Highly Diastereoselective Preparation of Aldol Products Using New Functionalized Allylic Aluminum Reagents

Zhi-Liang Shen, ${ }^{\dagger}$ Zhihua Peng, ${ }^{\dagger}$ Chun-Ming Yang, ${ }^{\dagger}$ Julian Helberg, ${ }^{\dagger}$ Peter Mayer, ${ }^{\dagger}$ Ilan Marek, ${ }^{\ddagger}$ and Paul Knochel ${ }^{*,}{ }^{+}$
${ }^{\dagger}$ Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
${ }^{\ddagger}$ The Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of Chemistry and Lise Meitner-Minerva Center for Computational Quantum Chemistry, TechnionIsrael Institute of Technology, Technion City, Haifa 32000, Israel

E-mail: paul.knochel@cup.uni-muenchen.de

Table of Contents

General Information 2
Experimental Procedure 2
Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectral of Products 21

General Information

All reactions were carried out under nitrogen atmosphere in flame-dried glassware. Syringes which were used to transfer anhydrous solvents or reagents were purged with nitrogen prior to use. THF was continuously refluxed and freshly distilled from sodium benzophenone ketyl under nitrogen and stored over molecular sieves. Aluminum powder (99\%, ~200 mesh) was purchased from Aldrich. Indium(III) chloride (anhydrous, 99.99%) was purchased from Chempur. Yields refer to isolated yields of compounds estimated to be $>95 \%$ pure as determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(25{ }^{\circ} \mathrm{C}\right)$ and capillary GC. Column chromatography was performed using SiO_{2} ($0.040-0.063$ mm, 230 - 400 mesh ASTM) from Merck. All reagents were obtained from commercial sources.

Experimental Procedure

1. Preparation of silyl enol ethers 5a-c. ${ }^{1}$

To a 250 mL round-bottomed flask was sequentially added ketone $4(50 \mathrm{mmol}$), $\mathrm{CH}_{3} \mathrm{CN}(80 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}(6.07 \mathrm{~g}, 8.4 \mathrm{~mL}, 60 \mathrm{mmol})$, $\mathrm{TESCl}(9.04 \mathrm{~g}, 60 \mathrm{mmol}, 10 \mathrm{~mL})$, and $\mathrm{NaI}\left(9 \mathrm{~g}, 60 \mathrm{mmol}\right.$, pre-dried at $90{ }^{\circ} \mathrm{C}$ for 12 h under high vacuum). The reaction mixture was stirred at room temperature for 12 h . After the reaction conversion was completed as monitored by GC analysis, the resulting mixture was extracted by isohexane ($100 \mathrm{~mL} \times 3$) through vigorous stirring of the reaction mixture with isohexane. The combined extracts were washed with saturated aqueous NaHCO_{3} (50 $\mathrm{mL})$, brine (50 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and removal of the solvent under vacuum, the residue obtained was directly purified by silica gel column chromatography using isohexane and ethyl acetate as eluant to afford the corresponding silyl enol ether $\mathbf{5}$ as colorless oil.

[^0]Cyclohexenyloxytriethylsilane (5a) ${ }^{1 a}$

The reaction was performed according to the above procedure using cyclohexanone $4 \mathbf{a}$ ($4.91 \mathrm{~g}, 50 \mathrm{mmol}$), leading to the corresponding silyl enol ether $\mathbf{5 a}$ in 90% yield (9.6 g) as colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=4.88-4.85(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.96(\mathrm{~m}, 4 \mathrm{H}), 1.69-1.61$ ($\mathrm{m}, 2 \mathrm{H}$), 1.54-1.47 (m, 2H), 1.00-0.95 (m, 9H), 0.69-0.61 (m, 6H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=150.4,103.9,29.9,23.8,23.2,22.4,6.7,5.1$.
IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=2952,2934,2876,1667,1458,1366,1266,1237$, 1186, 1170, 1004, 986, 885, 827, 741, 726, 682.
MS (EI, 70 eV): m/z (\%) = 212 (${ }^{+}, 17$), 184 (15), 183 (100), 169 (22), 156 (15), 155 (13), 103 (12).

HRMS ($\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{OSi}$, EI): calc.: 212.1596; found: $212.1593\left(\mathrm{M}^{+}\right)$.

1-Benzyl-4-(triethylsilyloxy)-1,2,3,6-tetrahydropyridine (5b)

The reaction was performed according to the above procedure using 1-benzylpiperidin-4-one $\mathbf{4 b}$ ($9.47 \mathrm{~g}, 50 \mathrm{mmol}$), leading to the corresponding silyl enol ether $5 \mathbf{5}$ in 78% yield (11.78 g).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=7.39-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.80(\mathrm{tt}, \mathrm{J}=3.5,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.61(\mathrm{~s}, 2 \mathrm{H}), 3.01(\mathrm{dt}, J=3.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{ttd}, J=5.8,2.5$, $1.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.03-0.97(\mathrm{~m}, 9 \mathrm{H}), 0.74-0.60(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=149.0,138.5,129.0,128.1,126.9,101.0,62.0$, 51.4, 49.9, 30.3, 6.6, 5.0.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=2953,2910,2874,2798,1677,1454,1371,1360$, 1238, 1215, 1185, 1125, 1004, 966, 873, 813, 771, 729, 697.

MS (EI, 70 eV): m/z (\%) = 304 (17), 303 (${ }^{+}$, 60), 302 (100), 274 (13), 266 (15), 211 (13), 187 (11), 172 (14), 161 (26), 149 (10), 91 (16).

HRMS ($\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NOSi}$, EI): calc.: 302.1940; found: $302.1941\left(\mathrm{M}^{+}-\mathrm{H}\right)$.

8-((Triethylsilyl)oxy)-1,4-dioxaspiro[4.5]dec-7-ene (5c)

The reaction was performed according to the above procedure using 1,4-dioxaspiro[4.5]decan-8-one $4 \mathrm{c}(7.81 \mathrm{~g}, 50 \mathrm{mmol})$, leading to the corresponding silyl enol ether 5 c in 87% yield (11.8 g).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=4.73(\mathrm{tt}, J=3.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.95(\mathrm{~m}, 4 \mathrm{H})$, $2.26-2.23(\mathrm{~m}, 4 \mathrm{H}), 1.81(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.01-0.95(\mathrm{~m}, 9 \mathrm{H}), 0.70-0.62(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta / \mathrm{ppm}=149.9,107.7,100.4,64.4,34.0,31.2,28.5,6.7$, 5.0.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=2953,2875,1670,1373,1238,1204,1184,1117$, 1061, 1018, 986, 948, 857, 758, 742, 727, 669.

