Supporting Information

Highly Efficient Preparation of Selectively Isotope Cluster-Labeled Long Chain Fatty Acids via Two Consecutive $C_{s p}{ }^{3-} C_{s p} 3$ Cross Coupling Reactions

Sébastien Lethu, Shigeru Matsuoka* and Michio Murata*
JST ERATO, Lipid Active Structure Project and Project Research Center for Fundamental Sciences, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan.
matsuokas11@chem.sci.osaka-u.ac.jp, murata@chem.sci.osaka-u.ac.jp

Table of Contents

I. General Considerations ... S2
II. Experimental procedures for the synthesis of the common synthons $\mathbf{1 0}$ and 11S2
III. Determination of the syn-enantioselectivity of compound 8...S7
IV. General methods for the synthesis of labeled stearic acids .. S8

1) Synthesis of starting materials for the preparation of Grignard reagents...................................S8
2) General Methods ...S10
3) Analyses of the labeled compounds ...S12
V. References ...S18
VI. NMR spectra of labeled compounds ...S19

I. General Considerations

Unless otherwise indicated, all reactions were carried out with magnetic stirring in oven-dried glassware under argon atmosphere. Commercially available reagents were purchased from common suppliers and used without further purification. $\left[2-{ }^{13} \mathrm{C}\right]$-bromoacetic acid $\left(99 \%{ }^{13} \mathrm{C}\right)$ was purchased from Cambridge Isotope Laboratories Inc., USA. The dehydrated solvents dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, tetrahydrofuran (THF) and toluene were purchased from Kanto Chemical Co. Inc. and were used without further dehydration. N, N '-dimethylformamide (DMF) was stored over $4 \AA$ molecular sieves under argon. Analytical thin-layer chromatographies were carried out on Merck precoated silica gel $60 \mathrm{~F}_{254}$ aluminium sheets and revealed with UV 254 nm and anisaldehyde or phosphomolybdic acid. Flash chromatographies were performed with Biotage prepacked columns using a Biotage Isolera One purification system. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL ECS 400 (400 MHz) spectrometer. Chemical shifts (δ) are given in parts per million (ppm) relative to the solvent residual peak of CDCl_{3} (7.26 ppm for ${ }^{1} \mathrm{H}, 77.16 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$). Splitting patterns are indicated as followed: s, singlet; d, doublet; t , triplet; q, quartet; qi, quintuplet; m , multiplet; b , broad and combinations thereof. Coupling constants J are reported in hertz (Hz). IR spectra were realized on JASCO FT/IR-6100. Mass spectra were obtained on Thermo Scientific LTQ Orbitrap XL. Melting points were measured on Büchi M-565 and are uncorrected.

II. Experimental procedures for the synthesis of the common synthons 10 and 11

Ethyl [2- $\left.{ }^{13} \mathrm{C}\right]$-2-(diethylphosphono)acetate 2

To [2- $\left.{ }^{13} \mathrm{C}\right]$-bromoacetic acid ($3.91 \mathrm{~g}, 28.0 \mathrm{mmol}$) was added oxalyl chloride (2.64 mL , 30.8 mmol) and the mixture was warmed at $40^{\circ} \mathrm{C}$ for 20 h before cooling down to $0^{\circ} \mathrm{C}$.

Dry ethanol ($2.45 \mathrm{~mL}, 42.0 \mathrm{mmol}$) was then slowly added at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred at room temperature for 1 h . The mixture was cooled to $0^{\circ} \mathrm{C}$, quenched with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (x3). The combined organic layers were washed with saturated NaHCO_{3}, saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried over MgSO_{4} and filtered. Careful evaporation under reduced pressure afforded the ethyl $\left[2-{ }^{13} \mathrm{C}\right]$-bromoacetate $\mathbf{1}$ as a colorless liquid that was used without further purification. To ethyl $\left[2-{ }^{13} \mathrm{C}\right]$-bromoacetate $\mathbf{1}$ was added triethylphosphite ($5.19 \mathrm{~mL}, 30.0 \mathrm{mmol}$) and the mixture was stirred at $135^{\circ} \mathrm{C}$ for 18 h . After cooling down to room temperature, the crude product was purified by chromatography on silica gel (gradient hexane/EtOAc $5 / 5$ to $0 / 10$) to provide the desired phosphonate $2(5.65 \mathrm{~g}, 90 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.17(\mathrm{~m}, 6 \mathrm{H})$, $2.95\left(\mathrm{dd}, 2 \mathrm{H},{ }^{1} J_{\mathrm{C}-\mathrm{H}}=129.9 \mathrm{~Hz}\right.$ and $\left.{ }^{2} J_{\mathrm{P}-\mathrm{H}}=21.6 \mathrm{~Hz}\right), 1.34\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.1 \mathrm{~Hz}\right), 1.27\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=\right.$ $7.1 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.9\left(\mathrm{dd},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=59.0 \mathrm{~Hz}\right.$ and $\left.{ }^{2} J_{\mathrm{C}-\mathrm{P}}=6.2 \mathrm{~Hz}\right), 62.7(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{C}-\mathrm{P}}=6.7 \mathrm{~Hz}\right), 61.6,34.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{P}}=134.2 \mathrm{~Hz}\right), 16.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{P}}=6.7 \mathrm{~Hz}\right), 14.1 \mathrm{ppm}$. IR (neat) $: v=2982$, 2937, 2908, 1733, 1255, 1115, 1049, 1017, 961, 780, $608 \mathrm{~cm}^{-1} . \mathrm{HRMS}^{(E S I}{ }^{+}, \mathrm{MeOH}$) calcd for $\mathrm{C}_{7}{ }^{13} \mathrm{CH}_{17} \mathrm{O}_{5} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+} 248.0739$, found 248.0741 .
${ }^{1} \mathrm{H}$ NMR consistent with the litterature ${ }^{1}$

Ethyl [2- ${ }^{13} \mathrm{C}$]-4-(benzyloxy)but-2-enoate 3

To a suspension of sodium hydride (60% in oil, $480.0 \mathrm{mg}, 12.0 \mathrm{mmol}$) in THF (10 $\mathrm{mL})$ at $0^{\circ} \mathrm{C}$ was slowly added a solution of phosphonoacetate $2(2.25 \mathrm{~g}, 10.0 \mathrm{mmol})$ in THF (10 mL). After stirring 15 min at $0{ }^{\circ} \mathrm{C}$, the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and a solution of α-benzyloxyacetaldehyde $(2.25 \mathrm{~g}, 15.0 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ was slowly added to the resulting slurry. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc (x3). The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by prepacked chromatography on silica gel (gradient hexane/EtOAc 10/0 to 9/1) to afford olefin $3(1.94 \mathrm{~g}, 88 \%)$ as a colorless oil in a separable mixture $\mathrm{E} / \mathrm{Z} 98 / 2$. Isomer $\boldsymbol{E}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.40-7.27$ (m, 5 H), 6.99 (dtd, $\left.1 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=15.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=4.3 \mathrm{~Hz},{ }^{2} J_{\mathrm{C}-\mathrm{H}}=3.1 \mathrm{~Hz}\right), 6.14\left(\mathrm{ddt}, 1 \mathrm{H},{ }^{1} J_{\mathrm{C}-\mathrm{H}}=164.4 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=15.7 \mathrm{~Hz}\right.$, $\left.{ }^{4} J_{\mathrm{H}-\mathrm{H}}=2.0 \mathrm{~Hz}\right), 4.57(\mathrm{~s}, 2 \mathrm{H}), 4.25-4.16(\mathrm{~m}, 4 \mathrm{H}), 1.29\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.1 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=166.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=74.8 \mathrm{~Hz}\right), 144.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=71.9 \mathrm{~Hz}\right), 137.8,128.6,127.9,127.7,121.5$, $72.9,68.7,60.5,14.4 \mathrm{ppm}$. IR (neat): $v=3066,3031,2981,2939,2904,2852,1714,1294,1262,1174$, 1116, 1095, 1037, 1028, 964, 736, $697 \mathrm{~cm}^{-1}$. HRMS (ESI ${ }^{+}$, MeOH) calcd for $\mathrm{C}_{12}{ }^{13} \mathrm{CH}_{16} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 244.1025, found 244.1034. Isomer Z: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.39-7.27$ ($\mathrm{m}, 5 \mathrm{H}$), 6.43 (dt, $\left.1 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=11.7 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz}\right), 5.82\left(\mathrm{ddt}, 1 \mathrm{H},{ }^{1} J_{\mathrm{C}-\mathrm{H}}=164.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=11.7 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}-\mathrm{H}}=2.3 \mathrm{~Hz}\right)$, $4.65(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.16\left(\mathrm{q}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}\right), 1.28\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.2\left(\mathrm{~d},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=73.8 \mathrm{~Hz}\right), 148.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=70.0 \mathrm{~Hz}\right), 138.1,128.6,128.0$, $127.9,119.7,73.0,68.6,60.4,14.4 \mathrm{ppm}$. IR (neat): $v=3063,3031,2980,2939,2904,2861,1712$, 1382, 1219, 1185, 1093, 1056, 1028, 805, 735, $697 \mathrm{~cm}^{-1} . \mathrm{HRMS}^{\left(\mathrm{ESI}^{+}, \mathrm{MeOH}\right) \text { calcd for }}$ $\mathrm{C}_{12}{ }^{13} \mathrm{CH}_{16} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 244.1025$, found 244.1037.

