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Figure S1. Flow chart of model development and performance evaluation steps. 
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Figure S2. Histograms of building-wide maximum and 90th percentile lead concentrations across all centers.  
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Additional Methods Information 

Discretization  

Several other supervised discretization algorithms were also tested, such as Minimum 

Description Length Principle (MDLP), Class-Attribute Interdependence Maximization (CAIM), and Ameva 

algorithms (each of which has been shown to adequately represent the true data distribution with a 

minimal number of discrete intervals1–3), but these were found to inadvertently remove certain variables 

before the machine learning step by failing to select any cut points, thus rendering them unusable in a 

BN model. Since variables in both the training and test set must have the same intervals for BN models, 

the cut points selected by the discretization algorithm for the training set were then manually applied to 

the test set. Although discretization of the complete data set prior to machine learning (rather than 

performing separate discretization steps on the training and test sets) is common in BN modelling,4–6 the 

manual application of the training set cut points to the test set minimizes potential data leakage 

concerns. 

Structure learning and feature selection 

Additional measures of arc strength were assessed alongside Chi-squared tests, including 

whether removing the node from the network would result in a reduction of the model’s Akaike 

Information Criterion or Bayesian Information Criterion, and whether the node was connected to the 

target at least 10% of the time during 100 bootstrapped unsupervised structure learning iterations. The 

various variable selection approaches performed comparably with the exception of the Bayesian 

Information Criterion (Figure S3). Chi-squared tests were chosen because they allowed missing values in 

the training set to be handled transparently, whereas the other approaches required imputation as a 

pre-processing step (see “Missing values processing” below). An example of the arc strengths calculated 

by the Chi-squared tests can be seen for the Max≥1 model in Figure S4. The bootstrapping procedure 

yielded significantly fewer variables and could be used to simplify the models further if many of the 

variables selected by Chi-squared tests were unavailable in certain areas.  
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Figure S3. Comparison of model performance after 10-fold cross validation using various variable selection criteria, 
including AIC, BIC, Chi-squared tests, and bootstrapping. The various criteria yielded similarly performing models 
except for BIC. For this comparison, missing values in the training set were imputed using structural expectation 
maximization. Chi-squared tests were ultimately selected as the variable selection criteria for their ability to handle 
missing values.  

 

Figure S4. Strength of association between the target and all possible predictor nodes for model Max>=1 
determined by Chi-Squared tests. Predictors not directly associated with the target node (dashed lines) were 
removed from the model.  
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Missing values processing 

The final data set contained only 6.2% missing values. While there is no recognized cutoff for an 

acceptable level of missingness for statistical analysis, <10% missing data is generally considered low, 

with little bias expected on the result.7 However, a little over half of the facilities were missing data for 

at least one field. The missingness pattern can be seen in Figure S5.  

 

Figure S5. Missingness pattern of the complete data set. Overall, the data set contained only 6.2% missing values, 
but over half of the facilities were missing data for at least one field. 
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Most of the missing data were related to enrollment and demographic information (e.g., 

percent non-white students, percent free/reduced lunch students, total enrollment) that was not 

entered or was entered incorrectly by the facility during their registration with the Clean Water for 

Carolina Kids program (for example, erroneous enrollment numbers resulting in >100% non-White; in 

these cases, the values were treated as missing). These data are considered missing not at random 

(MNAR) since the missingness mechanism is likely a function of the variable itself (e.g., centers with a 

higher proportion of children of color may be more likely to accidently misreport their student 

demographic information compared to centers with only White students, or centers with a higher 

proportion of free/reduced lunch children may not want this information to be known due to stigma 

around receiving free services8). Additional missing data were related to Lead and Copper Rule 

monitoring and water system information in cases where facility staff either did not know or did not 

report which community water system they were served by, were served by a private well, or operated 

as a NTNC water system. We consider these data to be missing at random (MAR) because their 

missingness depends on other factors in the data set, such as water system type.  

To assess the effect of missingness in the training data set on model development, we 

conducted a sensitivity analysis to evaluate several different approaches to handling missing values,9 

including multiple imputation by chained equations (MICE),10,11 structural expectation maximization 

(SEM) from a separate unsupervised BN,11,12 estimating conditional probability distributions for each 

network node using complete observations for that node’s local network.13 The results of this sensitivity 

analysis can be seen in Figure S6. Overall, the MI and SEM imputation approaches provided negligible 

benefit in performance while significantly increasing computational costs compared to handling missing 

values transparently.  