MS (EI, 70 eV): m/z (\%) = 271 (19), 270 ($\mathrm{M}^{+}, 100$), 240 (14), 227 (12), 197 (24), 171 (26), 157 (15), 143 (13), 141 (20), 138 (18), 127 (54), 115 (22), 103 (77), 101 (21), 99 (15), 92 (16), 87 (48), 75 (44), 67 (14), 59 (63), 57 (12), 55 (19), 47 (16), 42 (13), 41 (11).

HRMS ($\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Si}$, EI): calc.: 270.1651; found: $270.1638\left(\mathrm{M}^{+}\right)$.
2. Chlorination of silyl enol ethers 5a-c by NCS. ${ }^{2}$

5a: $\mathrm{X}=\mathrm{CH}_{2}$
2a: $\mathrm{X}=\mathrm{CH}_{2}$ (40\%)
5b: $X=N B n$
2b: $X=N B n$ (58\%)

2c: $x=<_{0}^{O}$ (69\%)

To a solution of silyl enol ether $5(20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added NCS (2.67 g, 20 mmol , pre-dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$) in one portion, and the mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 30 min . After reaction the solvent was removed under vacuum and the resulting residue was diluted by isohexane (300 mL). The white precipitate of succinimide was filtered off and the filtrate was evaporated under vacuum. Further

[^1]purification by silica gel column chromatography using isohexane and ethyl acetate as eluant provided the product $\mathbf{2}$ as colorless oil.
(6-Chlorocyclohex-1-enyloxy)triethylsilane (2a)

The reaction was performed according to the above procedure using silyl enol ether 5 ($4.25 \mathrm{~g}, 20 \mathrm{mmol}$), leading to the corresponding allylic chloride $\mathbf{2 a}$ in 40% yield (1.98 g , contaminated with 20% regioisomer A) as colorless oil.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta / \mathrm{ppm}=4.99$ (dd, $J=5.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), $4.37(\mathrm{t}, J=2.9$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.35-1.56 (m, 6H), 1.04-0.98 (m, 9H), 0.75-0.67 (m, 6H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=148.7,107.5,58.3,32.9,23.8,17.1,6.7,5.0$.
IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=2952,2876,1659,1457,1366,1334,1231,1196$, 1010, 982, 896, 877, 830, 766, 728, 705, 677.

MS (EI, 70 eV): m/z (\%) = 219 (35), 218 (17), 217 (100), 210 (14), 181 (17), 179 (14), 151 (15), 149 (11), 123 (48), 121 (87), 111 (12), 108 (12), 103 (19), 97 (23), 95 (16), 95 (22), 87 (31), 85 (15), 83 (22), 82 (10), 81 (17), 79 (24), 77 (20), 75 (20), 71 (22), 70 (12), 69 (29), 68 (15), 67 (20), 65 (11), 59 (26), 57 (44), 56 (14), 55 (34), 44 (21), 43 (30), 43 (53), 41 (30).

HRMS ($\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{ClOSi}$, EI): calc.: 246.1207; found: $246.1202\left(\mathrm{M}^{+}\right)$.

1-Benzyl-3-chloro-4-(triethylsilyloxy)-1,2,3,6-tetrahydropyridine (2b)

The reaction was performed according to the above procedure using silyl enol ether $\mathbf{5 b}(6.07 \mathrm{~g}, 20 \mathrm{mmol})$, leading to the corresponding allylic chloride $\mathbf{2 b}$ in 58% yield (3.91 g) as colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=7.42-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.97(\mathrm{dd}, \mathrm{J}=4.2,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.33 (tt, J = 3.9, 1.3 Hz, 1H), 3.78 (d, J=13.3 Hz, 1H), $3.59(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$ (ddt, $J=15.5,4.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.82$ (ddd, $J=12.4,3.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.06-1.00 (m, 9H), 0.78-0.70 (m, 6H).
${ }^{13} \mathrm{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=147.3,137.6,128.8,128.2,127.1,105.0,61.3$, 57.6, 56.6, 51.3, 6.6, 4.9.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=2954,2875,2800,1668,1454,1356,1238,1210$, 1137, 1058, 1005, 976, 869, 802, 729, 696.

MS (EI, 70 eV): m/z (\%) =338 (12), 337 ($\mathrm{M}^{+}, 14$), 336 (27), 303 (20), 302 (84), 301 (21), 300 (22), 289 (22), 288 (100), 115 (5), 91 (42), 87 (6).

HRMS ($\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{CINOSi}$, EI): calc.: 336.1550; found: $336.1544\left(\mathrm{M}^{+}-\mathrm{H}\right)$.

9-Chloro-8-((triethylsilyl)oxy)-1,4-dioxaspiro[4.5]dec-7-ene (2c)

B
The reaction was performed according to the above procedure using silyl enol ether $5 \mathrm{c}(5.41 \mathrm{~g}, 20 \mathrm{mmol})$, leading to the corresponding allylic chloride $\mathbf{2 c}$ in 69% yield (4.22 g , contaminated with 5% regioisomer B) as colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=4.90-4.87(\mathrm{~m}, 1 \mathrm{H}), 4.56-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.91$ ($\mathrm{m}, 4 \mathrm{H}$), 2.54-2.19 (m, 4H), 1.02-0.96 (m, 9H), 0.74-0.66 (m, 6H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=147.5,106.7,103.5,64.5,64.3,56.3,41.4,34.3$, 6.6, 4.9.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=2954,2876,1658,1363,1238,1216,1202,1141$, 1123, 1085, 1047, 1016, 1002, 946, 864, 828, 801, 727, 703, 676.
MS (EI, 70 eV): m/z (\%) = 304 (${ }^{+}, 6$), 277 (28), 276 (14), 275 (88), 270 (18), 269 (100), 262 (29), 216 (10), 190 (21), 188 (65), 123 (15), 121 (41), 115 (22), 87 (31), 86 (80), 73 (11), 59 (22).