(E)-[2- $\left.{ }^{13} \mathrm{C}\right]$-4-(benzyloxy)but-2-en-1-ol 4

To a solution of ester $(\boldsymbol{E}) \mathbf{- 3}(1.92 \mathrm{~g}, 8.68 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added DIBAL-H (1M in hexane, $19.1 \mathrm{~mL}, 19.1 \mathrm{mmol}$). The mixture was stirred at $78{ }^{\circ} \mathrm{C}$ for 30 min and at $0^{\circ} \mathrm{C}$ for 15 min . Excess of DIBAL-H was neutralized by careful addition of few drops of MeOH at $0^{\circ} \mathrm{C}$. A saturated Rochelle's salt aqueous solution was added at $0^{\circ} \mathrm{C}$ and the mixture was then vigorously stirred at room temperature for 4 h . Layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (x3). The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by prepacked chromatography on silica gel (gradient hexane/EtOAc 10/0 to 5/5) to afford alcohol $4(1.44 \mathrm{~g}, 92 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.40-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.91$ (ddtt, $1 \mathrm{H},{ }^{1} J_{\mathrm{C}-\mathrm{H}}=155.2 \mathrm{~Hz}$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=15.6 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=5.4 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}-\mathrm{H}}=1.4 \mathrm{~Hz}\right), 5.90-5.79(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.14(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{~m}$, $2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=138.3,132.4,128.5,127.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=71.9 \mathrm{~Hz}\right), 127.9$, $127.8,72.4,70.2,63.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=46.0 \mathrm{~Hz}\right) \mathrm{ppm}$. IR (neat): $v=3373,3062,3030,2921,2852,1453$, 1359, 1087, 1061, 1000, 966, 735, $696 \mathrm{~cm}^{-1}$. HRMS (ESI', MeOH) calcd for $\mathrm{C}_{10}{ }^{13} \mathrm{CH}_{14} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 202.0920 , found 202.0930 .

Analyses consistent with the litterature ${ }^{2}$

(E)-[2- $\left.{ }^{13} \mathrm{C}\right]$-((4-(benzyloxy)but-2-en-1-yl)oxy)(tert-butyl)diphenylsilane 5

To a solution of alcohol $4(1.28 \mathrm{~g}, 7.15 \mathrm{mmol})$ in DMF $(25 \mathrm{~mL})$ were added imidazole ($1.07 \mathrm{~g}, 15.73 \mathrm{mmol}$) and TBDPSCl ($2.76 \mathrm{~mL}, 10.73 \mathrm{mmol}$). The mixture was stirred at room temperature for 3 h , quenched with water (40 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (x3). The combined organic layers were washed with water and brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by prepacked chromatography on silica gel (gradient hexane/EtOAc 10/0 to 9/1) to furnish compound $5(2.97 \mathrm{~g}, 100 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.72-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.26(\mathrm{~m}, 11 \mathrm{H}), 5.97-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.85$ $\left(\mathrm{ddtt}, 1 \mathrm{H},{ }^{1} J_{\mathrm{C}-\mathrm{H}}=155.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=15.4 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=4.5 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}-\mathrm{H}}=1.3 \mathrm{~Hz}\right), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.24(\mathrm{~m}, 2 \mathrm{H})$, $4.05(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=138.5,135.7,133.8,132.3,129.8$, $128.5,127.9,127.8,127.7,126.3\left(\mathrm{~d},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=72.9 \mathrm{~Hz}\right), 72.1,70.4,63.9\left(\mathrm{~d},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=47.9 \mathrm{~Hz}\right), 27.0,19.4$ ppm. IR (neat): $v=3070,3030,2957,2930,2891,2855,1428,1105,967,823,736,698,613 \mathrm{~cm}^{-1}$. HRMS (ESI $\left.{ }^{+}, \mathrm{MeOH}\right)$ calcd for $\mathrm{C}_{26}{ }^{13} \mathrm{CH}_{32} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 440.2097$, found 440.2128.
[1- $\left.{ }^{13} \mathrm{C}\right]$-2-((tert-butyldiphenylsilyl)oxy)acetaldehyde 6
$\mathrm{TBDPSO}_{*} \wedge_{*}^{\circ} \quad \begin{aligned} & \text { A solution of olefin } 5(2.71 \mathrm{~g}, 6.5 \mathrm{mmol}) \text { in } \mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL}) \text { was cooled to }-78{ }^{\circ} \mathrm{C} \text { and } \\ & \text { ozone was bubbled through until it turned blue. Argon was then bubbled through until }\end{aligned}$ the mixture turned colorless. Triphenylphosphine ($6.82 \mathrm{~g}, 26.0 \mathrm{mmol}$) was added at $-78{ }^{\circ} \mathrm{C}$ and the reaction was allowed to warm to room temperature and stirred for 3 h before concentration under reduced pressure. The residue was purified by prepacked chromatography on silica gel (gradient hexane/EtOAc $95 / 5$ to $6 / 4$) to give aldehyde $6(1.61 \mathrm{~g}, 83 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=9.73\left(\mathrm{dt}, 1 \mathrm{H},{ }^{1} J_{\mathrm{C}-\mathrm{H}}=175.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=0.8 \mathrm{~Hz}\right), 7.69-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.37(\mathrm{~m}, 6 \mathrm{H}), 4.22$ $\left(\mathrm{dd}, 2 \mathrm{H},{ }^{2} J_{\mathrm{C}-\mathrm{H}}=4.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=0.8 \mathrm{~Hz}\right), 1.11(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=201.8$, $135.7,132.7,130.2,128.1,70.1\left(\mathrm{~d},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=44.1 \mathrm{~Hz}\right.$), 26.9, 19.4 ppm . IR (neat): $v=3072,3050,2959$, 2931, 2890, 2858, 1697, 1472, 1428, 1111, 1105, 887, 823, 740, 699, $\left.608 \mathrm{~cm}^{-1} . \mathrm{HRMS}^{(E S I}, \mathrm{MeOH}\right)$ calcd for $\mathrm{C}_{17}{ }^{13} \mathrm{CH}_{22} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 322.1315$, found 322.1330.

Ethyl [2,3- $\left.{ }^{13} \mathrm{C}_{2}\right]$-4-((tert-butyldiphenylsilyl)oxy)but-2-enoate 7

To a suspension of sodium hydride (60% in oil, $0.22 \mathrm{~g}, 5.5 \mathrm{mmol}$) in THF (5 mL) at $0^{\circ} \mathrm{C}$ was added a solution of the phosphonoacetate $2(1.35 \mathrm{~g}, 6.0 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$. After stirring 15 min at $0^{\circ} \mathrm{C}$, the mixture was cooled down to $-78{ }^{\circ} \mathrm{C}$ and a solution of aldehyde $6(1.50 \mathrm{~g}, 5.0 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was then added to the resulting slurry. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc (x3). The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by prepacked chromatography on silica gel (gradient hexane/EtOAc 10/0 to 9/1) to afford olefin $7(1.60 \mathrm{~g}, 86 \%)$ as a colorless oil in a separable mixture E / Z 98/2. Isomer $\boldsymbol{E}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.69-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.36(\mathrm{~m}, 6 \mathrm{H}), 6.98$ $\left(\right.$ ddtd, $\left.1 \mathrm{H},{ }^{1} J_{\mathrm{C}-\mathrm{H}}=156.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=15.4 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}={ }^{2} J_{\mathrm{C}-\mathrm{H}}=3.2 \mathrm{~Hz}\right), 6.27\left(\mathrm{ddtd}, 1 \mathrm{H},{ }^{1} J_{\mathrm{C}-\mathrm{H}}=165.1 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=15.4 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}-\mathrm{H}}={ }^{2} J_{\mathrm{C}-\mathrm{H}}=2.1 \mathrm{~Hz}\right), 4.35(\mathrm{~m}, 2 \mathrm{H}), 4.22\left(\mathrm{q}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}\right), 1.32\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=\right.$ $7.2 \mathrm{~Hz}), 1.08(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=74.8 \mathrm{~Hz}\right), 147.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}\right.$ $=72.9 \mathrm{~Hz}), 135.6,133.2,130.0,128.0,119.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=72.9 \mathrm{~Hz}\right), 63.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=46.0 \mathrm{~Hz}\right), 60.5,26.9$, $19.4,14.5 \mathrm{ppm}$. IR (neat): $v=3071,3049,2958,2931,2895,2857,1716,1282,1265,1159,1111$, 1035, 944, 823, 740, 700, $614 \mathrm{~cm}^{-1}$. HRMS (ESI,$\left.~ M e O H\right) ~ c a l c d ~ f o r ~ \mathrm{C}_{20}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$
393.1767, found 393.1781. Isomer Z: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.70-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.33$ $(\mathrm{m}, 6 \mathrm{H}), 6.47\left(\mathrm{ddt}, 1 \mathrm{H},{ }^{1} J_{\mathrm{C}-\mathrm{H}}=157.6 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=11.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=4.7 \mathrm{~Hz}\right), 5.70\left(\mathrm{ddtd}, 1 \mathrm{H},{ }^{1} J_{\mathrm{C}-\mathrm{H}}=164.5\right.$ $\left.\mathrm{Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=11.7 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}-\mathrm{H}}=2.5 \mathrm{~Hz},{ }^{2} J_{\mathrm{C}-\mathrm{H}}=0.7 \mathrm{~Hz}\right), 4.83(\mathrm{~m}, 2 \mathrm{H}), 4.06\left(\mathrm{q}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}\right), 1.19(\mathrm{t}$, $\left.3 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}\right), 1.07(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=73.8 \mathrm{~Hz}\right)$, $151.6\left(\mathrm{~d},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=69.0 \mathrm{~Hz}\right), 135.7,133.6,129.8,127.9,118.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=69.0 \mathrm{~Hz}\right), 62.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=46.0\right.$ Hz), 60.2, 27.0, 19.3, 14.3 ppm IR (neat): $v=3071,3050,2958,2931,2894,2857,1714,1184,1106$, 1082, 1031, 821, 801, 740, 699, $612 \mathrm{~cm}^{-1}$. HRMS (ESI,$\left.~ M e O H\right) ~ c a l c d ~ f o r ~ \mathrm{C}_{20}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$ 393.1767 , found 393.1772 .

