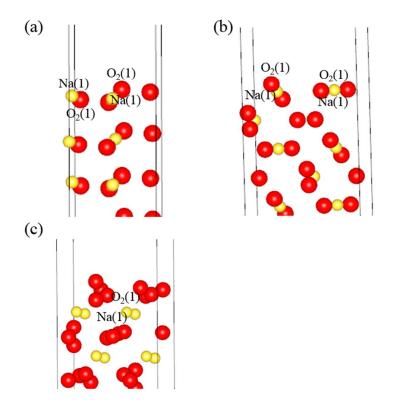

First-principles study on the origin of low charging overpotential of the sodium oxygen batteries

Byungju Lee¹, Dong-Hwa Seo², Hee-Dae Lim¹, Inchul Park¹, Kyu-Young Park¹, Jinsoo Kim¹, and Kisuk Kang²,*


¹Department of Materials Science and Engineering, Seoul National University, Seoul, 151-742, Republic of Korea

²Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 151-742, Republic of Korea

Supplementary Material

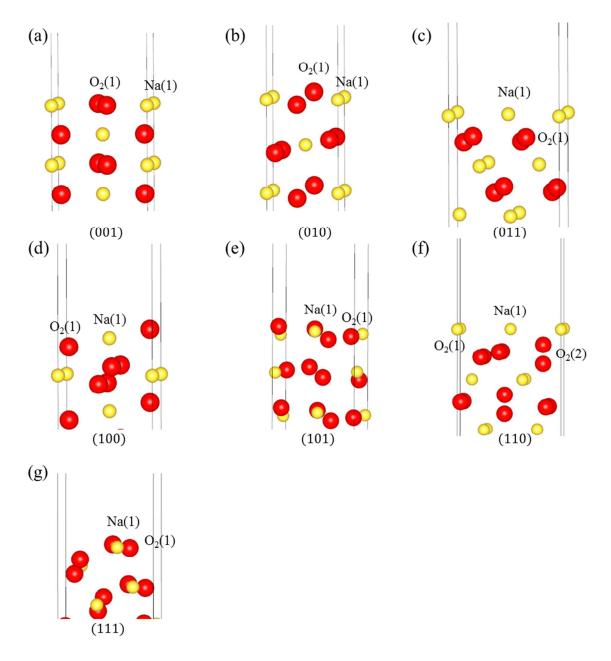

Figure S1. Relationship between cell voltage and oxygen partial pressure, (a) in the Na/O₂ cell and (b) in the Li/O₂ cell. Higher cell voltage is related with more negative Gibbs free energy, according to Nernst equation; $\mu_{metal} - \mu_{metal}^0 = -nFE_{cell}$, where μ_{metal} is chemical potential of metal (Na or Li) in structure, μ_{metal}^0 is chemical potential of pure metal, n is the number of charge of metal ion, F is faraday constant, E_{cell} is the voltage of the cell.

Figure S2. Surface unit cells of pyrite NaO₂. The yellow and red atoms correspond to sodium and oxygen, respectively. Three low-index surfaces were considered. As termination with an O atom rather than an O_2 dumbbell made the surface unstable, such terminations were not considered in this study.

Orientation	Termination	Na ₂ O ₂ limit	O ₂ limit
(100)	O ₂ (1)-Na(1)*	13	13
	O ₂ (1)	48	21
	Na(1)	128	156
(110)	O ₂ (1)-Na(1)-Na(2)*	26	26
	$O_2(1)$	62	42
	Na(1)-Na(2)	51	70
	$O_2(1)$ -Na(1)	28	18
(111)	O ₂ (1)	34	18
	Na(1)	42	58