HRMS ($\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{ClO}_{3} \mathrm{Si}$, EI): calc.: 304.1261 ; found: 304.1247 (M^{+}).
3. Preparation of allylic aluminium reagents 1a-c. ${ }^{3}$

[^2]

Aluminum powder ($0.162 \mathrm{~g}, 6 \mathrm{mmol}$) and $\mathrm{InCl}_{3}(22 \mathrm{mg}, 0.1 \mathrm{mmol})$ were placed in a nitrogen-flushed flask and flame-dried for 5 min by heat gun $\left(380{ }^{\circ} \mathrm{C}\right)$ under high vacuum. The flask was evacuated and backfilled with nitrogen 3 times and THF (2 mL) was added. A solution of allylic chloride $2(2 \mathrm{mmol})$ in THF (2 mL) was added at room temperature, and the resulting solution was stirred at room temperature for 1-3 days (1 day for substrates $\mathbf{2 a - b}, 3$ days for substrate $\mathbf{2 c}$). The resulting allylic aluminum reagent 1 (ca. 70% yields for $1 \mathbf{1 a - b}$, ca. 50% yield for 1c) was directly used in the following reactions with various aromatic aldehydes and methyl ketones.
4. General procedure for the reaction of allylic aluminum reagents 1a-c with various carbonyl compounds.

The above preformed allylic aluminum reagents 1a-c were slowly added to a solution of an aromatic aldehyde or methyl ketone (1 mmol) in THF (3 mL) at $-78{ }^{\circ} \mathrm{C}$ and the mixture was stirred at this temperature for 2 h . After warming to room temperature, the reaction mixture was quenched with water (10 mL) and extracted with ethyl acetate ($30 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Further purification by silica gel column chromatography using ethyl acetate and isohexane as eluant provided the homoallylic alcohols 3a-g as colorless oil. The diastereoselectivities of the products were determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude reaction mixture (after workup) by integration of the ratio of the two peaks arising from the alkene proton which mostly have typical doublet of doublet of doublets pattern (within 4.5-5.5 ppm area).
(4-Bromophenyl)(2-(triethylsilyloxy)cyclohex-2-enyl)methanol (3a)

The reaction was performed according to the above procedure using 4bromobenzaldehyde ($0.185 \mathrm{~g}, 1 \mathrm{mmol}$), leading to the corresponding homoallylic alcohol 3a in 85% yield $(0.337 \mathrm{~g})$ with $95: 5 \mathrm{dr}$ as colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 5.20(\mathrm{~d}, \mathrm{~J}$ $=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{td}, J=4.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 2.01-$ $1.95(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.06-1.01(\mathrm{~m}, 9 \mathrm{H}), 0.78-0.70(\mathrm{~m}$, $6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta / \mathrm{ppm}=149.6,141.6,131.0,127.8,120.4,107.5,72.4$, 46.3, 24.0, 22.7, 21.3, 6.8, 5.1.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=3461,2952,2874,1700,1662,1486,1457,1237$, 1212, 1172, 1070, 1009, 969, 911, 841, 815, 740, 724, 675.

MS (EI, 70 eV): m/z (\%) = 396 ($\mathrm{M}^{+}, 0.08$), 213 (16), 212 (100), 187 (12), 185 (18), 183 (42), 169 (14), 156 (12), 115 (67), 103 (27), 87 (39), 78 (11), 77 (21), 75 (25), 59 (21).

HRMS ($\left.\mathrm{C}_{19} \mathrm{H}_{\mathbf{2 9}} \mathrm{BrO}_{\mathbf{2}} \mathrm{Si}, \mathrm{EI}\right):$ calc.: 396.1120; found: $396.1123\left(\mathrm{M}^{+}\right)$.
(2,5-Dimethoxyphenyl)(2-(triethylsilyloxy)cyclohex-2-enyl)methanol (3b)

The reaction was performed according to the above procedure using 2,5dimethoxybenzaldehyde ($0.166 \mathrm{~g}, 1 \mathrm{mmol}$), leading to the corresponding homoallylic alcohol 3b in 90% yield $(0.34 \mathrm{~g})$ with $92: 8 \mathrm{dr}$ as colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=7.13-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.76-6.75(\mathrm{~m}, 2 \mathrm{H}), 5.58(\mathrm{~d}, \mathrm{~J}$ $=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{ddd}, \mathrm{J}=4.9,3.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.70-2.61$ $(\mathrm{m}, 1 \mathrm{H}), 2.17(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 1.71-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.19(\mathrm{~m}, 2 \mathrm{H}), 1.07-1.02(\mathrm{~m}, 9 \mathrm{H})$, $0.78-0.70(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=153.5,150.3,150.0,132.1,113.4,112.0,110.9$, 107.6, 67.7, 55.7, 55.6, 43.6, 24.1, 22.8, 21.6, 6.8, 5.0.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=3477,2949,2874,1697,1661,1495,1463,1276$, 1212, 1177, 1155, 1047, 1007, 902, 802, 729, 715.

MS (EI, 70 eV): m/z (\%) = 281 (12), 212 (26), 183 (19), 167 (100), 139 (19), 103 (10), 87 (14), 75 (13), 59 (10).

HRMS ($\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}$, EI): calc.: 378.2226 ; found: $378.2236\left(\mathrm{M}^{+}\right)$.

4-(1-Hydroxy-1-(2-(triethylsilyloxy)cyclohex-2-enyl)ethyl)benzonitrile (3c)

The reaction was performed according to the above procedure using 4acetylbenzonitrile ($0.145 \mathrm{~g}, 1 \mathrm{mmol}$), leading to the corresponding homoallylic alcohol $\mathbf{3 c}$ in 76% yield (0.272 g) with 95:5 dr as colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=7.57(\mathrm{~s}, 4 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 4.91$ (ddd, $\mathrm{J}=5.6,3.0$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.61(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.18(\mathrm{~m}, 3 \mathrm{H})$, 1.00-0.94 (m, 9H), 0.74-0.65 (m, 6H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=151.7,150.3,131.2,127.0,119.0,110.1,107.3$, 77.0, 49.3, 28.5, 26.4, 23.7, 21.0, 6.6, 4.9.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=3484,2954,2876,2228,1660,1166,1018,907$, 826, 729.