Ethyl [2,3- $\left.{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]$-4-((tert-butyldiphenylsilyl)oxy)butanoate $\mathbf{8}$

To a solution of olefin $(\boldsymbol{E})-7(1.30 \mathrm{~g}, 3.5 \mathrm{mmol})$ in toluene $(12 \mathrm{~mL})$ was added Wilkinson's catalyst ($0.32 \mathrm{~g}, 0.35 \mathrm{mmol}$). Deuterium was bubbled through the solution for 1 min and the mixture was stirred at room temperature for 16 h under deuterium atmosphere before concentration. The crude residue was purified by prepacked chromatography on silica gel (gradient hexane/EtOAc $10 / 0$ to $9 / 1$) to afford ester $\mathbf{8}(1.28 \mathrm{~g}, 98 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.69-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.35(\mathrm{~m}, 6 \mathrm{H}), 4.12\left(\mathrm{q}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-}\right.$ $\left.{ }_{\mathrm{H}}=7.2 \mathrm{~Hz}\right), 3.69(\mathrm{~m}, 2 \mathrm{H}), 2.43\left(\mathrm{dm}, 1 \mathrm{H},{ }^{1} J_{\mathrm{C}-\mathrm{H}}=127.9 \mathrm{~Hz}\right), 1.87\left(\mathrm{dm}, 1 \mathrm{H},{ }^{1} J_{\mathrm{C}-\mathrm{H}}=127.9 \mathrm{~Hz}\right), 1.25(\mathrm{t}$, $\left.3 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}\right), 1.06(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=57.5 \mathrm{~Hz}\right)$, $135.7,133.9,129.7,127.8,63.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=39.3 \mathrm{~Hz}\right), 60.4,30.7\left(\mathrm{dt},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=35.4 \mathrm{~Hz},{ }^{1} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}\right)$, $27.5\left(\mathrm{dt},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=35.4 \mathrm{~Hz},{ }^{1} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}\right.$), 27.0, 19.4, 14.4 ppm . IR (neat): $v=3072,3051,2958,2930$, 2894, 2858, 1732, 1428, 1240, 1182, 1110, 1085, 1043, 822, $740 \mathrm{~cm}^{-1}$. HRMS (ESI ${ }^{+}$, MeOH) calcd for $\mathrm{C}_{20}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{28} \mathrm{D}_{2} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 397.2049$, found 397.2054.
[2,3- $\left.{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]$-4-((tert-butyldiphenylsilyl)oxy)butan-1-ol 9
 To a solution of ester $\mathbf{8}(1.12 \mathrm{~g}, 3.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added DIBAL-H (1 M in hexane, $6.6 \mathrm{~mL}, 6.6 \mathrm{mmol}$). The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min and at $0^{\circ} \mathrm{C}$ for 15 min . Excess of DIBAL-H was neutralized by careful addition of few drops of MeOH at $0^{\circ} \mathrm{C}$. A saturated Rochelle's salt aqueous solution was added at $0^{\circ} \mathrm{C}$ and the mixture was then vigorously stirred at room temperature for 3 h . Layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{x} 3)$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by prepacked chromatography on silica gel (gradient hexane/EtOAc 10/0 to 6/4) to afford alcohol 9 (0.98 $\mathrm{g}, 99 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.70-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.36(\mathrm{~m}, 6 \mathrm{H})$, 3.73-3.63 (m, 4H), $1.93(\mathrm{bs}, 1 \mathrm{H}), 1.64\left(\mathrm{dm}, 2 \mathrm{H},{ }^{1} J_{\mathrm{C}-\mathrm{H}}=130.7 \mathrm{~Hz}\right), 1.06(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=135.7,133.8,129.8,127.8,64.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=38.3 \mathrm{~Hz}\right), 62.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=38.3 \mathrm{~Hz}\right), 29.6$ $\left(\mathrm{dt},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=35.5 \mathrm{~Hz},{ }^{l} J_{\mathrm{C}-\mathrm{D}}=18.2 \mathrm{~Hz}\right), 28.9\left(\mathrm{dt},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=35.5 \mathrm{~Hz},{ }^{l} J_{\mathrm{C}-\mathrm{D}}=18.2 \mathrm{~Hz}\right), 27.0,19.3 \mathrm{ppm} . \mathrm{IR}$ (neat): $v=3349,3071,3050,2957,2929,2891,2857,1472,1428,1106,1084,1046,1007,998,822$, $739 \mathrm{~cm}^{-1}$. HRMS (ESI', MeOH) calcd for $\mathrm{C}_{18}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{27} \mathrm{D}_{2} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 333.2124$, found 333.2143.

To a solution of alcohol $9(116.4 \mathrm{mg}, 0.35 \mathrm{mmol})$ in THF (1.5 mL) were added triphenylphosphine $(183.6 \mathrm{mg}, 0.7 \mathrm{mmol})$ and carbon tetrabromide $(232.1 \mathrm{mg}, 0.7$ mmol). The mixture was stirred at room temperature for 2 h , filtrated on a pad of Celite, washed with THF and concentrated under reduced pressure. The crude product was purified by prepacked chromatography on silica gel (gradient hexane/EtOAc 10/0 to 95/5) to afford the common synthon $10(132.6 \mathrm{mg}, 96 \%)$ as a colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.66(\mathrm{~m}, 4 \mathrm{H}), 7.46-$ $7.36(\mathrm{~m}, 6 \mathrm{H}), 3.69(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{~m}, 2 \mathrm{H}), 1.96\left(\mathrm{dm}, 1 \mathrm{H},{ }^{1} J_{\mathrm{C}-\mathrm{H}}=119.8 \mathrm{~Hz}\right), 1.66\left(\mathrm{dm}, 1 \mathrm{H},{ }^{1} J_{\mathrm{C}-\mathrm{H}}=\right.$ $119.8 \mathrm{~Hz}), 1.05(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=135.7,134.0,129.8,127.8,63.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-}\right.$ $\mathrm{C}=38.3 \mathrm{~Hz}), 33.9\left(\mathrm{~d},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz}\right), 30.7\left(\mathrm{dt},{ }^{1} J_{\mathrm{C}-\mathrm{CD}}=34.5 \mathrm{~Hz},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=19.2 \mathrm{~Hz}\right), 29.1\left(\mathrm{dt},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=\right.$ $34.5 \mathrm{~Hz},{ }^{l} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}$), 27.0, 19.4 ppm . IR (neat): $v=3070,3050,2958,2929,2895,2857,1427$, 1109, 1083, 822, 739, 699, $611 \mathrm{~cm}^{-1}$. HRMS (ESI,$\left.~ M e O H\right)$ calcd for $\mathrm{C}_{18}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{25} \mathrm{D}_{2}{ }^{79} \mathrm{BrOSiNa}$ $[\mathrm{M}+\mathrm{Na}]^{+} 417.1099$, found 417.1102.

[2,3- $\left.{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]$-4-((tert-butyldiphenylsilyl)oxy)butyl 4-methylbenzenesulfonate 11

To a solution of alcohol $9(0.84 \mathrm{~g}, 2.54 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added triethylamine $(0.85 \mathrm{~mL}, 6.08 \mathrm{mmol})$, tosyl chloride $(0.73 \mathrm{~g}, 3.80 \mathrm{mmol})$ and DMAP $(0.15 \mathrm{~g}, 1.27 \mathrm{mmol})$. The mixture was stirred at room temperature for 2 h , diluted with EtOAc (20 mL), washed with 1 M HCl , saturated NaHCO_{3} and brine. The organic layer was dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by prepacked chromatography on silica gel (gradient hexane/EtOAc $10 / 0$ to $7 / 3$) to afford the common synthon $11(1.16 \mathrm{~g}, 94 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.77(\mathrm{~m}, 2 \mathrm{H})$, $7.61(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.32(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{dm}, 1 \mathrm{H}$, $\left.{ }^{l} J_{\mathrm{C}-\mathrm{H}}=128.4 \mathrm{~Hz}\right), 1.53\left(\mathrm{dm}, 1 \mathrm{H},{ }^{l} J_{\mathrm{C}-\mathrm{H}}=125.8 \mathrm{~Hz}\right), 1.01(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=144.7,135.7,133.9,133.4,130.0,129.8,128.0,127.8,70.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=37.4 \mathrm{~Hz}\right), 63.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=38.3\right.$ $\mathrm{Hz}), 28.0\left(\mathrm{dt},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz},{ }^{1} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}\right), 27.0,25.3\left(\mathrm{dt},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz},{ }^{1} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}\right), 21.8$, 19.3 ppm . IR (neat): $v=3071,3050,2957,2930,2890,2857,1472,1428,1361,1175,1112,815,740$, $699,688,665,607 \mathrm{~cm}^{-1}$. HRMS (ESI,$\left.~ \mathrm{MeOH}\right)$ calcd for $\mathrm{C}_{25}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{32} \mathrm{D}_{2} \mathrm{O}_{4} \mathrm{SSiNa}[\mathrm{M}+\mathrm{Na}]^{+} 509.2032$, found 509.2037.