Meanwhile, missing values could not be ignored in the test data set since the “predict” function 

in bnlearn requires complete evidence to predict the probability of the target node. One advantage of 

BNs is that, once trained, the network structure itself can be used to estimate missing values in a test set 

using Bayesian likelihood weighting.14 Given the potential difficulty of collecting building-specific data in 

some cases, missing values are highly likely in practice. Thus, practitioners could feasibly apply our 

models to new data without having to develop a separate imputation procedure to handle missing 

values before prediction. To eliminate data leakage concerns and to best simulate the model’s practical 

performance where no prior knowledge of the outcome is available, our model strips the test data 

(whether the external test set, the test fold during k-fold cross validation, or the training data itself 

when assessing the internal model performance) of the real result of the target outcome and generates 
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a random guess in its place. A random guess is necessary because the “impute” function in bnlearn 

needs a data set that matches the structure of the network, so the target variable cannot be blank. 

Importantly, this simulates how practitioners would approach the model with missing data and does not 

introduce any “unfair” information to the model during prediction. The random guess is then removed 

after the imputation step and the predicted probability of the target node is calculated using the 

imputed testing data as evidence.  

 

 

Figure S6. Comparison of model performance after 10-fold cross validation using various approaches to handle 
missing values in the data set, including using complete observations from each nodes local network, multiple 
imputation by chained equations (MICE) and structural expectation maximization (SEM). Overall, the results were 
not significantly affected by the imputation procedure. 
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Figure S7. Structures of the eight final models. Interactive versions can also be seen at: 
www.cleanwaterforcarolinakids.org/publications/bn_models 

http://www.cleanwaterforcarolinakids.org/publications/bn_models
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Figure S8. Receiver operating characteristic (ROC) curves for each model. Models predicting the maximum lead 
level (max >1, >5, >10, and >15) are shown on the left. Models predicting the 90th percentile lead level (P90 >1, >5, 
>10, >15) are shown on the right.  
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Figure S9. Relationship between the prior probability of each model, indicating the level of class imbalance, and 
the AU-ROC (pink), AU-PR (grey), and F2-score (gold) performance metrics (F1-scores are not shown for visual 
clarity, but follow a similar trend as F2-scores). AU-ROC values are insensitive to large class imbalance, while AU-PR 
and F2-scores reveal decreasing predictive performance for more rare outcomes.  



S14 
 

 

Figure S10. Precision-recall (PR) curves for each model. Models predicting the maximum lead level (max >1, >5, 
>10, and >15) are shown on the left. Models predicting the 90th percentile lead level (P90 >1, >5, >10, >15) are 
shown on the right.  
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Figure S11. Posterior probabilities of the four most frequently selected variables across all eight models compared 
to each model’s prior. The width of the bars shows the range of impact of each variable on building-wide lead risk. 
Grey diamonds indicate the prior probability of each model target considering all states. Models are ordered on 
the y-axis according to the size of the variable’s impact on the target, with models where the variable was more 
impactful at top.  
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Figure S12. Posterior probabilities for the variable “Past Faucet Fixture Change” for the seven models where it was 
included. If the center did not know whether any past faucets had been changed significantly increased the 
building-wide water lead risk.  

 

 

Figure S13. Posterior probabilities for the variables “Home-based” (Panel A) and “School-based” (Panel B) 
highlighting decreases in risk for small home-based centers, and increases in risk for larger school-based centers 
for certain model targets.  
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Figure S14. Posterior probabilities for the variables “Phosphate addition” (Panel A) and “pH adjustment” (Panel B) 
highlighting increases in water lead risk in child care centers served by water systems (public or private) that do 
not use phosphate-based corrosion inhibitors or pH adjustment.  

 

 

Figure S15. Posterior probabilities for the variable “Past LCR exceedance” for the five models where it was 
included. If the center relied on a private well it was coded as “LCR NA,” indicating that Lead and Copper Rule 
monitoring is not applicable. Private well water significantly increased the building-wide water lead risk, whereas a 
past action level (AL) exceedance by the water utility decreased the risk.   
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Figure S16. Tornado charts showing the minimum and maximum posterior probabilities and node states for all 
variables included in each model. The dashed vertical line in each chart shows the prior probability of the target for 
each model. Posterior probabilities to the right indicate increased risk; posterior probabilities to the left indicate 
decreased risk. The width of the line indicates the magnitude of the effect of the variable on the target.  
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Figure S17. Plots comparing the sensitivity improvement and sampling reduction achieved by each model 
compared to the alternative heuristics. Models predicting the maximum lead level (max >1, >5, >10, and >15) are 
shown on the left. Models predicting the 90th percentile lead level (P90 >1, >5, >10, >15) are shown on the right.  
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Table S1. Variables included in the Clean Water for Carolina Kids data set15 used as predictors in the BN models to 
predict building-wide lead risk.  