MS (EI, 70 eV): m/z (\%) = 260 (16), 213 (18), 212 (100), 211 (10), 184 (10), 183 (53), 169 (16), 156 (13), 146 (37), 130 (21), 116 (11), 115 (95), 103 (37), 102 (13), 87 (59), 79 (12), 75 (34), 59 (31), 47 (100), 43 (42).

HRMS ($\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{Si}$, El): calc.: 358.2202; found: $358.2208\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

3-Methyl-3-(2-(triethylsilyloxy)cyclohex-2-enyl)isobenzofuran-1(3H)-one (3d)

The reaction was performed according to the above procedure using ethyl 2acetylbenzoate ($0.192 \mathrm{~g}, 1 \mathrm{mmol}$), leading to the corresponding lactone 3d in 79% yield (0.282 g) with 98:2 dr as colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=7.77(\mathrm{dt}, \mathrm{J}=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{td}, \mathrm{J}=7.6$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 2 \mathrm{H}), 4.85(\mathrm{ddd}, \mathrm{J}=4.7,3.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.67(\mathrm{~m}, 1 \mathrm{H})$, 2.00-1.84 (m, 2H), 1.67 ($\mathrm{s}, 3 \mathrm{H}$), 1.64-1.51 (m, 2H), 1.33-1.20 (m, 2H), 0.90-0.86 (m, 9H), 0.63-0.57 (m, 6H).
${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=170.0,154.0,148.9,133.4,128.4,126.3,125.1$, 121.2, 106.4, 89.5, 45.2, 26.4, 26.1, 23.5, 20.3, 6.5, 4.7.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=2934,2253,1759,1466,1223,904$.
MS (EI, 70 eV): m/z (\%) = 358 (${ }^{+}$, 4), 329 (33), 212 (18), 211 (100), 183 (11), 148 (16), 147 (93), 115 (31), 87 (26).
HRMS $\left(\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}\right.$, El$)$: calc.: 358.1964; found: $358.1968\left(\mathrm{M}^{+}\right)$.
(1-Benzyl-4-(triethylsilyloxy)-1,2,3,6-tetrahydropyridin-3-yl)(phenyl)methanol (3e)

The reaction was performed according to the above procedure using benzaldehyde ($0.106 \mathrm{~g}, 1 \mathrm{mmol}$), leading to the corresponding homoallylic alcohol $3 \mathbf{e}$ in 69% yield (0.283 g) with $95: 5 \mathrm{dr}$ as colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta / \mathrm{ppm}=7.48-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.23-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.03-7.00$ $(\mathrm{m}, 2 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{dd}, J=5.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.33$ $(\mathrm{m}, 2 \mathrm{H}), 2.92(\mathrm{~d}, \mathrm{~J}=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dt}, J=14.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.12(\mathrm{~m}, 2 \mathrm{H})$, 1.13-1.08 (m, 9H), 0.86-0.78 (m, 6H).
${ }^{13} \mathrm{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=149.4,144.7,137.0,129.8,128.5,127.8,127.5$, 126.0, 125.5, 101.9, 73.4, 62.2, 52.1, 49.2, 46.8, 6.7, 5.0.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=3251,2954,2875,1673,1454,1369,1358,1261$, 1238, 1199, 1188, 1126, 1049, 1023, 988, 908, 893, 849, 726, 698.
MS (EI, 70 eV): m/z (\%) = 409 ($\mathrm{M}^{+}, 3.5$), 304 (14), 303 (40), 302 (100), 300 (15), 261 (14), 221 (13), 115 (12), 91 (41), 87 (14).

HRMS ($\left.\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{NO}_{2} \mathrm{Si}, \mathrm{EI}\right)$: calc.: 409.2437; found: 409.2445 (M^{+}).
(1-Benzyl-4-(triethylsilyloxy)-1,2,3,6-tetrahydropyridin-3-yl)-1-(2bromophenyl)ethanol (3f)

The reaction was performed according to the above procedure using 1-(2bromophenyl)ethanone ($0.199 \mathrm{~g}, 1 \mathrm{mmol}$), leading to the corresponding homoallylic alcohol $\mathbf{3 f}$ in 72% yield (0.364 g) with 96:4 dr as colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=7.65(\mathrm{dd}, \mathrm{J}=7.7,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 1 \mathrm{H})$, 7.33-7.29 (m, 2H), 7.26-7.21 (m, 2H), 7.06-6.94 (m, 2H), 4.96 (ddd, J = 3.3, 2.1, 1.0 Hz , $1 \mathrm{H}), 3.46(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=15.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.25$ (d, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dd}, J=11.6$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.06-1.00(\mathrm{~m}, 9 \mathrm{H}), 0.79-0.70(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta / \mathrm{ppm}=149.5,147.3,136.8,134.8,129.5,128.9,128.4$, $127.8,127.5,127.2,119.6,102.7,78.3,62.0,52.8,51.5,43.8,26.4,6.8,5.1$.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=2956,2875,2817,1671,1455,1349,1240,1190$, 1146, 1125, 1014, 1004, 882, 830, 762, 742, 725, 702.
MS (EI, 70 eV): m/z (\%) = 501 (M+, 1.0), 304 (15), 303 (55), 302 (100), 300 (18), 261 (10), 212 (27), 187 (11), 186 (14), 185 (11), 115 (15), 92 (10), 91 (90), 87 (20), 75 (13), 43 (19).

HRMS ($\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{BrNO}_{2} \mathrm{Si}$, EI): calc.: 501.1699; found: 501.1703 (M^{+}).

1-(8-((Triethylsilyl)oxy)-1,4-dioxaspiro-[4.5]dec-7-ene-9-yl)-1-(2-fluorophenyl)ethanol (3g)

The reaction was performed according to the above procedure using 1-(2fluorophenyl)ethanone ($0.138 \mathrm{~g}, 1 \mathrm{mmol}$), leading to the corresponding homoallylic alcohol 3 g in 64% yield (0.262 g) with 95:5 dr as colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=7.65(\mathrm{td}, \mathrm{J}=8.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.09(\mathrm{~m}, 2 \mathrm{H})$, 6.97 (ddd, $J=11.9,7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 4.88(\mathrm{t}, \mathrm{J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.78$ $(\mathrm{m}, 2 \mathrm{H}), 3.66-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{dd}, J=4.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.72$ ($\mathrm{m}, 4 \mathrm{H}$), 1.54 (dddd, $J=14.1,3.2,1.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.05-1.00 (m, 9H), 0.79-0.70 (m, 6 H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=158.9(\mathrm{~d}, \mathrm{~J}=244.3 \mathrm{~Hz}), 150.0,135.9(\mathrm{~d}, \mathrm{~J}=14.3$ $\mathrm{Hz}), 128.1(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 127.2(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 123.8(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 115.5(\mathrm{~d}, J=24.1$ $\mathrm{Hz}), 107.3,102.7,75.5(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}), 64.3,64.1,46.6(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}), 34.8,34.1,29.1$ (d, J = 2.8 Hz), 6.7, 5.0.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -111.92~-112.01 (m, 1F).
IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=3432,2956,2876,1661,1448,1375,1210,1190$, 1125, 1071, 1040, 1014, 1003, 948, 906, 831, 758, 728.