III. Determination of the syn-enantioselectivity of compound 8

Evaluation of the selectivity of the deuteration from compound $\mathbf{7}$ to compound $\mathbf{8}$ was realized according to the works of Whitesides and coworkers who pioneered the determination of the relative configurations at CHD-CHD centers of aliphatic acyclic chains by using ${ }^{1} \mathrm{H}-\mathrm{NMR}$ with ${ }^{2} \mathrm{H}$ decoupling. ${ }^{3}$

However, with our isotope cluster-labeled moiety, differences between erythro and threo compounds couldn't be seen because ${ }^{13} \mathrm{C}$ broadened the pattern in ${ }^{1} \mathrm{H}$-NMR. To overcome such issue, we used non $-{ }^{13} \mathrm{C}$-labeled version of $\mathbf{8}$, synthesized as described above. The erythro compound epi-8 was synthesized as previously, using this time the Z-olefin as substrate.

Figure: Comparison of ${ }^{2} \mathrm{H}$-decoupled ${ }^{l} \mathrm{H}$-NMR signals

${ }^{1} \mathrm{H}$-NMR spectra were recorded at 400 MHz with ${ }^{2} \mathrm{H}$-decoupling at 61.4 MHz , using the solvent residual peak of $\mathrm{CDCl}_{3}(7.26 \mathrm{ppm})$ as the reference. The $\mathrm{H}_{\mathrm{a}}-\mathrm{H}_{\mathrm{b}}$ coupling constants are measured from the H_{a} doublet.

Vertical lines were superimposed for comparison of the peaks. Comparison of H_{a} doublet and H_{b} doublet of triplets clearly shows that no diastereomer is formed during the deuteration process from the E-olefin. Moreover, the two coupling constants found are consistent with the ones described by Whitesides: ${ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.3 \mathrm{~Hz}$ for the threo deuterated ester, analogue of compound $\mathbf{8}$ and ${ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.7 \mathrm{~Hz}$ for the erythro one. With the latest, we can also determine that ${ }^{3} J_{\mathrm{H}-\mathrm{H}}$ coupling constant between H_{b} and CH_{2} is 6.0 Hz . That coupling constant, very close to the one found between H_{a} and H_{b} in the threo compound, explains why the patterns are broader for the threo than for the erythro.

IV. General methods for the synthesis of labeled stearic acids

1) Synthesis of starting materials for the preparation of Grignard reagents

Protection by THP

2-((8-bromooctyl)oxy)tetrahydro-2H-pyran
${ }^{\mathrm{Br}} \mathrm{y}_{8}^{\mathrm{OTHP}}$ To a solution of 8-bromo-1-octanol $(2.09 \mathrm{~g}, 10.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ were added p toluenesulfonic acid ($95.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 3,4-dihydro-2H-pyran ($1.27 \mathrm{~mL}, 15.0$ mmol). The mixture was stirred for 3 h , quenched with saturated NaHCO_{3} and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{x} 3)$. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by prepacked chromatography on silica gel (gradient hexane/EtOAc 10/0 to 9/1) to afford THP-protected compound $(2.54 \mathrm{~g}, 87 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.56(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~m}$, $1 \mathrm{H}), 3.49(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.33(\mathrm{~m}, 3 \mathrm{H}), 1.84(\mathrm{~m}, 3 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.47(\mathrm{~m}, 6 \mathrm{H}), 1.46-1.26(\mathrm{~m}$, $8 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=99.0,67.7,62.5,34.1,32.9,30.9,29.8,29.4,28.8,28.2$, $26.2,25.6,19.8 \mathrm{ppm}$. IR (neat): $v=2930,2854,1200,1134,1119,1077,1066,1031,1022,986,905$, $869,815 \mathrm{~cm}^{-1}$. HRMS (ESI', MeOH) calcd for $\mathrm{C}_{13} \mathrm{H}_{25}{ }^{79} \mathrm{BrO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 315.0930$, found 315.0933.

Protection by PMB

1-(((8-bromooctyl)oxy)methyl)-4-methoxybenzene
${ }^{\mathrm{Br}} \mathrm{y}_{8}^{\mathrm{OPMB}} \quad \mathrm{To}$ a suspension of sodium hydride (60% in oil, $440.0 \mathrm{mg}, 11.0 \mathrm{mmol}$) in THF (20 mL) at $0^{\circ} \mathrm{C}$ was added p-methoxybenzyl alcohol ($\left.1.38 \mathrm{~g}, 10.0 \mathrm{mmol}\right)$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and 1,8 -dibromooctane was added ($3.70 \mathrm{~mL}, 20.0 \mathrm{mmol}$). The mixture was allowed to warm to room temperature and stirred for 20 h . The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc (x3). The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by prepacked chromatography on silica gel (gradient hexane/EtOAc 10/0 to 9/1) to afford PMB-protected compound ($1.58 \mathrm{~g}, 48 \%$) as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.26(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.43\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.6 \mathrm{~Hz}\right), 3.40\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.8 \mathrm{~Hz}\right), 1.84\left(\mathrm{qi}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}\right), 1.59(\mathrm{qi}$, $\left.2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.9 \mathrm{~Hz}\right), 1.47-1.26(\mathrm{~m}, 8 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.2,130.9,129.4$, $113.9,72.6,70.2,55.4,34.2,32.9,29.8,29.4,28.8,28.2,26.2 \mathrm{ppm}$. IR (neat): $v=2999,2930,2853$,
 $\mathrm{C}_{16} \mathrm{H}_{25}{ }^{79} \mathrm{BrO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 351.0930$, found 351.0934 .

1,14-Tetradecanediol

${ }^{\mathrm{HO}} \mathrm{H}_{14}^{\mathrm{OH}}$
To a solution of methyltetradecanedioate ($4.30 \mathrm{~g}, 15.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added DIBAL-H (1 M in hexane, $75.0 \mathrm{~mL}, 75.0 \mathrm{mmol}$). The mixture was stirred at $78^{\circ} \mathrm{C}$ for 30 min and at $0^{\circ} \mathrm{C}$ for 15 min . Excess of DIBAL-H was neutralized by careful addition of few drops of MeOH at $0^{\circ} \mathrm{C}$. A saturated Rochelle's salt aqueous solution (25 mL) was added at $0^{\circ} \mathrm{C}$ and the mixture was then vigorously stirred at room temperature for 3 h . Layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (x5). The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude white solid obtained (3.36 g , 97%) was found to be the pure diol and was used in the next step without further purification. $\mathrm{Mp}=$ $88{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.64\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.56\left(\mathrm{qi}, 4 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right)$, $1.41-1.19(\mathrm{~m}, 22 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=63.3,33.0,29.72,29.70,29.6,25.9 \mathrm{ppm}$. IR (neat): $v=3410,3347,2919,2889,2848,1461,1356,1060,1051,1017,972,728,608 \mathrm{~cm}^{-1}$. HRMS ($\mathrm{ESI}^{+}, \mathrm{MeOH}$) calcd for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 253.2138$, found 253.2137 .

14-Bromotetradecan-1-ol

${ }^{\mathrm{Br}} \mathrm{Yt}_{14}^{\mathrm{OH}}$ To a suspension of 1,14-tetradecanediol ($3.26 \mathrm{~g}, 14.1 \mathrm{mmol}$) in cyclohexane (30 mL) was added $\operatorname{HBr}(1.59 \mathrm{~mL}, 14.1 \mathrm{mmol})$. The mixture was warmed to reflux and stirred for 70 h before extraction with hexane (x3) and EtOAc (x2). The combined organic layers were washed with saturated $\mathrm{NaHCO}_{3}(\mathrm{x} 3)$ and brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by prepacked chromatography on silica gel (gradient hexane/EtOAc $10 / 0$ to $7 / 3$) to afford 14 -bromotetradecan-1-ol ($2.29 \mathrm{~g}, 55 \%$) as a white solid. $\mathrm{Mp}=45.4^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.64\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 3.40\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.85\left(\mathrm{qi}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=\right.$ 6.7 Hz), $1.56\left(\mathrm{qi}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.41-1.19(\mathrm{~m}, 21 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 63.3, 33.0, 29.72, 29.70, 29.6, 25.9 ppm . IR (neat): $v=3276,2916,2848,1472,1462,1071,1060$, 1043, 1035, 1023, 1005, 993, 731, 719, $650 \mathrm{~cm}^{-1}$. HRMS (ESI ${ }^{+}$MeOH) calcd for $\mathrm{C}_{14} \mathrm{H}_{29}{ }^{79} \mathrm{BrONa}$ $[\mathrm{M}+\mathrm{Na}]^{+} 315.1294$, found 315.1315.

Protection by benzyl

In a typical procedure, to a solution of the appropriate bromo alcohol (10 mmol) in THF (20 mL) were added benzyl bromide ($2.66 \mathrm{~g}, 15 \mathrm{mmol}$) and then sodium hydride (60% in oil, $0.8 \mathrm{~g}, 20 \mathrm{mmol}$). The mixture was stirred for 18 h before careful quench with saturated NaHCO_{3}. The mixture was diluted with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (x3). The combined organic layers were washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by prepacked chromatography on silica gel (gradient hexane/EtOAc 10/0 to 9/1) to afford the desired benzyl-protected alcohols.