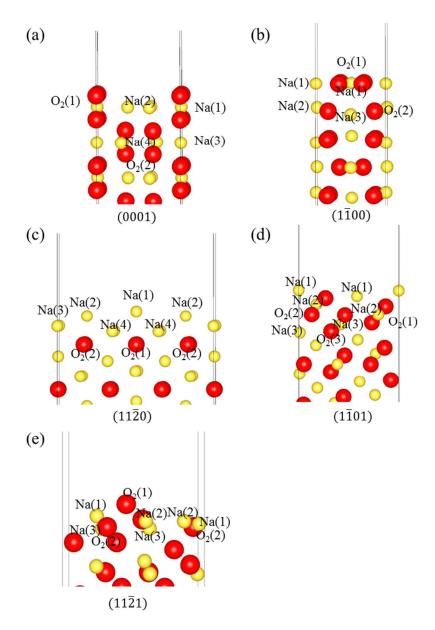

Table S1. Surface energies of pyrite NaO₂ for all possible terminations. The star symbols (*) indicate stoichiometric surfaces. The most stable termination of each surface was used to construct the Wulff shape. (in meV/Å²)

Figure S3. Surface unit cells of marcasite NaO₂. The yellow and red atoms correspond to sodium and oxygen, respectively. Seven low-index surfaces were considered.

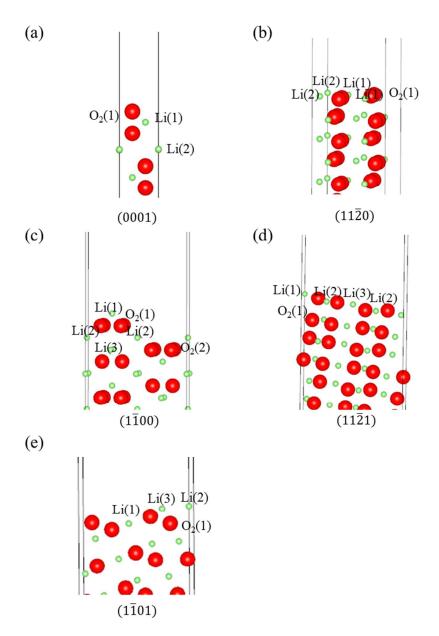
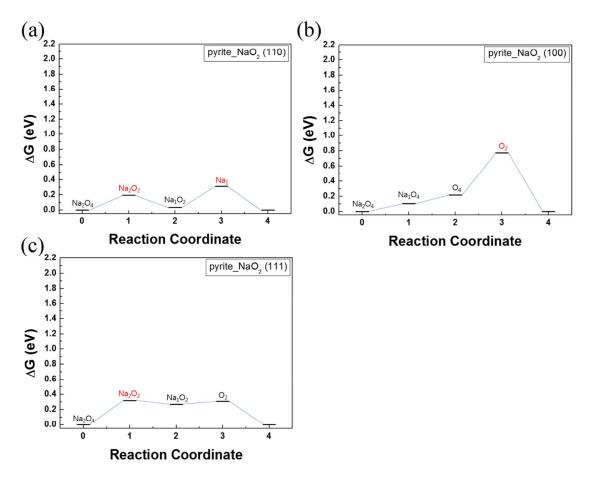
Orientation	Termination	Na ₂ O ₂ limit	O ₂ limit
(001)	O ₂ (1)-Na(1)*	29	29
	O ₂ (1)	35	15
	Na(1)	68	89
	$O_2(1)$ -Na(1)*	23	23
(010)	$O_2(1)$	52	18
	Na(1)	140	174
(011)	$O_2(1)$ -Na(1)	57	75
	$O_2(1)$	32	14
	O ₂ (1)-Na(1)*	37	37
(100)	O ₂ (1)	49	24
	Na(1)	90	116
	O ₂ (1)-Na(1)*	16	16
(101)	$O_2(1)$	47	15
	Na(1)	76	92
(110)	$Na(1)-O_2(1)-O_2(2)$	65	85
	$O_2(1)-O_2(2)$	42	21
	$O_2(1)^*$	37	37
	O ₂ (2)*	37	37
(111)	O ₂ (1)-Na(1)*	25	25
	O ₂ (1)	32	17
	Na(1)	52	66

