Understanding Energy Transfer in Gas-Surface Collisions from Gas-Phase Models

Juan J. Nogueira,^{a,1} William L. Hase^{b,} and Emilio Martínez-Núñez^{a,*}

^aDepartamento de Química Física

and

Centro Singular de Investigación en Química Biológica y Materiales Moleculares,

Campus Vida

Universidad de Santiago de Compostela

15782 Santiago de Compostela, Spain

^bDepartment of Chemistry and Biochemistry

Texas Tech University

Lubbock, Texas 79409-1061

Corresponding Author

*Departamento de Química Física and Centro Singular de Investigación en Química Biológica y Materiales Moleculares, Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain. Phone: +34 881815708 E-mail: emilio.nunez@usc.es

¹ Present address: Institute of Theoretical Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria.

Supporting Information

Intramolecular potential function for the hydrocarbons

The geometries of the alkanes and alkenes were taken from the Computational Chemistry Comparison and Benchmark Database (<u>http://cccbdb.nist.gov</u>). In particular, the minimum energy geometries at the MP2/cc-pVDZ level of theory were chosen, except for the CH molecule for which the C-H distance was chosen to be 1.10 Å. The conformation selected for each molecule is listed in the next table:

Hydrocarbon	Conformation		
$^{15}C^{1}H$	-		
CH ₄ methane	-		
C_2H_6 ethane	staggered		
C_4H_{10} n-butane	staggered anti		
C_5H_{10} pent-1-ene	linear		
c-C ₅ H ₁₀ cyclopentane	envelope		
C_6H_{12} hex-1-ene	linear		
c-C ₆ H ₁₂ cyclohexane	twist boat		
C_8H_{18} n-octane	linear		

TABLE 1: Conformations the hydrocarbon projectiles studied in this work.

The parameters which describe the intramolecular interactions for the alkane and alkene molecules were taken from the force field developed by Pierce *et al. (J. Chem. Phys.* 128 (2008) 214903). This force field was parameterized for alkanes and fluoroalkanes so that the potential describes correctly *ab initio* energies and experimental densities and vaporization enthalphies. The intramolecular potential consists of bond, angle and torsion terms:

$$V_{intra} = K_b (r - r_0)^2 + K_a (\theta - \theta_0)^2 + \sum_n \frac{K_{t,n}}{2} (1 - \cos(n\Phi))$$

The intramolecular parameters are listed in the next table:

Bond parameters ^a							
	I	K _b	r_0)			
C-C	30	09.0	1.5	53			
С-Н	32	27.5	1.1	1.10			
		Angle parameters)				
	I	Ka	θ_{i}	0			
$C_2 - C_2 - C_{2/3}^{d}$	54	4.0	112	2.0			
С _{2/3} -С ₂ -Н	4.	3.0	110	110.0			
H-C ₃ -C ₂	4.	3.0	110	110.5			
H-C ₃ -H	3	8.5	107	7.7			
H-C ₂ -H	3	8.5	108	108.2			
Torsion parameters ^c							
	$K_{t,1}$	$K_{t,2}$	<i>K</i> _{<i>t</i>,3}	$K_{t,4}$			
$C_{2/3}$ - C_2 - C_2 - $C_{2/3}$	-0.271	0.152	-0.187	-0.500			
H-C _{2/3} -C _{2/3} -H	0	0	-0.300	0			
H-C _{2/3} -C ₂ -C _{2/3}	0	0	-0.300	0			

TABLE 2: Intramolecular parameters of the hydrocarbons studied in this work.

^a Force constants in kcal/mol/Å² and distances in Å. ^b Force constants in kcal/mol/rad² and angles in degrees.

^c Force constants in kcal/mol.

^d C₃ and C₂ represent C atoms in CH₃ and CH₂ groups respectively.

For the C₅H₁₀ and C₆H₁₂ alkenes the same set of parameters was used except for the equilibrium angles which involve a sp^2 carbon whose values were changed to 120°.

Interaction potential between the hydrocarbons and the F-SAM

The intermolecular interactions between the projectiles and C and F atoms of the F-SAM surface are described by the potential developed by Wang and Hase (J. Phys. Chem. B 109 (2005) 8320) where ab initio energies for the CH₄/CF₄ dimer were fitted to a Buckingham exp-5 potential:

$$V_{ij} = A_{ij} exp(-B_{ij}r_{ij}) + \frac{C_{ij}}{r_{ij}^5}$$

The parameters are listed in the next table:

TABLE 3: Parameters of the C_xH_y + F-SAM intermolecular potential

	A_{ij}	B_{ij}	C_{ij}
C-C	6500.0	6.7422	103.75
C-F	13879	3.0000	756.25
H-C	7514.6	5.1906	1.0937
H-F	7132.7	5.1688	2.3438
4 · 1 1/ 1 D · 8-	10:11185/1		

 A_{ij} in kcal/mol, B_{ij} in Å⁻¹ and C_{ij} in kcal·Å⁵/mol.