MS (EI, 70 eV): m/z (\%) = 408 (${ }^{+}$, 0.2), 271 (22), 270 (100), 269 (19), 241 (15), 226 (10), 225 (12), 211 (14), 210 (54), 209 (17), 208 (29), 197 (12), 179 (24), 156 (11), 155 (15), 140 (12), 139 (67), 138 (15), 123 (26), 115 (44), 103 (32), 95 (13), 94 (12), 87 (50), 86 (30), 75 (28), 59 (30), 43 (50).

HRMS ($\left.\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{FO}_{4} \mathrm{Si}, \mathrm{EI}\right)$: calc.: 408.2132 ; found: $408.2120\left(\mathrm{M}^{+}\right)$.
5. Synthesis of β-hydroxy ketone $\mathbf{7}$ by the de-silylation of homoallylic alcohol $\mathbf{3 a}{ }^{4}$

A solution of hydrogen fluoride pyridine ($\sim 70 \%$ hydrogen fluoride, 0.2 mL) was added into a solution of homoallylic alcohol 3a ($0.199 \mathrm{~g}, 0.5 \mathrm{mmol}$) in THF (4 mL) at $-20^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at $-20^{\circ} \mathrm{C}$ then warmed up to $0^{\circ} \mathrm{C}$ with stirring for another 1 h . The mixture was quenched by saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with ethyl acetate ($20 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography using ethyl acetate and isohexane as eluant to provide the β-hydroxyl ketone 7 in 72% yield (0.102 g) as a white solid.
(4-Bromophenyl)(hydroxy)methyl)cyclohexanone (7)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta / \mathrm{ppm}=7.49-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 5.28$ $(\mathrm{t}, \mathrm{J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, \mathrm{~J}=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.69$ (dddd, $J=11.5,6.0,3.7,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.42-2.26 (m, 2H), 2.08-1.96 (m, 1H), 1.86-1.52 (m, 5H).
${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$): $\delta / \mathrm{ppm}=212.3,144.7,132.1,129.5,121.1,70.7$, 58.2, 43.2, 28.6, 27.3, 25.6.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=3431,2944,2861,1696,1483,1396,1364,1311$, 1258, 1130, 1116, 1089, 1063, 1010, 985, 895, 827, 794, 752, 715, 667.

[^3]MS (EI, 70 eV): m/z (\%) = 284 (12), 282 (${ }^{+}$, 10), 266 (28), 265 (10), 264 (29), 187 (38), 186 (17), 186 (19), 185 (100), 185 (79), 184 (18), 159 (13), 157 (29), 155 (19), 129 (16), 128 (12), 116 (15), 115 (18), 98 (91), 97 (19), 83 (25), 78 (29), 77 (57), 76 (15), 74 (10), 70 (29), 55 (22), 50 (14), 42 (16), 42 (14), 41 (28).

HRMS ($\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrO}_{2}$, EI$)$: calc.: 282.0255; found: $282.0241\left(\mathrm{M}^{+}\right)$.
M.P. $\left({ }^{\circ} \mathrm{C}\right):$ 120-122.
6. Diastereoselective reduction of β-hydroxy ketone 7 by using various reducing agents.

(1) L-Selectride reduction ${ }^{5}$

To a solution of β-hydroxyl ketone $\mathbf{7}(0.142 \mathrm{~g}, 0.5 \mathrm{mmol})$ in dry THF (5 mL) was added L-Selectride ($1 \mathrm{mmol}, 1 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF) dropwise at $-78{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. The reaction mixture was stirred for 3 h at $-78^{\circ} \mathrm{C}$ and then allowed to warm to room temperature for another 1 h . The mixture was then diluted with ethyl acetate $(100 \mathrm{~mL})$ and filtered through a pad of silica gel, which was rinsed with ethyl acetate (100 mL). The filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography using ethyl acetate and isohexane as eluant to give 1,3 -diol 8 as white solid ($0.128 \mathrm{~g}, 90 \%$ yield, $98: 2 \mathrm{dr}$). The diastereoselectivity of the product was determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude reaction mixture (after workup) by integration of the ratio of the two peaks located at $4.20 \mathrm{ppm}(\mathrm{d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$, for syn isomer) and 3.47 ppm ($\mathrm{td}, J=10.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}$, for anti isomer) which belong to the aliphatic (not benzylic) CH attaching to a hydroxyl group.
(2) DIBAL-H reduction ${ }^{6}$

[^4]To a solution of β-hydroxyl ketone $\mathbf{7}(0.23 \mathrm{~g}, 0.8 \mathrm{mmol})$ in anhydrous THF (10 mL) at $78{ }^{\circ} \mathrm{C}$ under nitrogen was added DIBAL-H ($0.285 \mathrm{~g}, 0.36 \mathrm{~mL}, 2 \mathrm{mmol}$) dropwise. After 2 h , the reaction was quenched by the addition of EtOAc (0.2 mL) and saturated aqueous sodium potassium tartrate (10 mL) and the slurry was warmed to room temperature with vigorous stirring for 12 h . The resulting clear biphase was extracted with ethyl acetate ($30 \mathrm{~mL} \times 3$) and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography using ethyl acetate and isohexane as eluant to provide 1,3-diol 8 as white solid (0.203 g , 89% yield, $95: 5 \mathrm{dr}$).

