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SI MATERIALS AND METHODS

Detailed solution of the thermodynamic cycle shown in the main-text Figure 1 is presented as supporting information for publication.
Although a detailed derivation of the two state model can be found in classic mechanical statistical text books, 1 our second derivation
of the model based on free-energy perturbation is particularly useful in the context of MD simulations for proper identification and
computation of the energy contributions arising from the interaction of protein, ligand and external forces. 
Conformational equilibrium of the protein free of ligands. By relying on the canonical free energy of the extended system 
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following integration of eq. [S1] over microscopic configurations in which all ligands are in the bath volume V . Evaluation of the
equilibrium constant is attained in the context of free-energy perturbation (FEP) by detailing the reaction process along a reversible
thermodynamic cycle in which: (i) the applied stimulus  χ  is first turned off at the protein state  A0  ; (ii) protein changes its
conformation to  B0  in the absence of stimulus; and (iii) the applied stimulus is turned on at the protein state  B0 . From that
construction, the ratio of configuration integrals in eq. [S2] rewrites exactly 
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and the equilibrium constant resumes 

K (χ)=K (0)×e−βΔΔ F(A0→B0 , 0→χ ),     K (0)≡e−βΔF (A0→B0 ,0) [S4]
as a function of the intrinsic free energy of the system Δ F(A0→B0 ,0)≡F (B0 ,0)−F (A0 ,0)  and the excess free energy due to the
applied stimulus ΔΔ F(A0→B0 ,0→χ)≡Δ F(B0 ,0→χ)−ΔF (A0 ,0→χ) . 
For a sufficiently low stimulus, the excess free energy can be formulated 

Δ F(Y 0 ,0→χ)=F (Y o ,χ)−F (Y o ,0)
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in  terms  of  linear  response  considerations  ⟨χ̄ ⟩Y0 ,χ '≈⟨χ̄ ⟩Y 0 ,0+c χ  involving  equilibrium  fluctuations  of  the  system  i.e.,

c= ∂
∂χ ⟨χ̄ ⟩Y 0 ,χ|χ=0

.2 As  previously  shown  for  displacement  charges  Q  under  the  influence  of  a  membrane  potential  V ,3

equilibrium fluctuations or  variance of  the system in the absence of  any stimulus are  expected to  little  depend on the protein
conformations. In the limit in which c  is comparable between protein’s states, eq. [S5] then conveniently establishes the excess free-
energy difference

ΔΔ F(A0→B0 ,0→χ)≈−χ[⟨ χ̄⟩B0 ,0−⟨χ̄ ⟩A0 ,0 ]≡−χ Δ⟨χ̄ ⟩ . [S6]

as the variation of the stimulus energy resulting from the net displacement of ⟨χ̄ ⟩Y0 , 0  at χ=0 . The consequence for the energetics
of the extended system along reaction A0

→
←

χ
B0  is clear and the equilibrium constant rewrites accordingly 
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K (χ)=K (0)×e+βχΔ⟨χ̄ ⟩ ,     K (0)=e−βχmΔ ⟨χ̄ ⟩ [S7]
by  taking  into  consideration  the  midpoint  equilibrium  χm  in  which  both  states  of  the  system  are  equally  likely  i.e.,
Δ F(A0→B0 ,0)=χmΔ ⟨ χ̄⟩ . As an extensive change in the external device, Δ⟨χ̄ ⟩  can be directly related to an opposite equivalent

variation in the protein subsystem 

Δ ⟨χ̄ ⟩=−Δ⟨ χ̄(rP)⟩ [S8]
and consequently, eq. [S7] becomes useful to describe the conformational equilibrium of the protein in terms of the external variables
{χm ,Δ⟨χ̄ ⟩}  that can be learned as adjustment of the model’s parameters over measurements. From eq. [S7], the probability of the

specific state B0  then writes as the familiar two-state Boltzmann equation

PB0
(χ )≡[1+PA0

(χ)/PB0
(χ) ]−1

=[1+K(χ )−1]−1
=[1+e+β(χm−χ)Δ ⟨χ̄⟩ ]−1

. [S9]

Ligand Binding to a fixed Protein Conformation. Reaction Y 0+n L→
←

χ
Y n  describes a process in which n  ligands unambiguously

bind the protein conformation Y  at a microscopic volume v  i.e.,

n≡∫v
dR∑i=1

N
δ[R(r i)−R ] . [S10]

