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1. Way to explore M

cE  

Since the difference in M

cE  
concerning with the interface geometrical structure 

is negligibly small,
1
 the values of EC=C and EC-M for the calculation will be taken from 

the zigzag-structured interface here. With reference to Singh,
1
 EC-M and EC=C with M 

= BN here will be calculated by the simulation method using ZZ-GNRs embedded in 

M with M = BN through EC-M = (Etotal – EGNR – EM)/n1 and EC=C = (Etotal – EM – n1EC 

– n1EC-M – EC-part)/n2. In these expressions, Etotal denotes the total energy of the whole 

system, EGNR the energy of the GNR part, and EM the energy of M part after removing 

the GNR part from the whole system, n1 the number of broken bonds between the 

embedded GNR and M at the interface, EC the energy of the edge C atom in the GNR 

part bonded to M at the interface, EC-part the energy of the left C part that double 

bonded to the edge C atoms of the embedded GNRs, and n2 the number of the broken 

C=C bonds at the edges of GNRs. In view of it, the parameters of Etotal, EGNR, EM, EC 

and EC-part should be given. To have these parameters, the spin-polarized DFT 

calculations are performed using DMol
3
 code.

2,3
 The GGA with PBE is employed as 

the exchange correlation functional.
2
 Double numeric plus polarization and 

all-electron core treatment are adopted for all calculations. 

2. Eg(D) as the function of the physiochemical amount M

2Dα  

To reveal the essential reason for the distinction in the BOs regarding the edge 

geometrical structure and the host material, Figure S1 shows the Eg(D) plot of 

GQDs/M at D = 1.6 nm as specified by the physiochemical amount M

2Dα
 

along the 

x-axis. Eg(D) decreases as M

2Dα  shrinks for GQDs/M, where Eg(D) of the AC 

structure is larger than that of the ZZ case. The reason for this is that the C atoms at 

the AC edge are less stable than those at the ZZ edge because of the 

homogeneous/inhomogeneous repulsion along the ZZ/AC edges, while α2D can 

denote such a difference in the present investigation associated with the chemical 

bonding of edge-C atoms.
4,5

 On the other hand, when M is transformed from BN to 

GA, Eg(D) is ranged from 0.70 to 0.84 eV for the ZZ-structured interface and from 
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Figure S1 Eg(D) of GQDs/M as the function of the physiochemical amount M

2Dα
 

at D 

= 1.6 nm. 

1.10 to 1.25 eV for the AC-structured case. This result suggests that the host material 

can also affect the BOs in GQDs/M, which should be essentially attributed to the 

different atomic cohesive energy of interface-C atoms concerning with the roles 

played by the host material. 

3. Difference in Eg(D) as the function of L assessed between the GGA-PBE 

method and the hybrid sX-LDA functional 

3.1 Eg(D) as the function of L simulated with the GGA-PBE method 
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Figure S2 A simulation on Eg(D) as the function of L with the GGA-PBE method for 

GQDs/GA and GQDs/BN at D = 0.92 nm for the AC-structured interface or D = 1.04 

nm for the ZZ-structured interface. 



Figure S2 shows Eg(D) as the function of L obtained with the GGA-PBE 

simulation method. The Eg(D) size depends largely on the host materials and the 

interface structure, decreasing in the order AC-GQDs/GA, AC-GQDs/BN, 

ZZ-GQDs/GA and ZZ-GQDs/BN. When M = GA, a slight decrease in Eg(D) from 

2.23 to 2.15 eV occurs for the AC-structured interface when L shrinks below 0.55 nm, 

while the change is hardly observed at larger L. Eg(D) changes little in the range at 

1.71 ~ 1.74 eV for the ZZ-structured interface. In the case with M = BN, in contrast, 

an obvious decrease in Eg(D) can be observed from 2.04 to 1.80 eV for the 

AC-structured interface and from 1.66 to 1.47 eV for the ZZ-structured interface 

especially when L < 1.02 for the former and L < 0.93 nm for the latter. 

3.2 Difference in Eg(D) assessed between the GGA-PBE method and the hybrid 

sX-LDA functional 
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Figure S3 The difference in Eg(D) assessed between the GGA-PBE method and the 

hybrid sX-LDA functional denoted with ∆Eg(D) = Eg(D)sX-LDA - Eg(D)GGA-PBE. 

It is generally known that the GGA-PBE method usually underestimates the band 

gap values.
6
 In contrast, the values generated from the hybrid sX-LDA functional is 

more accurate comparable to those experiment results.
7,8 

To evaluate the errors from 

the GGA-PBE method in this work, the difference in Eg(D) between the GGA-PBE 

method and the hybrid sX-LDA functional were plotted as the function of L for 

AC(ZZ)-GQDs/M with ∆Eg(D) = Eg(D)sX-LDA - Eg(D)GGA-PBE. Here, Eg(D)sX-LDA is 

taken from Figure 5 given in the paper, while Eg(D)GGA-PBE is from Figure S2. As 

shown in Figure S3, ∆Eg(D) varies in the range between 0.35 ~ 0.55 eV, while it 



depends largely on the host materials and the interface geometrical structure, 

decreasing in the order of AC-GQDs/BN, AC-GQDs/GA, ZZ-GQDs/BN and 

ZZ-GQDs/GA. As each ∆Eg(D) curve is concerned, in addition, ∆Eg(D) increases 

slightly as L declines for AC-GQDs/BN and ZZ-GQDs/BN, although it decreases 

suddenly as L is decreased to 0.42 nm for AC-GQDs/GA and ZZ-GQDs/GA. 

However, the rangeability values of all ∆Eg(D) curves are limited only at 0.02~0.03 

eV, suggesting that the influence of L on ∆Eg(D) is negligibly small. 

In light of Figure S3, there exist obvious errors with the GGA-PBE method 

concerning with the host materials and the interface geometrical structure. This 

suggests that the hybrid sX-LDA functional should be adopted to check the influence 

from the crystalline field couple. 
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