The interaction between the projectiles and the S atoms of F-SAM were not considered, and a repulsive potential for the projectile/Au interaction is employed to avoid the collapse between the gas and the gold surface at high collision energies,

$$V_{ij} = A_{ij} exp(-B_{ij}r_{ij})$$

where A_{ij} = 4185200.0 kcal/mol and B_{ij} = 3.873 Å⁻¹.

Results

TABLE 4: Parameters of the energy transfer model (eqs 10 and 11) for B₂ colliding with the F-SAM as a function of the projectile mass $m_{g.}^{a}$.

m_g	$<\Delta E_V >$	a_V	b_V	$c_V^{\ b}$	d_V	
4	0.00	16.10	25.45	6.69	2.04	
10	0.13	5.93	9.84	3.93	11.73	
20	0.15	2.31	8.75	2.54	11.07	
40	0.04	0.69	3.41	1.41	12.74	
60	0.00	0.80	3.47	1.62	23.48	
m_g	$<\Delta E_R >$	a_R	b_R	$c_R^{\ b}$	d_R	
4	0.05	3.57	8.12	3.73	14.99	
10	0.07	3.16	9.16	2.04	11.24	
20	0.08	2.40	9.94	1.25	11.34	
40	0.05	0.57	5.19	0.98	9.69	
60	0.09	0.93	7.68	0.85	18.22	
m_g	$< E_F >_0$	a_F	b_F	$c_F^{\ \ b}$	d_F	
4	1.58	41.43	7.53	22.66	9.80	
10	1.04	21.22	6.69	10.17	10.42	
20	1.25	9.83	7.45	2.75	5.09	
40	0.00					
	0.00	2.67	1.78	1.60	18.88	
60	0.00	2.67	1.78 0.79	1.60 17.33	18.88 42.71	
60 <i>m_g</i>	0.00	$\frac{2.67}{1.40}$	1.78 0.79 <i>b</i> _{VRF}	$\frac{1.60}{17.33}$ P_{∞}	18.88 42.71 <i>d_{VRF}</i>	
60 m_g 4	0.00	$ \begin{array}{r} 2.67 \\ 1.40 \\ a_{VRF} \\ 20.13 \end{array} $	$ \begin{array}{r} 1.78 \\ 0.79 \\ b_{VRF} \\ 4.06 \\ \end{array} $	1.60 17.33 P_{∞} 58.95	18.88 42.71 d _{VRF} 6.51	
$ \begin{array}{c} 60 \\ m_g \\ 4 \\ 10 \end{array} $	0.00	$ \begin{array}{r} 2.67 \\ 1.40 \\ a_{VRF} \\ 20.13 \\ 13.47 \end{array} $	$ \begin{array}{r} 1.78 \\ 0.79 \\ b_{VRF} \\ 4.06 \\ 3.89 \\ \end{array} $	$ \begin{array}{r} 1.60 \\ 17.33 \\ P_{\infty} \\ 58.95 \\ 80.30 \\ \end{array} $	18.88 42.71 d _{VRF} 6.51 6.46	
$ \begin{array}{c} 60 \\ m_g \\ 4 \\ 10 \\ 20 \\ \end{array} $	0.00	2.67 1.40 <i>a_{VRF}</i> 20.13 13.47 5.43	$ \begin{array}{r} 1.78 \\ 0.79 \\ b_{VRF} \\ 4.06 \\ 3.89 \\ 2.35 \\ \end{array} $	$ \begin{array}{r} 1.60 \\ 17.33 \\ P_{\infty} \\ 58.95 \\ 80.30 \\ 90.52 \\ \end{array} $	$ \begin{array}{r} 18.88 \\ 42.71 \\ d_{VRF} \\ 6.51 \\ 6.46 \\ 5.37 \\ \end{array} $	
	0.00	$ \begin{array}{r} 2.67 \\ 1.40 \\ a_{VRF} \\ 20.13 \\ 13.47 \\ 5.43 \\ 4.04 \\ \end{array} $	$ \begin{array}{r} 1.78 \\ 0.79 \\ b_{VRF} \\ 4.06 \\ 3.89 \\ 2.35 \\ 2.21 \\ \end{array} $	$ \begin{array}{c} 1.60\\ 17.33\\ P_{\infty}\\ 58.95\\ 80.30\\ 90.52\\ 95.83\\ \end{array} $	$ \begin{array}{r} 18.88 \\ 42.71 \\ d_{VRF} \\ 6.51 \\ 6.46 \\ 5.37 \\ 15.29 \\ \end{array} $	

^aUnits are such that the energy is in eV and m_g in a.m.u. ^bc is Multiplied by 100 so that it is expressed as a percentage (like P_{∞}).