According to that definition, an equilibrium constant for the binding process under stimulus χ  may be properly defined   
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at a certain number of degenerate states ω≈Nn /n!  in the thermodynamic limit n≪N . Again, evaluation of K Y (n ,χ)  is attained
in the context of free-energy perturbation (FEP) by detailing the binding process along a reversible thermodynamic cycle with well-
defined intermediate states constructed by the use of auxiliary external potentials.4 As shown in Figure 1, (i) the applied stimulus χ
is turned off at the protein state Y 0 ,  (ii) n  ligands are step-wisely decoupled from the bath (*) and re-coupled into the protein site
(**) under applied restraints {u*(Rn),u**(Rn)}  and, (iii)  stimulus is turned on at the bound state Y n . For the case of small ligands,
the binder typically does not adopt any special configuration in the bound state and external potentials are purely translational flat
wells applied to confine the molecule within equilibrium three-dimensional volumes in the bath V  and protein site ν .5 From that
construction, the ratio of configuration integrals in eq. [S11] rewrites exactly 
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and the equilibrium constant resumes 

K Y (n ,χ)=ρnK Y (n)×e
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in terms of the molecular density  ρ  of the ligand, its desolvation energies  Wn
*−WY

**(n)  and the associated  excess free-energy
difference ΔΔ F(Y 0→Yn ,0→χ)≡ΔF (Y n , 0→χ)−Δ F (Y 0 , 0→χ) . To simplify notation, any potential dependence of the binding site
volume with the protein conformation is not shown in eq. [S12] i.e., v≡vY .
As made explicit in eq. [S12], ligand interaction may affect the energy coupling of the protein with the external device and therefore,
it may impact the conformational free-energy of the protein in a stimulus dependent manner. With similar arguments as from eq. [S6],
the excess free-energy difference between bound and unbound states is clear and mostly derives from the net displacement of ⟨χ̄ ⟩Yn , 0
induced by the ligands

ΔΔ F(Y 0→Yn ,0→χ)≈−χ[⟨χ̄ ⟩Y n ,0−⟨χ̄ ⟩Y 0 , 0]≡−χΔ ⟨χ̄ ⟩n ,Y . [S13]
On the other hand, K X(n)  is the stimulus-independent binding constant of the ligand to the protein site volume v . The relevance of
K Y (n)  is clear as it ensures the probability of any occupancy state of the protein to be known accordingly 

PY (n)=ZY
−1 ρnK Y (n) [S14]

with, normalization given by the grand canonical partition function Z Y≡∑n '
ρn' KY (n' ) . Implicit in eq. [S14] is the fact that PY (n)

depends on the molecular density of the ligand thus implying a concentration-dependent average occupancy of the protein by ⟨n⟩Y
molecules where, ⟨n⟩Y=∑n'

n' PY (n ') . 

Conformational Equilibrium of the Protein in Presence of Ligands.  From eq. [S7, S12, S13 and S14], system’s probabilities in
reaction An→←

χ
Bn  can be expanded across every occupancy state of the protein conformations at a fixed ligand concentration     

{PAn(χ)=∑n '
PA(n ' ,χ)=PA(0 ,χ)ZAe

+βχΔ⟨ χ̄⟩ n, A

PBn(χ)=∑n '
PB(n' ,χ)=PA(0 ,χ)K (χ)ZBe

+βχΔ⟨ χ̄⟩n, B
.

The resulting probability of state Bn  then rewrites in the form of the two-state Boltzmann equation 

PBn (χ )≡[1+P An(χ)/PBn (χ )]−1
=[1+αK (χ )−1]−1

=[1+αe+β(χm−χ)Δ ⟨χ̄⟩ ]−1
[S15]
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now embodying the grand-canonical partition functions of the protein subsystem and the subjacent free-energy contributions derived

from ligand binding α≡
ZA e

+βχΔ ⟨χ̄ ⟩n , A

ZBe
+βχΔ ⟨χ̄ ⟩n , B

. 

For small low-affinity ligands,  α  derives essentially from the grand-canonical partition function ratio  ZA /ZB  (see main-text for
more  details).  For  a  scenario  in  which  two  or  more  distinct  sites  of  the  protein  v=v1+...+vs  are  respectively  occupied  by
n=n1+ ...+n s  small low-affinity molecules, the partition ratio at a fixed concentration may be more conveniently expressed in terms

of a generalized  binding constant  K Y (n1 , ... ,ns )  by detailing eq. [S12] over every possible multi-occupancy state of the protein
subsystem.6 Because computation of WY

**(n1 , ... , ns)  increases significantly with the number of inter-correlated sites along the protein
structure, the generalized constant cannot be applied to solve in practice multiple correlated binding events unless for the condition of
independent sites in which K Y (n1 , ... , ns)≈KY (n1)×...×KY (ns)  

K Y (n1)=
v1
n1

n1!
e−β[n1 μ̄−W Y

** (n1 )]

...