Variable 
Name 

Abbreviated name Description Variable type Summary 

Building information 
Ownership OWN_OR_LEASE Whether the center 

building was owned or 
leased. 

Binary 
 

Own: 2,774 
Lease: 1,229 
 

School-based school Whether the center 
was located in a 
school building 

Binary School-based: 742 
Not school-based: 
3,261 

Home-based home_based Whether the center 
was located in a home 

Binary Home-based: 192 
Not home-based: 
3,811 

Franchised franchised Whether the center 
was part of a franchise 

Binary Franchised: 205 
Not franchised: 3,798 

Year built BUILT_cat Year the building was 
constructed  

Categorical 
(Pre-1988, 1988-2013, 
or Post 2014) 

Pre-1988: 1,944 
1988-2013: 1,875 
After 2014: 184 

Community water 
system 

cws Whether the center 
was connected to a 
public community 
water system (CWS) 

Binary Connected to CWS: 
3,452 
Not connected to 
CWS: 551 

# samples nsamples The number of 
drinking and cooking 
water samples 
collected for analysis 
by the center (center 
staff were instructed 
to sample all drinking 
and cooking taps).  

Discrete Mean: 5.7 
Median: 4 
Max: 51 
Missing: 0 

Percent filtered perc_filtered The percentage of 
taps sampled by each 
center that had a 
point-of-use filter 
installed and was 
flagged as filtered by 
center staff. 

Continuous Mean: 12% 
Median: 0% 
Max: 100% 
Missing: 96 (2.4%) 

Private well private_well Whether the center 
used a private well for 
its water supply. This 
was determined 
according to whether 
the center responded 
“No” to the question 
“Does your drinking 
water come from a 
public water 
treatment plant?” and 
“Yes” to the question 
“Does the center use 
well water?” This 
variable was not 
mutually exclusive 
with “Community 
water system” 

Binary Private well: 175 
No private well: 3,828 
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suggesting that a) 
some non-CWS 
systems receive water 
from a source other 
than a well, b) that 
center staff were not 
aware that they were 
served by a CWS, or c) 
the center staff were 
not aware that they 
received water from a 
private well.  

On-site 
wastewater 
system 

WASTE_SYSTEM Whether the center 
was served by an 
onsite wastewater 
system 

Categorical  
(Community, On-site, 
Unknown) 

Community: 2,580 
On-site: 535 
Unknown: 888 

Past faucet fixture 
change 

Y_N_FIXTURE_CHG Whether the center 
had any known past 
faucet fixture changes 

Categorical  
(Yes, No, Don’t Know) 

Yes: 1474 
No: 876 
Don’t Know: 1,653 

Year of past 
faucet fixture 
change 

fixture_year_cat Year of past faucet 
fixture change 

Categorical  
(Pre-1988, 1988-2013, 
or Post 2014. If 
answer to “Fixture 
change” was “No,” or 
“Don’t Know” default 
to “Year built”.) 

Pre-1988: 1,013 
1988-2013: 2,000 
After 2014: 990 

Year center began 
operating 

year_began_operating_cat Year the licensed 
center began 
operating 

Categorical  
(Pre-1988, 1988-2013, 
or Post 2014) 

Pre-1988: 423 
1988-2013: 2,548 
After 2014: 1,032 

Demographic information 
Percent 
free/reduced 
lunch 

PER_FREE Percent of enrolled 
children receiving 
free/reduced lunch 

Continuous Mean: 55% 
Median: 66% 
Max: 100% 
Missing: 821 (20.5%) 

Percent non-
White 

PER_NON_WHITE Percent of enrolled 
children identifying as 
non-White 

Continuous Mean: 53% 
Median: 53% 
Max: 100% 
Missing: 1,108 
(27.7%) 

Total enrolled TOTAL_ENROLL Total number of 
children enrolled 

Discrete Mean: 5 
Median: 4 
Max: 65 
Missing: 562 (14%) 

Head Start head_start Whether the center 
was a federally funded 
Head Start program 

Binary Head Start: 521 
Not Head Start: 3,482 

Opportunity Zone opzone Whether the center 
was located in an area 
designated as a HUD 
Opportunity Zone 

Binary In Opportunity Zone: 
570 
Not in Opportunity 
Zone: 3,434 
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Table S2. Additional variables included in the data set compiled from publicly available data sources.  