${ }^{\mathrm{Br}} \mathrm{Y}_{8}^{\mathrm{OBn}}$Colorless oil ($2.72 \mathrm{~g}, 91 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.38-7.26$ (m, 5H), 4.50 (s, $2 \mathrm{H}), 3.47\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 3.40\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.9 \mathrm{~Hz}\right), 1.85\left(\mathrm{qi}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.9 \mathrm{~Hz}\right)$, $1.62\left(\mathrm{qi}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.48-1.26(\mathrm{~m}, 8 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=138.8,128.5$, $127.8,127.6,73.0,70.6,34.2,32.9,29.9,29.4,28.8,28.3,26.2 \mathrm{ppm}$. IR (neat): $v=3088,3064,3030$, 2930, 2854, 2790, 1453, 1362, 1099, 1028, 733, $\left.696 \mathrm{~cm}^{-1} . \mathrm{HRMS}^{(E S I}, \mathrm{MeOH}\right)$ calcd for $\mathrm{C}_{15} \mathrm{H}_{23}{ }^{79} \mathrm{BrONa}[\mathrm{M}+\mathrm{Na}]^{+} 321.0825$, found 321.0842.
(((14-bromotetradecyl)oxy)methyl)benzene
${ }^{\mathrm{Br}} \mathrm{Yf}_{14}^{\mathrm{OBn}}$ White solid $(3.67 \mathrm{~g}, 86 \%) . \mathrm{Mp}=32.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.39-7.25(\mathrm{~m}$, $5 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.46\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 3.41\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.9 \mathrm{~Hz}\right), 1.85\left(\mathrm{qi}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-}\right.$ $\left.{ }_{\mathrm{H}}=6.9 \mathrm{~Hz}\right), 1.61\left(\mathrm{qi}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.49-1.21(\mathrm{~m}, 20 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $138.9,128.5,127.8,127.6,73.0,70.7,34.2,33.0,29.9,29.73,29.68,29.63,29.58,28.9,28.3,26.3$ ppm. IR (neat): $v=3052,3030,2920,2850,2796,1498,1467,1455,1367,1205,1125,1106,1088$, $1076,1029,1017,992,737,729,724,697,639 \mathrm{~cm}^{-1}$. HRMS (ESI $\left.{ }^{+}, \mathrm{MeOH}\right)$ calcd for $\mathrm{C}_{21} \mathrm{H}_{35}{ }^{79} \mathrm{BrONa}$ $[\mathrm{M}+\mathrm{Na}]^{+} 405.1764$, found 405.1788 .
(((7-bromoheptyl)oxy)methyl)benzene
${ }^{\mathrm{Br}} \mathrm{H}_{7}^{\mathrm{OBn}}$ Colorless oil ($2.49 \mathrm{~g}, 87 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.39-7.26(\mathrm{~m}, 5 \mathrm{H}), 4.51$ (s, $2 \mathrm{H}), 3.47\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 3.40\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.9 \mathrm{~Hz}\right), 1.86\left(\mathrm{qi}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.9 \mathrm{~Hz}\right)$, 1.63 (qi, $\left.2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.49-1.28(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=138.8,128.5$, $127.8,127.6,73.0,70.5,34.1,32.9,29.8,28.7,28.2,26.2 \mathrm{ppm}$. IR (neat): $v=3088,3065,3030,2932$, 2855, 2790, 1453, 1362, 1253, 1099, 1075, 1028, 733, $696 \mathrm{~cm}^{-1} . \mathrm{HRMS}^{(E S I}$, MeOH) calcd for $\mathrm{C}_{14} \mathrm{H}_{21}{ }^{79} \mathrm{BrONa}[\mathrm{M}+\mathrm{Na}]^{+} 307.0668$, found 307.0673.
(((9-bromononyl)oxy)methyl)benzene
${ }^{\mathrm{Br}} \mathrm{Y}_{9} \mathrm{OBn}$ Colorless oil ($2.71 \mathrm{~g}, 87 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.39-7.26(\mathrm{~m}, 5 \mathrm{H}), 4.51$ (s, $2 \mathrm{H}), 3.47\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 3.41\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.9 \mathrm{~Hz}\right), 1.85\left(\mathrm{qi}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.9 \mathrm{~Hz}\right)$, $1.62\left(\mathrm{qi}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.49-1.28(\mathrm{~m}, 10 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=138.8,128.5$, $127.7,127.6,73.0,70.6,34.2,33.0,29.9,29.5,28.8,28.3,26.3 \mathrm{ppm}$. IR (neat): $v=3088,3065,3030$, 2927, 2853, 2793, 1453, 1362, 1099, 1028, 733, $696 \mathrm{~cm}^{-1} . \operatorname{HRMS}\left(\mathrm{ESI}^{+}, \mathrm{MeOH}\right)$ calcd for $\mathrm{C}_{16} \mathrm{H}_{25}{ }^{79} \mathrm{BrONa}[\mathrm{M}+\mathrm{Na}]^{+} 335.0981$, found 335.1004.

2) General Methods

- Formation of Grignard reagents

To a suspension of magnesium turnings (1.5 equiv) in THF ($0.5 \mathrm{~mL} / \mathrm{mmol}$ of substrate) containing a small iodine crystal were added few drops of the appropriate brominated compound (1 equiv) in THF ($0.5 \mathrm{~mL} / \mathrm{mmol}$ of substrate). The mixture was heated until the reaction started, then the brominated compound was added drop by drop to maintain a non-assisted gentle reflux. After complete addition of the starting material, the mixture was heated under reflux for 1 h . The solution of Grignard reagent was cooled down and titrated prior to use. ${ }^{4}$

- $\mathrm{C}_{\mathrm{sp}}-\mathrm{C}_{\mathrm{sp}^{3}}$ coupling

To a 0.5 M solution of $\mathbf{1 0}$ or $\mathbf{1 1}$ (1 equiv) in THF at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere, were added CuCl_{2} (0.05 equiv), phenylmethylacetylene (0.2 equiv) and the appropriate Grignard reagent (2 equiv). The mixture was stirred at room temperature for 1 h , cooled down to $0^{\circ} \mathrm{C}$ and quenched by 1 M HCl . After addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ at $0{ }^{\circ} \mathrm{C}$, the solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (x3) and the combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by prepacked chromatography on silica gel (gradient hexane/EtOAc 10/0 to 9/1) to afford the desired compounds $\mathbf{1 3}$ and 27a-c.

In some cases i.e. for intermediates of compounds 16 and 17 as well as compounds $\mathbf{1 8}$ and 24a-c, the pure couplings products couldn't be provided due to contamination by the hydrolyzed products from the Grignard reagents. Thus, they were only partially purified under the same conditions described above and then used impure in the TBDPS-deprotection step.

- Deprotection of TBDPS

To a 0.2 M solution of the appropriate TBDPS-protected alcohol (1 equiv) in THF was added TBAF (1 M in THF, 1.5 equiv) and the mixture was stirred at room temperature for 2 h before quenching with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The solution was extracted with EtOAc (x3) and the combined organic layers were washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by prepacked chromatography on silica gel (gradient hexane/EtOAc 10/0 to 7/3) to afford the hydroxyl compounds 14, 16, 17, 19 and 25a-c.

- Tosylation

To a 0.2 M solution of the appropriate hydroxyl (1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ were added triethylamine (2.4 equiv), dimethylaminopyridine (0.5 equiv) and tosyl chloride (1.5 equiv). The mixture was allowed to warm to room temperature and stirred for 2 h before dilution by EtOAc. The organic layer was washed with HCl 1 M , saturated NaHCO_{3} and brine, dried over MgSO_{4}, filtrated and concentrated under reduced pressure. The crude product was purified by prepacked chromatography on silica gel (gradient hexane/EtOAc 10/0 to 8/2) to afford the tosylated compounds 20 and 26a-c.

- Deprotection of Bn

To a 0.05 M solution of the appropriate labeled benzyl-protected stearyl alcohol (1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ was added boron trichloride (2 equiv, 1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). The reaction mixture was allowed to warm to room temperature, stirred for 2 h , quenched with MeOH and diluted with water. The organic layer was washed with water, dried over MgSO_{4}, filtrated and concentrated under reduced pressure. The crude product was purified by prepacked chromatography on silica gel (gradient hexane/EtOAc $10 / 0$ to $7 / 3$) to afford the stearyl alcohols 22 and 28a-c.

- Jones'oxidation

Preparation of the Jones' reagent: $\mathrm{CrO}_{3}(1.0 \mathrm{~g}, 10.0 \mathrm{mmol})$ was dissolved in water (3 mL) upon which was added $\mathrm{H}_{2} \mathrm{SO}_{4}(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$.