(3) $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}$ reduction ${ }^{7}$

To a stirred solution of β-hydroxyl ketone $7(0.142 \mathrm{~g}, 0.5 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(6 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was dropwise added a freshly prepared THF solution of $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(1.5$ $\mathrm{mmol}, 3 \mathrm{~mL}, 0.5 \mathrm{M}$) and the solution was stirred at the same temperature for 2 h . Then the reaction mixture was quenched by a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The resulting solution was allowed to warm to room temperature with stirring for 12 h . The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($20 \mathrm{~mL} \times 3$). The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The crude oil was purified by silica gel column chromatography using ethyl acetate and isohexane as eluant to give the 1,3 -diol 8 as white solid ($0.141 \mathrm{~g}, 99 \%$ yield, $94: 6 \mathrm{dr}$).

(4) Tetramethylammonium triacetoxyborohydride $\left[\mathrm{Me} \mathrm{e}_{4} \mathrm{NHB}(\mathrm{OAc})_{3}\right]$ reduction ${ }^{8}$

To a solution of tetramethylammonium triacetoxyborohydride ($1.053 \mathrm{~g}, 4 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(2.2 \mathrm{~mL})$ was added anhydrous $\mathrm{CH}_{3} \mathrm{COOH}(2.2 \mathrm{~mL})$ and the mixture was stirred at ambient temperature for 30 min . The mixture was cooled to $-40{ }^{\circ} \mathrm{C}$, and a solution of β-hydroxyl ketone $7(0.142 \mathrm{~g}, 0.5 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ was added dropwise via syringe. The mixture was stirred at $-40^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was quenched with aqueous sodium potassium tartrate ($6 \mathrm{~mL}, 0.5$ M) and the mixture was allowed to warm slowly to room temperature. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with saturated aqueous NaHCO_{3}. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 4 times, and the combined organic layers were washed with saturated aqueous NaHCO_{3}, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. After concentration under vacuum, the residue obtained was purified by silica gel column chromatography using ethyl acetate and isohexane as eluant to give 1,3diol 8 as white solid (0.132 g , 92% yield; 25:75 dr).
${ }^{7}$ (a) Narasimhan, S.; Balakumar, R. Aldrichimica Acta 1998, 31, 19-27. (b) Hoyveda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307-1370. (c) Evans, D. A.; Kim, A. S.; Metternich, R.; Novack, V. J. J. Am. Chem. Soc. 1998, 120, 5921-5942. (d) Dakin, L. A.; Panek, J. S. Org. Lett. 2003, 5, 39953998.
${ }^{8}$ (a) Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988, 110, 3560-3578. (b) Paterson, I.; Delgado, O.; Florence, G. J.; Lyothier, I.; O'Brien, M.; Scott, J. P.; Sereinig, N. J. Org. Chem. 2005, 70, 150-160.
(4-Bromophenyl)(hydroxy)methyl)cyclohexanol (syn,syn-8)

syn, syn-8
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=7.47-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 2 \mathrm{H}), 4.95(\mathrm{~d}, \mathrm{~J}$ $=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{br}, \mathrm{s}, 2 \mathrm{H}), 1.81-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.46(\mathrm{~m}$, 5 H), 1.29 (dq, $J=13.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.09 (qt, $J=13.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}$-NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=142.2,131.1,127.6,120.7,77.3,71.6,47.7$, 34.0, 25.5, 19.6, 18.2.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=3254,2929,2852,1485,1445,1401,1329,1290$, 1181, 1087, 1069, 1009, 967, 806, 723.

MS (EI, 70 eV): m/z (\%) = 284 ($\mathrm{M}^{+}, 0.07$), 187 (90), 185 (100), 157 (10), 82 (62), 81 (11), 78 (18), 77 (35), 67 (47), 54 (13), 41 (9).

HRMS ($\left.\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{BrO}_{2}, \mathrm{EI}\right)$: calc.: 283.0334; found: $283.0339\left(\mathrm{M}^{+}-\mathrm{H}\right)$.
M.P. $\left({ }^{\circ} \mathrm{C}\right): ~ 155-157$.
(4-Bromophenyl)(hydroxy)methyl)cyclohexanol (anti,syn-8)

anti, syn-8
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta / \mathrm{ppm}=7.49-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 5.16$ (dd, $J=5.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 3.55(\mathrm{t}, J=10.1 \mathrm{~Hz}$, 1H), 2.08-1.93 (m, 2H), 1.65-0.99 (m, 7H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta / \mathrm{ppm}=145.5,131.8,129.6,120.7,73.1,71.3$, 53.0, 37.2, 26.6, 25.9, 24.9.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=3414,3351,2935,2922,2850,1486,1446,1405$, 1333, 1226, 1141, 1121, 1081, 1031, 1010, 984, 912, 827, 795, 778, 724, 680, 653.

MS (EI, 70 eV): m/z (\%) = $284\left(\mathrm{M}^{+}, 0.13\right), 187$ (87), 185 (100), 157 (10), 82 (64), 81 (14), 78 (20), 77 (38), 67 (53), 54 (16), 43 (10), 41 (13).

HRMS ($\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrO}_{2}$, EI): calc.: 284.0412; found: $284.0420\left(\mathrm{M}^{+}\right)$.
M.P. $\left({ }^{\circ} \mathrm{C}\right): 144-146$.
7. Synthesis of disilyl protected compound 9. ${ }^{9}$

To a solution of the homoallylic alcohol $3 \mathrm{a}\left(1.192 \mathrm{~g}, 3 \mathrm{mmol}\right.$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $78{ }^{\circ} \mathrm{C}$ was added 2,6 -lutidine ($0.643 \mathrm{~g}, 0.7 \mathrm{~mL}, 6 \mathrm{mmol}$) followed by TESOTf (1.19 g , $1.03 \mathrm{~mL}, 4.5 \mathrm{mmol})$. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and warmed up to room temperature for 1 h . The mixture was quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and extracted with diethyl ether ($30 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Further purification by silica gel column chromatography using isohexane as eluent provided the product 9 as colorless oil ($1.32 \mathrm{~g}, 86 \%$ yield).