Variable 
Name 

Abbreviated 
name 

Description Variable 
type 

Summary  Data 
source 

Past LCR 
exceedance 

any_lcr_exceedance Whether the facility 
was served by a water 
system with an action 
level exceedance 
(≥10% of collected 
water samples 
collected by the utility 
exceeding 15 ppb) in 
the five years prior to 
Clean Water for 
Carolina Kids sampling 
(2016-2021). If served 
by a private well, 
coded as “LCR NA” but 
not missing.  

Categorical Past exceedance: 55  
No past exceedance: 
2,889 
LCR NA: 4.3% 
Missing: 884 (22%) 

EPA Safe 
Drinking 
Water 
Information 
System16 

Source water 
type 

type_binary Water system source 
water type. 
Groundwater use 
indicates groundwater 
alone; if a water 
system used any 
surface water it was 
coded as surface 
water. Centers 
reporting using 
private well water 
default to 
groundwater. Other 
centers not served by 
a community water 
system coded as 
missing.  

Binary Groundwater: 610 
Surface water: 2,772 
Missing: 622 (15.5%) 

North 
Carolina 
Drinking 
Water 
Watch17 

# connections 
of water 
system 

connections_cat Number of service 
connections in the 
water system. Centers 
reporting using 
private well water 
default to 1 service 
connection. Other 
centers not served by 
a community water 
system coded as 
missing. 

Categorical <3300 (Small, very 
small, and private 
systems): 766 
3301-10000 
(Medium systems): 
744 
>10001 (Large, very 
large systems): 1971  
Missing: 622 (15.5%) 

North 
Carolina 
Drinking 
Water 
Watch17 

Phosphate 
addition 

Phos_binary Whether the water 
system implements 
phosphate-based 
corrosion control. 
Centers reporting 
using private well 
water default to no 
phosphate addition.  
Other centers not 
served by a 
community water 

Binary Phosphate addition: 
1,944 
No phosphate 
addition: 1,438 
Missing: 622 (15.5%) 

North 
Carolina 
Drinking 
Water 
Watch17 
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system coded as 
missing. 

pH adjustment pH_binary Whether the water 
system implements 
pH adjustment. 
Centers reporting 
using private well 
water default to no 
pH adjustment.  Other 
centers not served by 
a community water 
system coded as 
missing. 

Binary pH adjustment: 
2,481 
No pH adjustment: 
901 
Missing: 622 (15.5%) 

North 
Carolina 
Drinking 
Water 
Watch17 

 

 

Coagulation coagulation Whether the water 
system implements 
coagulation in the 
treatment train. 
Centers reporting 
using private well 
water default to no 
coagulation.  Other 
centers not served by 
a community water 
system coded as 
missing. 

Binary Coagulation: 1,947 
No coagulation: 
1,435 
Missing: 622 (15.5%) 

North 
Carolina 
Drinking 
Water 
Watch17 

Chloramines chloramines Whether the water 
system uses 
chloramination for 
disinfection. Centers 
reporting using 
private well water 
default to no 
chloramination.  
Other centers not 
served by a 
community water 
system coded as 
missing. 

Binary Chloramines: 1,032 
No chloramines: 
2,350 
Missing: 622 (15.5%) 

North 
Carolina 
Drinking 
Water 
Watch17 

Urbanicity ruca_cat Whether the center 
was located in a 
metropolitan, 
micropolitan, small 
town, or rural area 
based on Rural-Urban 
Commuting Area 
(RUCA) code 

Categorical Metropolitan: 2,920 
Micropolitan: 669 
Rural: 161 
Small town: 24 
Missing: 8 (0.1%) 
 

US 
Department 
of 
Agriculture, 
Economic 
Research 
Service18 

Block group 
median 
household 
income 

med_hh_income_cbg Median household 
income of the block 
group where each 
facility was located 

Continuous Mean: 56,031 
Median: 49,458 
Max: 250,001 
Missing: 174 (4.3%) 

American 
Community 
Survey 
202019 

Block group 
educational 
attainment 

perc_hs_higher_cbg Proportion of block 
group population 
having attained a high 
school degree or 
higher 

Continuous Mean: 0.13 
Median: 0.11 
Max: 0.77 
Missing: 11 (0.2%) 

American 
Community 
Survey 
202019 

Block group % 
non-White 

perc_non_white_cbg Proportion of block 
group population that 
identified as a race 

Continuous Mean: 0.39 
Median: 0.34 
Max: 1.0 

American 
Community 
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Table S3. Summary of all performance metrics for each model. 