To a 0.05 M solution of the appropriate labeled stearyl alcohol (1 equiv) in acetone was added the Jones' reagent ($1 \mathrm{~mL} / \mathrm{mmol}$ of substrate) and the mixture was vigorously stirred at room temperature for 10 min . Isopropanol was added until the orange color disappeared and only a blue suspension remained. HCl 1 M was then added to dissolve the blue-green solid and the mixture was extracted with

EtOAc (x3). Combined organic layers were washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by prepacked chromatography on silica gel (gradient hexane/EtOAc 10/0 to 5/5) to afford the desired labeled stearic acids 15, 23 and 29a-c.
3) Analyses of the labeled compounds

2,3-labeled positions

[2,3- $\left.{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]$-tert-butyl(octadecyloxy)diphenylsilane $\mathbf{1 3}$

 the desired compound $\mathbf{1 3}$ was obtained as a colorless oil ($250.9 \mathrm{mg}, 98 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.70-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.45(\mathrm{~m}, 6 \mathrm{H}), 3.65(\mathrm{~m}, 2 \mathrm{H}), 1.73-$ $1.10(\mathrm{~m}, 30 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.88\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.8 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=135.7$, 134.4, 129.6, 127.7, $64.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=39.3 \mathrm{~Hz}\right.$), $32.3\left(\mathrm{dt},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz},{ }^{1} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}\right), 29.9$, 29.8, 29.5, $29.4\left(\mathrm{~d},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz}\right.$), 27.0, $25.4\left(\mathrm{dt},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz},{ }^{l} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}\right.$), 22.9, 19.4, 14.3 ppm . IR (neat): $v=3070,3050,2957,2922,2852,1464,1427,1111,1085,823,739,700,611 \mathrm{~cm}^{-1}$. HRMS ($\mathrm{ESI}^{+}, \mathrm{MeOH}$) calcd for $\mathrm{C}_{32}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{55} \mathrm{D}_{2} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+} 513.4366$, found 513.4395.
[2,3- $\left.{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]$-stearyl alcohol 14

Si_{D}Following the TBDPS-deprotection method with compound $\mathbf{1 3}$ ($236.7 \mathrm{mg}, 0.46 \mathrm{mmol}$), the desired alcohol 14 was obtained as a white solid ($116.1 \mathrm{mg}, 92 \%$). $\mathrm{Mp}=58.7^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.63(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.07(\mathrm{~m}, 31 \mathrm{H}), 0.88\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7\right.$ $\mathrm{Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=63.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=37.4 \mathrm{~Hz}\right), 32.5\left(\mathrm{dt},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz},{ }^{1} J_{\mathrm{C}-\mathrm{D}}=\right.$ $19.2 \mathrm{~Hz}), 29.84,29.77,29.73 .29 .51,29.46\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz}\right), 25.4\left(\mathrm{dt},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz},{ }^{1} J_{\mathrm{C}-\mathrm{D}}=19.2\right.$ Hz), 22.8, 14.3 ppm . IR (neat): $v=3319,3234,2964,2955,2915,2848,1472,1462,1064,1052,1044$, $729,720 \mathrm{~cm}^{-1}$. HRMS (ESI ${ }^{+}$, $\mathrm{MeOH}+\mathrm{HCOONa}$) calcd for $\mathrm{C}_{16}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{36} \mathrm{D}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}$297.3008, found 297.3008.
$\left[2,3-{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]$-stearic acid 15

Following the Jones' oxidation method with alcohol $\mathbf{1 4}$ ($68.6 \mathrm{mg}, 0.25 \mathrm{mmol}$), the desired labeled stearic acid 15 was obtained as a white solid ($52.3 \mathrm{mg}, 73 \%$). $\mathrm{Mp}=$ $69.9{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.32\left(\mathrm{dm}, 1 \mathrm{H},{ }^{1} J_{\mathrm{C}-\mathrm{H}}=127.7 \mathrm{~Hz}\right), 1.83-1.05$ $(\mathrm{m}, 28 \mathrm{H}), 0.88\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=179.8\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{C}}=55.6\right.$ $\mathrm{Hz}), 33.7\left(\mathrm{dt},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz},{ }^{1} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}\right), 32.1,29.85,29.74,29.59\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{C}}=3.7 \mathrm{~Hz}\right), 29.52$, $29.37\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{C}}=3.7 \mathrm{~Hz}\right), 29.08\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=35.5 \mathrm{~Hz}\right), 24.4\left(\mathrm{dt},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz},{ }^{1} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}\right), 22.9$, 14.3 ppm . IR (neat): $v=2963,2954,2914,2847,1695,1471,1463,1339,1308,1255,1239,1228$, 944, 729, $719 \mathrm{~cm}^{-1}$. HRMS (ESI', MeOH) calcd for $\mathrm{C}_{16}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{33} \mathrm{D}_{2} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-}$287.2835, found 287.2822.

With different protecting groups

[2,3- $\left.{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]-12$-((tetrahydro-2H-pyran-2-yl)oxy)dodecan-1-ol 16

Following the $\mathrm{C}_{\mathrm{sp}}{ }^{3}-\mathrm{C}_{\mathrm{sp}}{ }^{3}$ coupling and TBDPS-deprotection methods with common synthon $11(243.4 \mathrm{mg}, 0.50 \mathrm{mmol})$, the desired compound $\mathbf{1 6}$ was obtained as a colorless oil ($62.5 \mathrm{mg}, 43 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.57(\mathrm{~m}, 1 \mathrm{H}), 3.87$ $(\mathrm{m}, 1 \mathrm{H}), 3.72\left(\mathrm{dt}, 1 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=9.6 \mathrm{~Hz}\right.$ and $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.9 \mathrm{~Hz}\right), 3.62(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~m}, 1 \mathrm{H}), 3.38\left(\mathrm{dt}, 1 \mathrm{H},{ }^{3} J_{\mathrm{H}}\right.$ ${ }_{\mathrm{H}}=9.6 \mathrm{~Hz}$ and $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.82(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.07(\mathrm{~m}, 24 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=99.0,67.9,63.1\left(\mathrm{~d},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=37.4 \mathrm{~Hz}\right), 62.5,32.4\left(\mathrm{dt},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz},{ }^{l} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}\right), 30.9,29.9,29.7$, 29.6, $29.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=35.1 \mathrm{~Hz}\right), 26.4,25.7,25.4\left(\mathrm{dt},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz},{ }^{l} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}\right), 19.9 \mathrm{ppm}$. IR (neat): $\left.v=3393,2921,2852,1137,1120,1077,1022,987 \mathrm{~cm}^{-1} . \mathrm{HRMS}^{(E S I}{ }^{+}, \mathrm{MeOH}\right)$ calcd for $\mathrm{C}_{15}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{32} \mathrm{D}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 313.2593$, found 313.2594.

[2,3- $\left.{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]$ - 12-((4-methoxybenzyl)oxy)dodecan-1-ol 17

Following the $\mathrm{C}_{\mathrm{sp}}{ }^{3}-\mathrm{C}_{\mathrm{sp}} 3$ coupling and TBDPS-deprotection methods with common synthon $\mathbf{1 1}(243.4 \mathrm{mg}, 0.50 \mathrm{mmol})$, the desired compound $\mathbf{1 6}$ was obtained as a white solid ($151.6 \mathrm{mg}, 93 \%$). $\mathrm{Mp}=56.7^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $7.26\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.6 \mathrm{~Hz}\right), 6.88\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.6 \mathrm{~Hz}\right), 4.43(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~m}, 2 \mathrm{H}), 3.43$ $\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.59\left(\mathrm{qi}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.74-1.07(\mathrm{~m}, 17 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=159.2,131.0,129.4,113.9,72.7,70.4,63.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=36.4 \mathrm{~Hz}\right), 55.4,32.5\left(\mathrm{dt},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=\right.$ $\left.34.5 \mathrm{~Hz},{ }^{l} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}\right), 29.9,29.7,29.6,29.5\left(\mathrm{~d},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz}\right), 26.4,25.4\left(\mathrm{dt},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz}\right.$, ${ }^{1} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}$) ppm. IR (neat): $v=3410,3314,2916,2879,2848,2793,1615,1516,1465,1304$, 1252, 1176, 1171, 1100, 1058, 1047, 1030, 1011, 976, 822, 815, 808, $725 \mathrm{~cm}^{-1}$. HRMS (ESI' ${ }^{+} \mathrm{MeOH}$) calcd for $\mathrm{C}_{18}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{32} \mathrm{D}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 349.2593$, found 349.2594 .

16,17-labeled positions

[2,3- ${ }^{13} \mathrm{C}_{2}$-2,3-D D_{2}]-18-(benzyloxy)octadecan-1-ol 19

Following the $\mathrm{C}_{\mathrm{sp}} 3-\mathrm{C}_{\mathrm{sp}}{ }^{3}$ coupling and TBDPS-deprotection methods with compound $11(243.4 \mathrm{mg}, 0.50 \mathrm{mmol})$, the desired compound 19 was obtained as a white solid $(170.5 \mathrm{mg}, 90 \%) . \mathrm{Mp}=60.4^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.38-7.24(\mathrm{~m}$, $5 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{~m}, 2 \mathrm{H}), 3.46\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.61\left(\mathrm{qi}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.74-1.10$ $(\mathrm{m}, 29 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=138.9,128.5,127.8,127.6,73.0,70.7,63.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}\right.$ $=37.4 \mathrm{~Hz}), 32.5\left(\mathrm{dt},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz},{ }^{l} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}\right), 29.92,29.82,29.76,29.64,29.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=35.6\right.$ Hz), 26.4, 25.4 (dt, ${ }^{l} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz},{ }^{l} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}$) ppm. IR (neat): $v=3429,3364,2916,2879,2847$, 2794, 1469, 1118, 736, 721, $695 \mathrm{~cm}^{-1}$. HRMS (ESI ${ }^{+}$, MeOH) calcd for $\mathrm{C}_{23}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{43} \mathrm{D}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 381.3607, found 381.3611 .
[2,3- $\left.{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]$-18-(benzyloxy)octadecyl 4-methylbenzenesulfonate $\mathbf{2 0}$

