Supporting Information

Structural Changes in Reduced Graphene Oxide upon MnO_{2} Deposition by the Redox Reaction between Carbon and Permanganate Ions

 Bae-Kyun Kim, ${ }^{d}$ Xiao-Qing Yang, ${ }^{b}$ Kyung-Wan Nam, ${ }^{*, b}$ and Kwang-Bum Kim ${ }^{*, a}$
${ }^{\text {a }}$ Department of Material Science and Engineering, Yonsei University, Seoul 120-749, Korea
${ }^{\text {b }}$ Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, United States
${ }^{c}$ National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
${ }^{\text {d }}$ Central R\&D Institute, Samsung Electro-Mechanics Co., LTD, Suwon, Gyunggi-do 443-743, Korea
* kbkim@yonsei.ac.kr (K.K.), knam@bnl.gov (K.N.)
${ }^{7}$ S.-W. Lee and S.-M. Bak have contributed equally to this paper.

Figure S1. FT-IR spectra of RGO, 75 R- $\mathrm{MnO}_{2} / \mathrm{RGO}, 75 \mathrm{~S}-\mathrm{MnO}_{2} / \mathrm{RGO}$, and CTAB.

Figure S2. Zeta potential of (a) RGO in distilled water and (b) RGO in 1wt.\% CTAB aqueous solution.

Figure S2(a) and (b) shows the zeta potentials of RGO in distilled water and RGO in $1 \mathrm{wt} . \%$ CTAB aqueous solution, respectively. The zeta potential of RGO is negative, at -13.6 mV , in distilled water because of the functionality of the RGO surface. ${ }^{1}$ However, RGO in $1 \mathrm{wt} . \%$ CTAB aqueous solution has a highly positive zeta potential of +57.5 mV because of the positively charged head group of the absorbed surfactant ions (i.e., CTA ${ }^{+}$ions) on the RGO surface.

References

(1) Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable Aqueous Dispersions of Graphene Nanosheets. Nat. Nanotechnol. 2008, 3, 101-105.