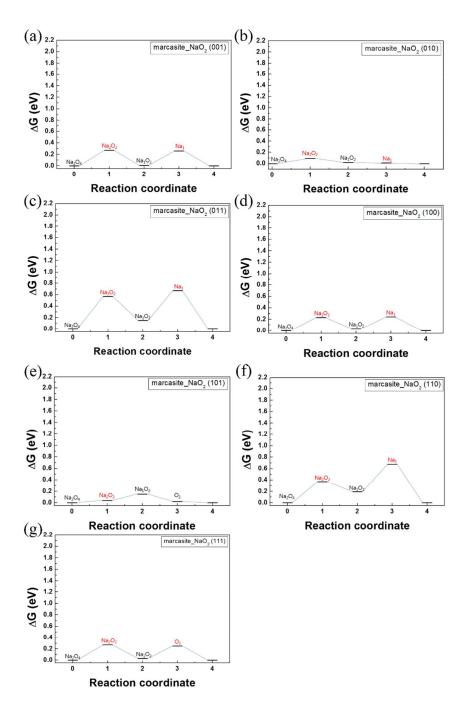
Table S2. Surface energies of NaO2 for all possible terminations. The star symbols (*)indicate stoichiometric surfaces. (in meV/Å2)

Figure S4. Surface unit cells of Na₂O₂. The yellow and red atoms correspond to sodium and oxygen, respectively. Five low-index surfaces were considered. There were many terminations because of the low symmetry of the Na₂O₂ structure. The top and bottom surfaces of the $(11\overline{2}0)$ and $(11\overline{2}1)$ surfaces could not be terminated equally because of low symmetry, hence atoms that were positioned at the same crystallographic site were terminated.

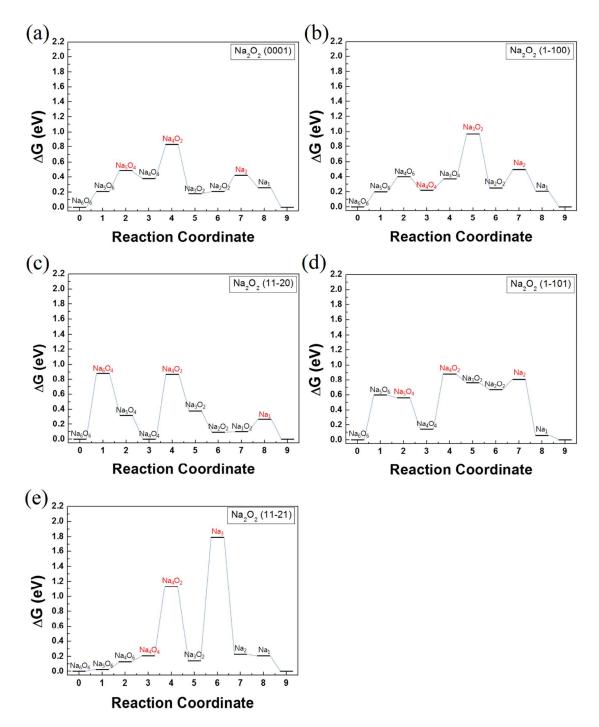
Orientation	Termination	Na ₂ O limit	NaO ₂ limit
	O2(1)-Na(1)-Na(2)-O2(2)-Na(3)-Na(4)	56	62
(0001)	Na(1)-Na(2)-O ₂ (2)-Na(3)-Na(4)	150	182
	O ₂ (1)-Na(2)-O ₂ (2)-Na(3)-Na(4)	43	37
	O ₂ (1)-Na(1)-O ₂ (2)-Na(3)-Na(4)	48	29
	$O_2(1) - O_2(2) - Na(3) - Na(4)$	73	41
	Na(1) -O ₂ (2)-Na(3)-Na(4)	69	76
	Na(2)-O ₂ (2)-Na(3)-Na(4)	36	55
	O ₂ (2)-Na(3)-Na(4)	35	28
	O ₂ (2)-Na(4)	54	34
	O ₂ (2)-Na(3)	66	34
	O ₂ (2)	84	39
	O ₂ (1)-Na(1)-Na(2)-O ₂ (2)-Na(3)*	47	47
	Na(1)-Na(2)-O ₂ (2)-Na(3)	149	180
	$O_2(1) - Na(2) - O_2(2) - Na(3)$	62	32
(1700)	Na(2)-O ₂ (2)-Na(3)*	51	51
(1100)	Na(2)-O ₂ (2)	49	34
	$O_2(2)$ -Na(3)	50	35
	O ₂ (2)	63	32
	Na(2)	102	117
	Na(1)-Na(2)-Na(3)-Na(4)-O2(1)-O2(2)	136	162
	Na(2)-Na(3)-Na(4)-O ₂ (1)-O ₂ (2)	103	120
	Na(3)-Na(4)-O ₂ (1)-O ₂ (2)*	32	32
(1120)	$Na(4)-O_2(1)-O_2(2)$	40	31
	$O_2(1) - O_2(2)$	62	35
	O ₂ (1)	102	111
	$O_2(2)$	79	70
	Na(1)-O ₂ (1)-Na(2)-O ₂ (2)-Na(3)-O ₂ (3)	52	57
	$O_2(1)-Na(2)-O_2(2)-Na(3)-O_2(3)$	41	26
	$Na(2)-O_2(2)-Na(3)-O_2(3)$	77	82
	$O_2(1)-O_2(2)-Na(3)-O_2(3)$	73	38
(1101)	$O_2(1)$ -Na(2) -Na(3)- $O_2(3)$	65	70
	$O_2(1)$ -Na(3)- $O_2(3)$	56	41
	Na(2)-Na(3)-O ₂ (3)	125	150
	$O_2(2)$ -Na(3)- $O_2(3)$	75	60
	Na(3)-O ₂ (3)	77	82
	Na(3)	124	148
	O ₂ (3)	54	49
	Na(1)-O ₂ (1)-Na(2)-O ₂ (2)-Na(3)*	45	45
(1121)	$O_2(1)$ -Na(2)- $O_2(2)$ -Na(3)	56	41
	$Na(2)-O_2(2)-Na(3)^*$	76	76
	Na(2)-Na(3)	148	177
	Na(3)	98	112
	$O_2(2)$ -Na(3)	60	46
	O ₂ (2) (A(3))	203	174