Following the tosylation method with compound 19 ($114.0 \mathrm{mg}, 0.30 \mathrm{mmol}$), the desired compound 20 was obtained as a white solid ($153.0 \mathrm{mg}, 96 \%$). $\mathrm{Mp}=$ $68.5{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=7.79\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.3 \mathrm{~Hz}\right), 7.38-7.24$ $(\mathrm{m}, 7 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 4.01(\mathrm{~m}, 2 \mathrm{H}), 3.46\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.61\left(\mathrm{qi}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7\right.$ $\mathrm{Hz}), 1.81-1.04(\mathrm{~m}, 28 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=144.7,138.9,133.4,129.9,128.5$, $128.0,127.8,127.6,73.0,70.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=38.3 \mathrm{~Hz}\right), 70.7,29.9,29.83,29.76,29.65,29.52\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{C}}=\right.$ $3.8 \mathrm{~Hz}), 29.1,28.5\left(\mathrm{dt},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz},{ }^{l} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}\right), 26.4,25.0\left(\mathrm{dt},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz},{ }^{l} J_{\mathrm{C}-\mathrm{D}}=19.2\right.$ Hz), 21.8 ppm . IR (neat): $v=3029,2918,2849,1470,1361,1169,1105,1095,936,837,811,733$, $699,666 \mathrm{~cm}^{-1} . \mathrm{HRMS}\left(\mathrm{ESI}^{+}, \mathrm{MeOH}\right)$ calcd for $\mathrm{C}_{30}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{49} \mathrm{D}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 535.3695$, found 535.3703.
[16,17- $\left.{ }^{13} \mathrm{C}_{2}-16,17-\mathrm{D}_{2}\right]$-((octadecyloxy)methyl)benzene 21

To a solution of lithium aluminium hydride ($26.2 \mathrm{mg}, 0.69 \mathrm{mmol}$) in THF (3 mL) at $0^{\circ} \mathrm{C}$ was added compound $20(123.0 \mathrm{mg}, 0.23 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$. The mixture was allowed to warm to room temperature and was then warmed to reflux for 1 h before cooling down to $0{ }^{\circ} \mathrm{C}$. Water and HCl 1 M were added until the precipitate disappeared and the mixture was extracted by EtOAc (x3). Combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by prepacked chromatography on silica gel (gradient hexane/EtOAc 10/0 to 9/1) to afford $21(80.7 \mathrm{mg}, 96 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.38-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.46\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.62$ (qi, $\left.2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.47-1.01(\mathrm{~m}, 28 \mathrm{H}), 0.87(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=138.9$, $128.5,127.8,127.6,73.0,70.7,31.5\left(\mathrm{dt},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz},{ }^{l} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}\right), 29.93,29.85,29.76,29.65$, $29.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=35.5 \mathrm{~Hz}\right), 26.4,22.3\left(\mathrm{dt},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz},{ }^{1} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}\right), 14.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz}\right)$ ppm. IR (neat): $v=3064,3042,3029,2965,2954,2915,2847,2793,1471,1463,1454,1362,1101$, $748,729,720,698,615 \mathrm{~cm}^{-1} . \operatorname{HRMS}\left(\mathrm{ESI}^{+}, \mathrm{MeOH}\right)$ calcd for $\mathrm{C}_{23}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{42} \mathrm{D}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+} 387.3477$, found 387.3490 .
[16,17- $\left.{ }^{13} \mathrm{C}_{2}-16,17-\mathrm{D}_{2}\right]$-stearyl alcohol 22

(
Following the TBDPS-deprotection method with compound 21 ($62.0 \mathrm{mg}, 0.17 \mathrm{mmol}$), the desired compound 22 was obtained as a white solid ($45.8 \mathrm{mg}, 98 \%$). $\mathrm{Mp}=59.6^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.64\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.57\left(\mathrm{qi}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=6.7\right.$ $\mathrm{Hz}), 1.47-1.01(\mathrm{~m}, 29 \mathrm{H}), 0.88(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=63.3,33.0,31.5\left(\mathrm{dt},{ }^{1} J_{\mathrm{C}}\right.$ $\left.{ }_{\mathrm{C}}=34.5 \mathrm{~Hz},{ }^{l} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}\right), 29.85,29.77,29.59,29.37\left(\mathrm{~d},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz}\right), 25.9,22.3\left(\mathrm{dt},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=\right.$ $\left.34.5 \mathrm{~Hz},{ }^{l} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}\right), 14.1\left(\mathrm{~d},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz}\right) \mathrm{ppm}$. IR (neat): $v=3319,3234,2964,2955,2915$, 2848, 1472, 1462, 1064, 1052, 1044, 729, $720 \mathrm{~cm}^{-1} . \mathrm{HRMS}^{(E S I}, \mathrm{MeOH}+\mathrm{HCOONa}$) calcd for $\mathrm{C}_{16}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{36} \mathrm{D}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+} 297.3008$, found 297.3006.

$\left[16,17-{ }^{13} \mathrm{C}_{2}-16,17-\mathrm{D}_{2}\right]$-stearic acid 23

Following the Jones' oxidation method with compound 22 ($35.7 \mathrm{mg}, 0.13 \mathrm{mmol}$), the desired compound 23 was obtained as a white solid ($29.9 \mathrm{mg}, 80 \%$). $\mathrm{Mp}=68.9{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.35\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.5 \mathrm{~Hz}\right), 1.63\left(\mathrm{qi}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.5 \mathrm{~Hz}\right)$, 1.46-1.01 (m, 26H), $0.87(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=179.8,34.1,31.5\left(\mathrm{dt},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=\right.$ $\left.34.5 \mathrm{~Hz},{ }^{1} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}\right), 29.84,29.74,29.58,29.39,29.38\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=33.8 \mathrm{~Hz}\right), 29.2,24.8,22.3(\mathrm{dt}$, $\left.{ }^{1} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz},{ }^{1} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}\right), 14.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz}\right) \mathrm{ppm}$. IR (neat): $v=2963,2954,2914,2871$, 2848, 1699, 1472, 1463, 1295, 940, 729, $720 \mathrm{~cm}^{-1}$. HRMS (ESI', MeOH) calcd for $\mathrm{C}_{16}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{33} \mathrm{D}_{2} \mathrm{O}_{2}$ [M-H] 287.2835, found 287.2822.

9,10-labeled positions

[2,3- $\left.{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]$-11-(benzyloxy)dodecan-1-ol 25a

Following the $\mathrm{C}_{\mathrm{sp} 3} 3-\mathrm{C}_{\mathrm{sp} 3} 3$ coupling and TBDPS-deprotection methods with common synthon 11 ($243.4 \mathrm{mg}, 0.50 \mathrm{mmol}$), the desired compound $\mathbf{2 5 a}$ was obtained as a pale yellow oil ($129.9 \mathrm{mg}, 92 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.39-7.24$ (m, $5 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{~m}, 2 \mathrm{H}), 3.46\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.61\left(\mathrm{qi}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.73-1.10$ $(\mathrm{m}, 15 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=138.9,128.5,127.8,127.6,73.0,70.7,63.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}\right.$ $=37.4 \mathrm{~Hz}), 32.5\left(\mathrm{dt},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz},{ }^{1} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}\right), 29.9,29.70,29.68,29.64,29.61,29.26,26.3$, $25.4\left(\mathrm{dt},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz},{ }^{l} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}\right) \mathrm{ppm}$. IR (neat): $v=3353,3065,3030,2921,2852,2792$, 1454, 1362, 1098, 1043, 1028, 733, $696 \mathrm{~cm}^{-1}$. HRMS (ESI ${ }^{+}$, MeOH) calcd for $\mathrm{C}_{16}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{28} \mathrm{D}_{2} \mathrm{O}_{2} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 305.2331$, found 305.2332 .
[2,3- $\left.{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]$-11-(benzyloxy)dodecyl 4-methylbenzenesulfonate 26a

TsO
Following the tosylation method with compound $\mathbf{2 5 a}(113.0 \mathrm{mg}, 0.40 \mathrm{mmol})$, the desired compound 26a was obtained as a colorless oil ($158.7 \mathrm{mg}, 91 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.79\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.2 \mathrm{~Hz}\right), 7.38-7.24(\mathrm{~m}, 7 \mathrm{H}), 4.50(\mathrm{~s}$, $2 \mathrm{H}), 4.01(\mathrm{~m}, 2 \mathrm{H}), 3.46\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.61\left(\mathrm{qi}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.78-1.04$ $(\mathrm{m}, 14 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=144.7,138.9,133.4,129.9,128.5,128.0,127.8$, $127.6,73.0,70.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=38.3 \mathrm{~Hz}\right), 70.7,29.9,29.66,29.61,29.54,29.50,29.46,29.1,28.5\left(\mathrm{dt},{ }^{l} J_{\mathrm{C}-\mathrm{C}}\right.$ $\left.=34.5 \mathrm{~Hz},{ }^{l} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}\right), 26.3,25.0\left(\mathrm{dt},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz},{ }^{l} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}\right), 21.8 \mathrm{ppm} . \mathrm{IR}(\mathrm{neat}): v=$ $3063,3033,2924,2853,2793,1359,1188,1175,1097,958,814,736,697,663 \mathrm{~cm}^{-1} . \mathrm{HRMS}_{(E S I}{ }^{+}$, $\mathrm{MeOH})$ calcd for $\mathrm{C}_{23}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{34} \mathrm{D}_{2} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 459.2419$, found 459.2421.
$\left[9,10-{ }^{13} \mathrm{C}_{2}-9,10-\mathrm{D}_{2}\right]-(($ octadecyloxy $)$ methyl $)$ benzene 27a