1-Bromo-4-((triethylsilyloxy)(2-(triethylsilyloxy)cyclohex-2-enyl)methyl)benzene (9)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=7.45-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 2 \mathrm{H}), 5.31(\mathrm{~d}, \mathrm{~J}$ $=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.98$ (ddd, $J=4.8,3.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.95(\mathrm{~m}, 2 \mathrm{H})$, 1.83-1.66 (m, 2H), 1.36-1.17 (m, 2H), 1.06-1.00 (m, 9H), 0.92-0.87 (m, 9H), 0.75-0.67 (m, 6H), 0.59-0.51 (m, 6H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=149.9,144.5,130.7,127.7,120.0,106.5,72.3$, 48.1, 24.3, 21.6, 21.3, 6.9, 6.8, 5.2, 4.8.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=2952,2874,1665,1486,1457,1412,1238,1213$, 1171, 1112, 1085, 1071, 1004, 976, 916, 903, 844, 810, 738, 723, 681.

MS (EI, 70 eV): m/z (\%) = 302 (16), 301 (100), 300 (17), 299 (98), 115 (42), 87 (37), 59 (16).

HRMS ($\mathrm{C}_{25} \mathrm{H}_{43} \mathrm{BrO}_{2} \mathrm{Si}_{2}$, EI$)$: calc.: 510.1985; found: 510.1977 (M^{+}).
8. Conversion of compound 9 to 11 via Shi-epoxidation followed by ring-opening with $\mathrm{BH}_{3} \cdot$ THF according to Myers' procedure. ${ }^{10}$

[^5]

Disilyl protected compound 9 ($0.266 \mathrm{~g}, 0.52 \mathrm{mmol}, 1.0$ equiv) was added to a 100 mL round-bottomed flask and the flask was cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{CH}_{3} \mathrm{CN}(2.5 \mathrm{~mL})$, dimethoxymethane (5.0 mL), and an aqueous stock solution of sodium borateethylenediaminetetraacetic acid disodium salt (5.0 mL) were added to the cooled flask. D-Fructose-derived Shi catalyst ($40 \mathrm{mg}, 0.16 \mathrm{mmol}, 0.30$ equiv) and tetrabutylammonium bisulfate ($7.1 \mathrm{mg}, 0.021 \mathrm{mmol}, 0.04$ equiv) were added in sequence to the stirring mixture at $0^{\circ} \mathrm{C}$. Separately, Oxone ($443 \mathrm{mg}, 0.72 \mathrm{mmol}, 1.38$ equiv) was added to an aqueous stock solution of ethylenediaminetetraacetic acid disodium salt (3.2 mL) and the resulting solution was drawn into a 5 mL disposable plastic syringe. A solution of potassium carbonate ($418 \mathrm{mg}, 3.03 \mathrm{mmol}, 5.8$ equiv) in water (3.2 mL) was drawn into a second 5 mL disposable plastic syringe. The contents of both syringes were added simultaneously over 90 min using a syringe drive to the ice-cooled, stirring reaction mixture. After the addition was complete, the reaction mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$, then was diluted with ice-cooled pentane (30 mL) and ice-cooled water (30 mL), producing a biphasic mixture. The layers were separated. The aqueous layer was extracted with ice-cooled pentane (70 $\mathrm{mL} \times 2$). The organic extracts were combined, washed with brine (100 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the filtrate was concentrated to a volume of ca. 5 mL by rotary evaporation.

A solution of borane-tetrahydrofuran complex in THF ($1.05 \mathrm{mmol}, 1.0 \mathrm{M}, 2.0$ equiv) was added dropwise by syringe to an ice-cooled, stirring solution of the crude product in pentane (5 mL) in a 100 mL round-bottomed flask. The reaction mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$, followed by the addition of pentane (15 mL). An aqueous solution of tris(hydroxymethyl)aminomethane hydrochloride ($10 \mathrm{~mL}, 1.0 \mathrm{M}$) was then added carefully, causing vigorous evolution of gas. The biphasic mixture was allowed to warm to $25^{\circ} \mathrm{C}$. After stirring for 30 min at $25^{\circ} \mathrm{C}$, the reaction mixture was partially concentrated by rotary evaporation. Water (25 mL) was added, and the mixture was extracted by ethyl acetate ($70 \mathrm{~mL} \times 2$). The combined organic extracts

[^6]were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The residue was purified by silica gel column chromatography using ethyl acetate and isohexane as eluant to provide the desired product 11 as colorless oil in 81% yield (0.222 g).

3-((4-Bromophenyl)(triethylsilyloxy)methyl)-2-(triethylsilyloxy)cyclohexanol (11)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=7.45-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 2 \mathrm{H}), 5.24(\mathrm{~s}, 3$ H), $3.50(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.38 (ddd, $J=10.5,8.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.94-1.88 (m, 1H), 1.71 (br, s, 1H), 1.62 (dt, J = 13.0, $3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.44-1.15 (m, 5H), 1.06-1.01 (m, 9H), 0.93$0.87(\mathrm{~m}, 9 \mathrm{H}), 0.78-0.69(\mathrm{~m}, 6 \mathrm{H}), 0.59-0.51(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta / \mathrm{ppm}=144.6,130.8,127.8,120.1,77.5,75.7,71.3,52.5$, 33.4, 22.2, 21.2, 7.3, 6.9, 6.4, 5.1.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=3472,2951,2874,1485,1458,1404,1237,1110$, 1093, 1070, 1003, 973, 928, 838, 800, 781, 724, 676.

MS (EI, 70 eV): m/z (\%) = 381 (11), 379 (11), 369 (21), 367 (20), 302 (20), 301 (100), 300 (20), 299 (97), 289 (12), 287 (11), 263 (32), 217 (10), 171 (11), 169 (11), 168 (14), 115 (49), 103 (32), 87 (41), 75 (32), 59 (12).

HRMS ($\left.\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{BrO}_{3} \mathrm{Si}_{2}, \mathrm{EI}\right)$: calc.: 499.1699; found: $499.1710\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}\right)$.
9. Preparation of triol $\mathbf{1 2}$ via the desilylation of compound $\mathbf{1 1 .}{ }^{11}$

A solution of TBAF in THF ($2.0 \mathrm{mmol}, 2 \mathrm{~mL}, 1.0 \mathrm{M}$) was slowly added into a solution of compound $\mathbf{1 1}(0.265 \mathrm{~g}, 0.5 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min then warmed up to room temperature with stirring for another 4 h . The mixture was quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and extracted with ethyl acetate ($20 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel

[^7]column chromatography using ethyl acetate as eluant to provide triol 12 as a white solid (0.136 g, 90% yield).