Table S3. Surface energies of Na_2O_2 for all possible terminations. The star symbols (*) indicate stoichiometric surfaces. (in meV/Å²)


Figure S5. Surface unit cells of Li_2O_2 . The green and red atoms correspond to lithium and oxygen, respectively. Five low-index surfaces were considered.

Orientation	Termination	Li ₂ O limit	O ₂ limit
(0001)	O(1)-Li(1)-O(2)-Li(2)	38	32
	Li(1)-O(2)-Li(2)	65	72
	Li(2)	131	138
	O(2)-Li(2)	224	218
	Li(1)-O ₂ (2)-Li(3)*	35	35
	Li(1)-O ₂ (1)-Li(2)-O ₂ (2)-Li(3)	49	45
(1700)	O ₂ (1)-Li(2)-O ₂ (2)-Li(3)	68	60
(1100)	Li(2)-O ₂ (2)-Li(3)*	119	119
	O ₂ (2)-Li(3)	42	38
	Li(3)	131	136
	Li(1)-Li(2)-O ₂ (1)*	55	55
(1120)	Li(2)-O ₂ (1)	47	42
(1120)	Li(1)-O ₂ (1)	49	44
	O ₂ (1)	52	42
	Li(1)-Li(2)-Li(3)-O ₂ (1)	78	76
	Li(1)-Li(2)-O ₂ (1)	84	78
(1101)	Li(1)-Li(3)-O ₂ (1)	91	84
	Li(2)-Li(3)-O ₂ (1)	102	92
	Li(1)-O ₂ (1)	93	78
	Li(2)-O ₂ (1)	107	92
	Li(3)-O ₂ (1)	95	84
	O ₂ (1)	94	74
(1121)	Li(1)-Li(2)-Li(3)-O ₂ (1)	56	55
	Li(2)-Li(3)-O ₂ (1)	48	41
	Li(1)-Li(3)-O ₂ (1)	54	48
	Li(3)-O ₂ (1)	56	44


Table S4. Surface energies of Li_2O_2 for all possible terminations. The star symbols (*) indicate stoichiometric surfaces. (in meV/Å²) The energies of terminations were in good agreement with the results of Mo *et al.*; [Reference 13 in the paper] slight differences derive from computational details. Note that Mo *et al.* referred to the (11 $\overline{2}0$) surface as (1 $\overline{1}00$), (1 $\overline{1}00$) as (11 $\overline{2}0$), (11 $\overline{2}1$) as (1 $\overline{1}01$), and (1 $\overline{1}01$) as (11 $\overline{2}1$). There are no stoichiometric terminations in the (1 $\overline{1}01$) and (11 $\overline{2}1$) surfaces, but Mo *et al.* considered stoichiometric terminations, resulting in different surface energies, for the (1 $\overline{1}01$) and (11 $\overline{2}1$) surfaces.