KY (ns)=
vs
ns

ns!
e−β[nsμ̄−W Y

**(ns)]

[S16]

- here, it is understood that each binding constant refers to the equilibrium reaction between the unbound and bound state of the
protein at the level of a single binding site. In the condition of independent binding sites, the partition function factorizes as a product
of individual contributions 

ZA
ZB

=
∑n1

' ,... , ns
' ρ̄
n1
'+ ...+ns

'

K A(n1
' , ... ,ns

' )

∑n1
' ,... , ns

' ρ̄
n1
' +...+ns

'

K B(n1
' , ... , ns

' )
≈
Z A ,1×...×ZA , s
Z B ,1×...×ZB ,s

. [S17]

By describing ligand binding over multiple independent sites, eq. [S15, and S17] are generalizations of the classical Monod-Wyman-
Changeux (MWC) model devised for allosteric modulation of proteins7 and commonly used in the study of transcription factors in
presence of ligand molecules.8 
Extrapolation of the analysis to the case of highly degenerate interactions allows eq. [S17] to be expressed in terms of a partition
phenomenon at the molecular interface of proteins. Under low-affinity interactions, the energetics of the protein subsystem rewrites as
a function of the partition process at a fixed concentration

K Y (nY )≡
vnY
nY!

℘Y
nY ,     ℘Y=e

−β [W 1
*−W Y

** (1)] [S18]

in  which  a  discrete  average  number  of  ligands  nY=⌊⟨n⟩Y ⌋  migrates  from  the  bath  (*)  into  the  protein  (**)  according  to  a
conformation-dependent  partition  coefficient  ℘Y .9 In  analogy  to  an  “aggregate”  binding  constant  of  the  ligand  over  multiple
microscopic sites  of  the protein  K Y (n1 , ... ,ns ) ,  eq.  [S18]  then defines an equilibrium constant  for  the partition process  at  the
macroscopic volume of the protein interface  v  such that,

ZA
ZB

=
1+ρnAK A(nA)
1+ρnBK B(nB)

. [S19]

While eq. [S18] is only valid under dilution, the partition coefficient  might deviate from its dilute value  in consequence of self
interactions of the ligand. In the case of non-specific low-affinity binders, self interaction energies were demonstrated to cancel out
over the free-energy difference W 1

*−WY
**(1)  and the partition coefficient to be an effective concentration-independent function of the

desolvation energies under dilution. As such, for the case of non-specific low-affinity binders, eq. [S18] can be resolved under dilution
by taking into consideration high-concentration estimates of ℘Y

'  that can be efficiently learned from flooding-MD simulations of the
protein embedded in a non-saturating environment rich of ligands.9
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SUPPLEMENTARY RESULTS, FIGURES AND TABLES 

Figure S1. Simulation of the partition process. (Top) Representative initial and final equilibrium flooding-MD configurations of the channel (white)
embedded in a fully-hydrated lipid bilayer (ochre) and in presence of a high concentration of the ligand (red).  (Bottom)  Instantaneous number of
ligands in the water, membrane and within 5.0 Å of the protein. Steady-state was defined according to the simulation time in which sevoflurane fully
partitions across the system t*>100ns .

Table-S1. Equilibrium properties of flooding MD simulations: Decomposition of the bath volume 
Bath Waters Bath Lipids

Y Simulation n1  (#) v 1  (Å3)
n1

v 1
 (M) xL  n2  (#) v2  (Å3)

n2

v 2
 (M) xL

C
1 2.90±2.152 917.513x103 0.005 8.08x10-5 106.13±4.450 567.148x103 0.312 0.25
2 1.55±1.709 917.513x103 0.003 4.33x10-5   73.68±3.876 567.148x103 0.216 0.17
3 1.02±2.147 917.513x103 0.002 2.83x10-5   53.38±2.983 567.148x103 0.156 0.12

O
1 3.70±3.398 971.833x103 0.006 9.58x10-5 104.17±5.092 598.743x103 0.289 0.24
2 3.06±2.246 971.833x103 0.005 7.94x10-5   69.59±5.946 598.743x103 0.193 0.16
3 3.40±2.577 971.833x103 0.006 8.80x10-5   48.06±3.666 598.743x103 0.133 0.11

+Where, V=v1+v2  and N−n=n1+n2 . Here, n1  and n2  were determined by averaging the number of ligands over the respective partition volumes of
the bath. xL  is the mole fraction of the ligand.

4


