simulation box in the (A) absence and (B) presence of hydrophobic SiO₂ aerosol. H₂O molecular (pink), SiO₂ particles (cyan), and Cu₂O (orange).

References

- 1. Hess B.; Kutzner C.; Spoel van der D.; Lindahl E., GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. *J. Chem. Theory Comput.* **2008**, *4*, 435-447.
- 2. Bai, C.; Herzfeld, J., Surface Propensities of the Self-Ions of Water. ACS Cent. Sci. 2016, 2, 225-231.
- 3. Kresse G.; Furthmüller J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Phys. Rev. B* 1996, *54*, 11169-11186.
- 4. Blochl, P. E., Projector augmented-wave method. *Phys. Rev. B Condens. Matter.* 1994, *50*, 17953-17979.
- Perdew J. P.; Burke K.; Ernzerhof M., Generalized Gradient Approximation Made Simple.
 Phys. Rev. Lett. 1996, *77*, 3865-3868.

Moller, T.; Scholten, F.; Thanh, T. N.; Sinev, I.; Timoshenko, J.; Wang, X.; Jovanov, Z.;
 Gliech, M.; Roldan Cuenya, B.; Varela, A. S.; Strasser, P., Electrocatalytic CO₂ Reduction on
 CuO_x Nanocubes: Tracking the Evolution of Chemical State, Geometric Structure, and Catalytic
 Selectivity using Operando Spectroscopy. *Angew. Chem. Int. Ed.* 2020, *59*, 17974-17983.

7. Wei, Y.; Liu, J.; Cheng, F.; Chen, J., Mn-doped atomic SnO₂ layers for highly efficient CO₂ electrochemical reduction. *J. Mater. Chem. A* **2019**, *7*, 19651-19656.

8. Zhu, Z.; Li, Z.; Wang, J.; Li, R.; Chen, H.; Li, Y.; Chen, J. S.; Wu, R.; Wei, Z., Improving NiN_X and pyridinic N active sites with space-confined pyrolysis for effective CO_2 electroreduction. *eScience* **2022**, *2*, 445-452.

9. Chen, R.; Su, H. Y.; Liu, D.; Huang, R.; Meng, X.; Cui, X.; Tian, Z. Q.; Zhang, D. H.; Deng,

D., Highly Selective Production of Ethylene by the Electroreduction of Carbon Monoxide. Angew. Chem. Int. Ed. 2020, 59, 154-160.

10. Wang, K.; Liu, D.; Liu, L.; Liu, J.; Hu, X.; Li, P.; Li, M.; Vasenko, A. S.; Xiao, C.; Ding, S.,

Tuning the local electronic structure of oxygen vacancies over copper-doped zinc oxide for efficient CO₂ electroreduction. *eScience* **2022**, *2*, 518-528.

11. Zhan, C.; Dattila, F.; Rettenmaier, C.; Bergmann, A.; Kühl, S.; García-Muelas, R.; López,

N.; Cuenya, B. R., Revealing the CO Coverage-Driven C–C Coupling Mechanism for Electrochemical CO₂ Reduction on Cu₂O Nanocubes via Operando Raman Spectroscopy. *ACS Catal.* **2021**, *11*, 7694-7701.

12. Kim, J. Y.; Park, W.; Choi, C.; Kim, G.; Cho, K. M.; Lim, J.; Kim, S. J.; Al-Saggaf, A.;

Gereige, I.; Lee, H.; Jung, W.-B.; Jung, Y.; Jung, H.-T., High Facets on Nanowrinkled Cu via Chemical Vapor Deposition Graphene Growth for Efficient CO₂ Reduction into Ethanol. *ACS Catal.* 2021, *11*, 5658-5665.

13. Arán-Ais, R. M.; Scholten, F.; Kunze, S.; Rizo, R.; Roldan Cuenya, B., The role of in situ generated morphological motifs and Cu(i) species in C_{2+} product selectivity during CO₂ pulsed electroreduction. *Nat. Energy* **2020**, *5*, 317-325.

14. Jung, H.; Lee, S. Y.; Lee, C. W.; Cho, M. K.; Won, D. H.; Kim, C.; Oh, H. S.; Min, B. K.;
Hwang, Y. J., Electrochemical Fragmentation of Cu₂O Nanoparticles Enhancing Selective C-C
Coupling from CO₂ Reduction Reaction. *J. Am. Chem. Soc.* 2019, *141*, 4624-4633.

15. Han, Z.; Kortlever, R.; Chen, H. Y.; Peters, J. C.; Agapie, T., CO_2 Reduction Selective for $C_{\geq 2}$ Products on Polycrystalline Copper with N-Substituted Pyridinium Additives. *ACS Cent. Sci.* 2017, *3*, 853-859.

16. Gao, D.; Zegkinoglou, I.; Divins, N. J.; Scholten, F.; Sinev, I.; Grosse, P.; Roldan Cuenya,
B., Plasma-Activated Copper Nanocube Catalysts for Efficient Carbon Dioxide Electroreduction
to Hydrocarbons and Alcohols. *ACS Nano* 2017, *11*, 4825-4831.

17. Ren, D.; Ang, B. S.-H.; Yeo, B. S., Tuning the Selectivity of Carbon Dioxide Electroreduction toward Ethanol on Oxide-Derived Cu_xZn Catalysts. *ACS Catal.* **2016**, *6*, 8239-8247.

18. Hoang T., Verma S., Ma S., Fister T., Timoshenko J., Frenkel A., Kenis P., Gewirth A., Nanoporous Copper–Silver Alloys by Additive-Controlled Electrodeposition for the Selective Electroreduction of CO₂ to Ethylene and Ethanol. *J. Am. Chem. Soc.* **2018**, *140*, 5791-5797.

19. Li, H.; Liu, T.; Wei, P.; Lin, L.; Gao, D.; Wang, G.; Bao, X., High-Rate CO₂
Electroreduction to C₂₊ Products over a Copper-Copper Iodide Catalyst. *Angew. Chem. Int. Ed.*2021, *60*, 14329-14333.

20. Yan, X.; Chen, C.; Wu, Y.; Liu, S.; Chen, Y.-Z.; Feng, R.; Zhang, J.; Han, B., Efficient Electroreduction of CO_2 to C_{2+} Products on CeO_2 modified CuO. *Chem. Sci.* **2021**, *12*, 6638-6645.

Niu, Z. Z.; Gao, F. Y.; Zhang, X. L.; Yang, P. P.; Liu, R.; Chi, L. P.; Wu, Z. Z.; Qin, S.; Yu, X.; Gao, M. R., Hierarchical Copper with Inherent Hydrophobicity Mitigates Electrode Flooding for High-Rate CO₂ Electroreduction to Multicarbon Products. *J. Am. Chem. Soc.* 2021, *143*, 8011-8021.

22. Ma, S.; Sadakiyo, M.; Luo, R.; Heima, M.; Yamauchi, M.; Kenis, P. J. A., One-step electrosynthesis of ethylene and ethanol from CO₂ in an alkaline electrolyzer. *J. Power Sources* **2016**, *301*, 219-228.