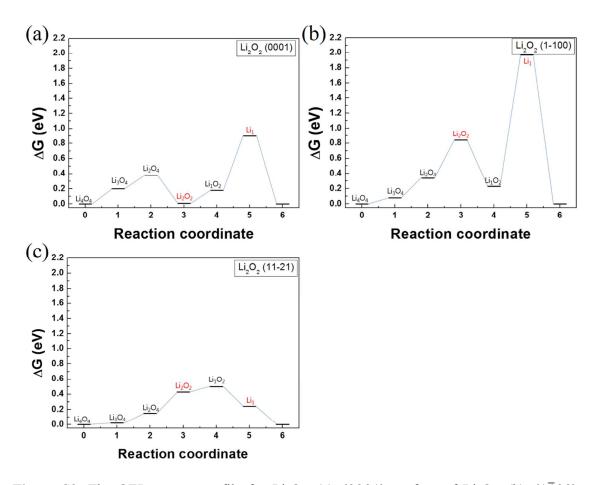

Figure S6. The OER energy profile for pyrite NaO_2 . (a) (100) surface of pyrite NaO_2 , (b) (110) surface of pyrite NaO_2 , (c) (111) surface of pyrite NaO_2 . The most favorable reaction paths are shown. The chemical steps are shown in red.

Figure S7. The OER energy profile for marcasite NaO₂. (a) (001) surface of marcasite NaO₂, (b) (010) surface of marcasite NaO₂, (c) (011) surface of marcasite NaO₂, (d) (100) surface of marcasite NaO₂, (e) (101) surface of marcasite NaO₂, (f) (110) surface of marcasite NaO₂, and (g) (111) surface of marcasite NaO₂. The most favorable reaction paths are shown. The chemical steps are shown in red.

Figure S8. The OER energy profile for Na₂O₂. (a) The (0001) surface of Na₂O₂, (b) the (1 $\overline{1}00$) surface of Na₂O₂, (c) the (11 $\overline{2}0$) surface of Na₂O₂, (d) the (1 $\overline{1}01$) surface of Na₂O₂, and (e) the (11 $\overline{2}1$) surface of Na₂O₂. The most favorable reaction paths are shown. The chemical steps are shown in red.

Figure S9. The OER energy profile for Li_2O_2 . (a) (0001) surface of Li_2O_2 , (b) (1 $\overline{1}00$) surface of Li_2O_2 , and (c) (11 $\overline{2}1$) surface of Li_2O_2 . The most favorable reaction paths are shown. The chemical steps are shown in red. Since (11 $\overline{2}0$) and (1 $\overline{1}01$) surfaces cannot be found in Wulff shape, the OER profiles of these surfaces were not calculated.

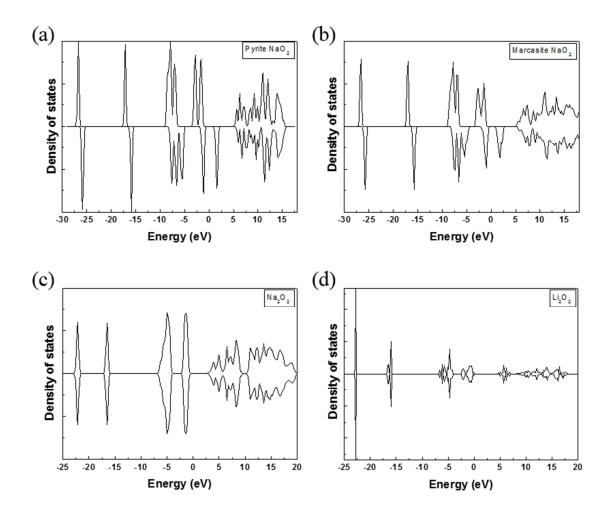


Figure S10. Density of state of (a) pyrite NaO₂, (b) marcasite NaO₂, (c) Na₂O₂, (d) Li₂O₂.