Model 
name 

Prior 
probability 
of model 

target 
AU-ROC full 
training set 

Mean 
AU-ROC 
10-fold 
cross 

validation 
on 

training 
set 

AU-
ROC 
test 
set 

AU-PR 
training set 

Mean 
AU-PR 
10-fold 
cross 

validation 
on 

training 
set 

AU-
PR 

test 
set 

Max 
F1-

score 

Max 
F2-

score 

Max>1 0.56 0.75 0.73 0.70 0.78 0.76 0.73 0.76 0.87 

Max>5 0.21 0.72 0.71 0.76 0.43 0.43 0.38 0.48 0.62 

Max>10 0.13 0.75 0.72 0.74 0.32 0.31 0.26 0.38 0.52 

Max>15 0.09 0.73 0.69 0.76 0.24 0.24 0.20 0.31 0.43 

P90>1 0.49 0.71 0.68 0.66 0.70 0.68 0.63 0.69 0.84 

P90>5 0.15 0.71 0.67 0.71 0.31 0.31 0.22 0.37 0.52 

P90>10 0.07 0.72 0.65 0.75 0.21 0.20 0.14 0.25 0.37 

P90>15 0.05 0.67 0.62 0.69 0.12 0.16 0.10 0.22 0.28 

 

 

Table S4. Summary of mean F1 and F2 scores for each heuristic from 10-fold cross validation.  

 F1 scores F2 scores 

Heuristic Mean Range BN model mean % 
improvement 

Mean Range BN model mean % 
improvement 

Groundwater 0.23 0.15-0.31 80% 0.23 0.20-0.25 142% 

Head Start 0.23 0.14-0.28 83% 0.22 0.19-0.25 155% 

Pre-1988 
buildings 

0.28 
0.11-0.53 65% 0.36 0.22-0.53 51% 

Private well 
water 

0.14 
0.10-0.19 248% 0.11 0.07-0.16 506% 

 

  

category other than 
White alone 

Missing: 11 (0.2%) Survey 
202019 
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Table S5. Summary table of all significant variables included in each model. Interactive model structures can also 
be seen at www.cleanwaterforcarolinakids.org/publications/bn_models.  

Model Variables included Model Variables included 

Max>1 

% free/reduced lunch enrollment 

P90>1 

% free/reduced lunch enrollment 

% non-White enrollment # samples 

Total enrollment % taps filtered 

# samples Head Start 

% taps filtered School-based 

Head Start Home-based 

School-based Past faucet fixture change 

Home-based Year of past faucet fixture change 

Past faucet fixture change Year center began operating 

Year of past faucet fixture change Source water type 

Year center began operating pH adjustment 

Source water type Chloramination 

pH adjustment # connections of water system 

Chloramination Urbanicity 

# connections of water system Block group median household income 

Urbanicity 

P90>5 

% free/reduced lunch enrollment 

Max>5 

% free/reduced lunch enrollment # samples 

Total enrollment Head Start 

# samples School-based 

Head Start Home-based 

School-based Past faucet fixture change 

Home-based Source water type 

Past faucet fixture change # connections of water system 

Year center began operating Past LCR exceedance 

Source water type Block group % non-White 

# connections of water system On-site wastewater system 

Max>10 

% free/reduced lunch enrollment 

P90>10 

% free/reduced lunch enrollment 

# samples # samples 

Head Start Head Start 

School-based School-based 

Home-based Home-based 

Past faucet fixture change Past faucet fixture change 

Source water type Source water type 

# connections of water system pH adjustment 

Past LCR exceedance Past LCR exceedance 

Phosphate addition Phosphate addition 

Max>15 
% free/reduced lunch enrollment Block group % non-White 

# samples On-site wastewater system 

http://www.cleanwaterforcarolinakids.org/publications/bn_models
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Head Start Block group educational attainment 

School-based 

P90>15 

% free/reduced lunch enrollment 

Home-based # samples 

Past faucet fixture change Head Start 

Year center began operating Source water type 

Source water type pH adjustment 

pH adjustment Past LCR exceedance 

Past LCR exceedance On-site wastewater system 

Phosphate addition   

Block group % non-White   
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