Supporting Information

Structural Changes in Reduced Graphene Oxide upon MnO₂ Deposition by the Redox Reaction between Carbon and Permanganate Ions

Suk-Woo Lee,^{a, ‡} Seong-Min Bak,^{a,b, ‡} Chang-Wook Lee,^a Cherno Jaye,^c Daniel A. Fischer,^c

Bae-Kyun Kim,^d Xiao-Qing Yang,^b Kyung-Wan Nam,^{*,b} and Kwang-Bum Kim^{*,a}

^a Department of Material Science and Engineering, Yonsei University, Seoul 120-749, Korea
^b Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, United States
^c National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
^d Central R&D Institute, Samsung Electro-Mechanics Co., LTD, Suwon, Gyunggi-do 443-743, Korea

* kbkim@yonsei.ac.kr (K.K.), knam@bnl.gov (K.N.)

 \ddagger S.-W. Lee and S.-M. Bak have contributed equally to this paper.

Figure S1. FT-IR spectra of RGO, 75 R-MnO₂/RGO, 75 S-MnO₂/RGO, and CTAB.

Figure S2. Zeta potential of (a) RGO in distilled water and (b) RGO in 1wt.% CTAB aqueous solution.

Figure S2(a) and (b) shows the zeta potentials of RGO in distilled water and RGO in 1wt.% CTAB aqueous solution, respectively. The zeta potential of RGO is negative, at -13.6 mV, in distilled water because of the functionality of the RGO surface.¹ However, RGO in 1 wt.% CTAB aqueous solution has a highly positive zeta potential of +57.5 mV because of the positively charged head group of the absorbed surfactant ions (i.e., CTA⁺ ions) on the RGO surface.

References

(1) Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable Aqueous Dispersions of Graphene Nanosheets. *Nat. Nanotechnol.* **2008**, *3*, 101-105.