3-((4-Bromophenyl)(hydroxy)methyl)cyclohexane-1,2-diol (12)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta / \mathrm{ppm}=7.50-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 2 \mathrm{H}), 5.19$ (dd, $J=5.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 3.76(\mathrm{br}, \mathrm{s}, 1 \mathrm{H})$, 3.40-3.30 (m, 2H), 1.86-1.81 (m, 1H), 1.59-1.55 (m, 2H), 1.30-1.11 (m, 4H).
${ }^{13} \mathrm{C}-$ NMR (100 MHz, $\mathrm{CD}_{3} \mathrm{COCD}_{3}$): $\delta / \mathrm{ppm}=145.9,132.0,129.6,120.8,77.0,76.7$, 72.2, 51.0, 34.4, 24.3.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=3343,2945,2922,2862,1486,1403,1348,1242$, 1232, 1108, 1071, 1049, 1026, 1010, 992, 879, 845, 830, 793, 725, 675.

MS (EI, 70 eV): m/z (\%) = 187 (76), 185 (82), 183 (21), 159 (16), 157 (27), 155 (13), 115 (12), 106 (14), 105 (16), 98 (85), 97 (45), 83 (34), 80 (12), 79 (28), 78 (64), 77 (100), 76 (11), 75 (11), 70 (36), 69 (10), 67 (22), 57 (29), 55 (14), 44 (10), 43 (16), 41 (39).

HRMS ($\left.\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrO}_{3}, \mathrm{EI}\right)$: calc.: 300.0361; found: $300.0356\left(\mathrm{M}^{+}\right)$.
10. Preparation of lactone 13 with four contiguous chiral centers starting from lactone 3d. ${ }^{10}$

The reaction was performed according to the above procedure using substrate $\mathbf{3 d}$ ($0.186 \mathrm{~g}, 0.52 \mathrm{mmol}$), leading to the corresponding product $13 \mathrm{in} 68 \%$ yield (0.133 g) as colorless oil.

3-(3-Hydroxy-2-(triethylsilyloxy)cyclohexyl)-3-methylisobenzofuran-1(3H)-one (13)

${ }^{1} \mathrm{H}$-NMR ($\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=7.85(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 1 \mathrm{H})$, 7.48 (td, $J=7.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.33 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.89$ (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-$ 3.43 (m, 1H), 2.09-1.98 (m, 2H), 1.94-1.88 (m, 1H), 1.82 (s, 3H), 1.54-1.12 (m, 4H), 1.03 (t, $J=7.7 \mathrm{~Hz}, 9 \mathrm{H}$), 0.91-0.86 (m, 1H), 0.81-0.73 (m, 6H).
${ }^{13} \mathrm{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=170.1,155.4,134.2,128.7,125.7,125.4,121.0$, 89.6, 77.2, 75.2, 48.9, 32.2, 27.2, 25.5, 21.6, 7.1, 5.6.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=3391,2953,2929,2874,1738,1465,1286,1235$, 1127, 1056, 1038, 906, 847, 767, 728, 698.

MS (EI, 70 eV): m/z (\%) = 376 (M ${ }^{+}, 2$), 347 (35), 229 (19), 147 (100), 115 (28), 103 (24), 75 (37), 59 (10).

HRMS $\left(\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}\right.$, EI): calc.: 376.2070; found: $376.2083\left(\mathrm{M}^{+}\right)$.

Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectral of Products

(2a)

(2b)

(2c)

(3d)

(3e)

(3f)

(3g)

(13)

[^0]: ${ }^{1}$ (a) Saraber, F. C. E.; Dratch, S.; Bosselaar, G.; Jansen, B. J. M.; de Groot, A. Tetrahedron 2006, 62, 1717-1725. (b) Hong, A. Y.; Krout, M. R.; Jensen, T.; Bennett, N. B.; Harned, A. M.; Stoltz, B. M. Angew. Chem., Int. Ed. 2011, 50, 2756-2760. (c) Cui, L.-Q.; Liu, K.; Zhang, C. Org. Biomol. Chem. 2011, 9, 2258-2265. (d) Huang, L.; Zhang, X.; Zhang, Y. Org. Lett. 2009, 11, 3730-3733.

[^1]: ${ }^{2}$ Hambly, G. F.; Chan, T. H. Tetrahedron Lett. 1986, 27, 2563-2566.

[^2]: ${ }^{3}$ Peng, Z.; Blümke, T. D.; Mayer, P.; Knochel, P. Angew. Chem., Int. Ed. 2010, 49, 8516-8519.

[^3]: ${ }^{4}$ (a) Evans, D. A.; Kim, A. S.; Metternich, R.; Novack, V. J. J. Am. Chem. Soc. 1998, 120, 5921-5942. (b) Nicolaou, K. C.; Webber, S. E. Synthesis 1986, 453-461. (c) Wipf, P.; Kim, H. J. Org. Chem. 1993, 58, 5592-5594.

[^4]: ${ }^{5}$ (a) Brown, H. C.; Krishnamurthy, S. J. Am. Chem. Soc. 1972, 94, 7159-7161. (b) Krishnamurthy, S.; Brown, H. C. J. Am. Chem. Soc. 1976, 98, 3383-3384. (c) Chun, J.; Byun, H.-S.; Arthur, G.; Bittman, R. J. Org. Chem. 2003, 68, 355-359.
 ${ }^{6}$ (a) Kiyooka, S.-i.; Kuroda, H.; Shimasaki, Y. Tetrahedron Lett. 1986, 27, 3009-3012. (b) Evans, D. A.; Starr, J. T. J. Am. Chem. Soc. 2003, 125, 13531-13540.

[^5]: ${ }^{9}$ (a) Corey, E. J.; Cho, H.; Rücker, C.; Hua, D. H. Tetrahedron Lett. 1981, 22, 3455-2458. (b) Paterson, I.; Norcross, R. D.; Ward, R. A.; Romea, P.; Lister, M. A. J. Am. Chem. Soc. 1994, 116, 11287-11314. (c) Lister, T.; Perkins, M. V. Org. Lett. 2006, 8, 1827-1830.

[^6]: ${ }^{10}$ Lim, S. M.; Hill, N.; Myers, A. G. J. Am. Chem. Soc. 2009, 131, 5763-5765.

[^7]: ${ }^{11}$ (a) Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190-6191. (b) For example, see: Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 3rd ed.; John Wiley \& Sons: New York, 1999.