				1 .	
ω	$<\Delta E_V >_0$	a_V	b_V	$c_V^{\ \ b}$	d_V
300	0.15	2.31	8.75	2.54	11.07
400	0.17	2.65	8.37	3.24	15.74
500	0.14	2.47	7.16	3.85	17.78
600	0.04	2.44	5.75	3.80	18.03
700	0.00	3.20	6.38	4.02	20.68
ω	$<\Delta E_R >_0$	a_R	b_R	$c_R^{\ b}$	d_R
300	0.08	2.40	9.94	1.25	11.34
400	0.06	1.23	7.08	1.96	10.45
500	0.07	1.51	7.34	2.25	12.18
600	0.11	2.79	9.72	2.42	15.74
700	0.13	2.88	9.86	2.60	16.09
ω	$< E_F >_0$	a_F	b_F	$c_F^{\ \ b}$	d_F
300	1.25	9.83	7.45	2.75	5.09
400	1.19	8.60	7.03	3.17	4.88
500	1.21	8.87	7.32	3.05	4.98
600	1.24	8.78	7.48	2.92	5.06
700	1.28	8.81	7.68	2.86	5.09
ω		a_{VRF}	$b_{\it VRF}$	P_{∞}	$d_{V\!RF}$
300		5.43	2.35	90.52	5.37
400		5.08	2.21	90.04	5.24
500		4.95	2.15	89.83	5.15
600		4.96	2.16	89.86	5.08
700		5.12	2.24	89.94	5.12

TABLE 5: Parameters of the energy transfer model (eqs 10 and 11) for B_2 colliding with the F-SAM as a function of the frequency ω .^a

^aUnits are such that the energy is in eV and ω in cm⁻¹.

^b*c* is Multiplied by 100 so that it is expressed as a percentage (like P_{∞}).

Vibration						
L	$<\Delta E_V > 0$	a_V	b_V	$c_V^{\ \ b}$	d_V	
1.00	0.00	0.07	1.02	0.48	31.77	
0.83	0.00	0.10	1.56	0.53	16.68	
0.67	0.00	0.16	1.78	1.00	11.90	
0.50	0.03	0.37	3.29	1.88	10.54	
0.33	0.15	2.31	8.75	2.54	11.07	
L	$<\Delta E_R >_0$	a_R	b_R	c_R^{b}	d_R	
1.00	0.01	0.49	21.63	0.07	25.30	
0.83	0.01	0.53	16.53	0.18	20.32	
0.67	0.02	1.10	12.90	0.51	30.28	
0.50	0.04	1.43	10.68	0.83	15.41	
0.33	0.08	2.40	9.94	1.25	11.34	
L	$< E_F >_0$	a_F	b_F	$c_F{}^b$	d_F	
1.00	0.53	16.40	3.67	71.78	5.74	
0.83	1.40	6.29	5.29	61.76	2.69	
0.67	0.98	5.17	3.52	48.59	3.06	
0.50	1.07	15.12	7.87	23.87	0.18	
0.33	1.25	9.83	7.45	2.75	5.09	
L		a_{VRF}	$b_{\it VRF}$	P_{∞}	$d_{\it VRF}$	
1.00		4.18	4.13	26.39	0.00	
0.83		12.05	2.83	37.66	5.30	
0.67		7.55	2.31	50.13	4.32	
0.50		11.61	3.24	71.06	5.98	
0.33		5.43	2.35	90.52	5.37	

TABLE 6: Parameters of the energy transfer model (eqs 10 and 11) for B_2 colliding with the F-SAM as a function of the intermolecular parameter *L*.^a

^aUnits are such that the energy is in eV and L in Å.

^b*c* is Multiplied by 100 so that it is expressed as a percentage (like P_{∞}).

Figures

Figure 1. Model parameters of eqs 10 and 11, obtained from fits to the simulation results, as a function of ω . Parameters a_j , b_j , c_j and d_j are displayed in panels a, b, c and d, respectively. The subscript *j* refers to *V* (vibration), *R* (rotation), *F* (final translation), or *VRF* (overall energy of the projectile).

Figure 2. Model parameters of eqs 10 and 11, obtained from fits to the simulation results, as a function of *L*. Parameters a_j , b_j , c_j and d_j are displayed in panels a, b, c and d, respectively. The subscript *j* refers to *V* (vibration), *R* (rotation), *F* (final translation), or *VRF* (overall energy of the projectile).