Following the $\mathrm{C}_{\mathrm{sp}}{ }^{3}-\mathrm{C}_{\mathrm{sp}} 3$ coupling method with compound 26a ($131.0 \mathrm{mg}, 0.30 \mathrm{mmol}$), the desired compound 27a was obtained as a colorless oil ($109.1 \mathrm{mg}, 100 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=7.38-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.46\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7\right.$ $\mathrm{Hz}), 1.61\left(\mathrm{qi}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.45-1.02(\mathrm{~m}, 28 \mathrm{H}), 0.88\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=138.9,128.5,127.8,127.6,73.0,70.7,32.1,29.9,29.82,29.77,29.65,29.60,29.32$ (m), 28.9, 26.4, 22.9, 14.3 ppm . IR (neat): $v=3065,3029,2920,2852,2789,1454,1361,1101,1028$, $731,696 \mathrm{~cm}^{-1}$. HRMS (ESI', MeOH) calcd for $\mathrm{C}_{23}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{42} \mathrm{D}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+} 387.3477$, found 387.3480 .
$\left[9,10-{ }^{13} \mathrm{C}_{2}-9,10-\mathrm{D}_{2}\right]$-stearyl alcohol 28a

(浣
Following the TBDPS-deprotection method with compound 27a (91.2 mg, 0.25 mmol), the desired alcohol 28a was obtained as a white solid ($66.2 \mathrm{mg}, 96 \%$). $\mathrm{Mp}=$ $58.4{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.64\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.56(\mathrm{qi}, 2 \mathrm{H}$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.48-1.01(\mathrm{~m}, 29 \mathrm{H}), 0.88\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.6 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=63.3,33.0,32.1,29.81,29.77,29.64,29.59,29.3(\mathrm{~m}), 28.9,25.9,22.9,14.3 \mathrm{ppm}$. IR (neat): $v=3326$, 3235, 2965, 2955, 2915, 2870, 2848, 1470, 1463, 1062, 729, $721 \mathrm{~cm}^{-1} . \mathrm{HRMS}^{(E S I}, \mathrm{MeOH}+$ HCOONa) calcd for $\mathrm{C}_{16}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{36} \mathrm{D}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}$297.3008, found 297.3004.

Following the Jones' oxidation method with alcohol $\mathbf{2 8 a}(41.2 \mathrm{mg}, 0.15 \mathrm{mmol})$, the desired labeled stearic acid 29a was obtained as a white solid ($37.0 \mathrm{mg}, 85 \%$). $\mathrm{Mp}=$ $69.7{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.35\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.4 \mathrm{~Hz}\right), 1.63(\mathrm{qi}, 2 \mathrm{H}$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.4 \mathrm{~Hz}\right), 1.47-1.01(\mathrm{~m}, 26 \mathrm{H}), 0.88\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.8 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=179.2,34.0,32.1,29.82,29.73,29.61,29.3(\mathrm{~m}), 28.9,24.8,22.9,14.3 \mathrm{ppm} . \mathrm{IR}$ (neat): $v=2954$, $2913,2869,2848,1700,1471,1463,1430,1310,1298,1282,1228,940,728,721 \mathrm{~cm}^{-1}$. HRMS (ESI $^{-}$, $\mathrm{MeOH})$ calcd for $\mathrm{C}_{16}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{33} \mathrm{D}_{2} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]-$ 287.2835, found 287.2814.

10,11-labeled positions

[2,3- $\left.{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]$-12-(benzyloxy)dodecan-1-ol 25b

Following the $\mathrm{C}_{\mathrm{sp} 3} 3-\mathrm{C}_{\mathrm{sp} 3} 3$ coupling and TBDPS-deprotection methods with common synthon 11 ($243.4 \mathrm{mg}, 0.50 \mathrm{mmol}$), the desired compound 25b was obtained as a white solid ($142.4 \mathrm{mg}, 96 \%$). $\mathrm{Mp}=33.3^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.38-$ $7.24(\mathrm{~m}, 5 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{~m}, 2 \mathrm{H}), 3.46\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.61\left(\mathrm{qi}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right)$, 1.74-1.10 (m, 17H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=138.9,128.5,127.8,127.6,73.0,70.7,63.2$ $\left(\mathrm{d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=36.4 \mathrm{~Hz}\right), 32.5\left(\mathrm{dt},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz},{ }^{1} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}\right), 29.9,29.7,29.6,29.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=36.3\right.$ Hz), 26.3, $25.4\left(\mathrm{dt},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz},{ }^{1} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}\right) \mathrm{ppm}$. IR (neat): $v=3418,3360,3347,3064,3035$, 2918, 2911, 2880, 2848, 2794, 1466, 1454, 1367, 1347, 1116, 1091, 1057, 1048, 1039, 1027, 1013, 980, 733, 725, $696 \mathrm{~cm}^{-1}$. HRMS (ESI, MeOH$)$ calcd for $\mathrm{C}_{17}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{30} \mathrm{D}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 319.2487$, found 319.2491 .
[2,3- $\left.{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]$-12-(benzyloxy)dodecyl 4-methylbenzenesulfonate 26b

Following the tosylation method with compound $\mathbf{2 5 b}(103.8 \mathrm{mg}, 0.35 \mathrm{mmol})$, the desired compound 26b was obtained as a colorless oil ($139.7 \mathrm{mg}, 89 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=7.79\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.3 \mathrm{~Hz}\right), 7.38-7.24(\mathrm{~m}, 7 \mathrm{H}), 4.50(\mathrm{~s}$, $2 \mathrm{H}), 4.01(\mathrm{~m}, 2 \mathrm{H}), 3.46\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.61\left(\mathrm{qi}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.78-1.04$ $(\mathrm{m}, 16 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=144.7,138.9,133.4,129.9,128.5,128.0,127.8$, $127.6,73.0,70.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=38.3 \mathrm{~Hz}\right), 70.7,29.9,29.70,29.66,29.61,29.49\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{C}}=3.8 \mathrm{~Hz}\right), 29.1$, $28.5\left(\mathrm{dt},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz},{ }^{l} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}\right), 26.3,25.0\left(\mathrm{dt},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz},{ }^{l} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}\right), 21.8 \mathrm{ppm}$. IR (neat): $v=3065,3030,2924,2852,1360,1188,1175,1097,959,814,734,697,663 \mathrm{~cm}^{-1} . \mathrm{HRMS}$ (ESI', MeOH) calcd for $\mathrm{C}_{24}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{37} \mathrm{D}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 451.2756$, found 451.2784.
[10,11- $\left.{ }^{13} \mathrm{C}_{2}-10,11-\mathrm{D}_{2}\right]$-((octadecyloxy)methyl)benzene 27b

Following the $\mathrm{C}_{\mathrm{sp}} 3-\mathrm{C}_{\mathrm{sp}} 3$ coupling method with compound $\mathbf{2 6 b}$ ($126.3 \mathrm{mg}, 0.28 \mathrm{mmol}$), the desired compound $\mathbf{2 7 b}$ was obtained as a colorless oil ($99.9 \mathrm{mg}, 98 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=7.38-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.46\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right)$, $1.62\left(\mathrm{qi}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.45-1.02(\mathrm{~m}, 28 \mathrm{H}), 0.88\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=138.9,128.5,127.8,127.6,73.0,70.7,32.1,29.9,29.80,29.76,29.65,29.32(\mathrm{~m})$, 28.9, 26.4, 22.9, 14.3 ppm . IR (neat): $v=3065,3042,3030,2965,2955,2915,2869,2848,2793,1471$, 1463, 1454, 1367, 1359, 1101, 1026, 1009, 748, 729, 721, 698, $615 \mathrm{~cm}^{-1}$. HRMS (ESI ${ }^{+}$, MeOH) calcd for $\mathrm{C}_{23}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{42} \mathrm{D}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+} 387.3477$, found 387.3500 .

Following the TBDPS-deprotection method with compound 27b ($80.2 \mathrm{mg}, 0.22$ mmol), the desired alcohol $\mathbf{2 8 b}$ was obtained as a white solid ($57.9 \mathrm{mg}, 96 \%$). $\mathrm{Mp}=$ $58.3{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.64\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.56(\mathrm{qi}, 2 \mathrm{H}$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.44-1.01(\mathrm{~m}, 29 \mathrm{H}), 0.88\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.6 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=63.3,33.0,32.1,29.82,29.80,29.76,29.64,29.59,29.3(\mathrm{~m}), 28.9,25.9,22.9,14.3 \mathrm{ppm}$. IR (neat): v $=3323,3236,3225,2965,2955,2915,2870,2848,1471,1463,1063,729,721 \mathrm{~cm}^{-1}$. HRMS $^{(E S I}$, $\mathrm{MeOH}+\mathrm{HCOONa}$) calcd for $\mathrm{C}_{16}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{36} \mathrm{D}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}$297.3008, found 297.3006.
$\left[10,11-{ }^{13} \mathrm{C}_{2}-10,11-\mathrm{D}_{2}\right]$-stearic acid 29b

Following the Jones' oxidation method with alcohol 28b ($41.2 \mathrm{mg}, 0.15 \mathrm{mmol}$), the desired labeled stearic acid 29b was obtained as a white solid ($36.6 \mathrm{mg}, 85 \%$). $\mathrm{Mp}=$ $69.0^{\circ}{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.35\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.4 \mathrm{~Hz}\right), 1.63(\mathrm{qi}, 2 \mathrm{H}$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.4 \mathrm{~Hz}\right), 1.46-1.01(\mathrm{~m}, 26 \mathrm{H}), 0.88\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=180.1,34.2,32.1,29.82,29.75,29.58,29.3(\mathrm{~m}), 28.9,24.8,22.9,14.3 \mathrm{ppm} . \operatorname{IR}$ (neat): $v=2954$, 2913, 2869, 2848, 1699, 1471, 1463, 1298, 942, 728, $721 \mathrm{~cm}^{-1}$. HRMS (ESI- MeOH) calcd for $\mathrm{C}_{16}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{33} \mathrm{D}_{2} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]-287.2835$, found 287.2821.

11,12-labeled positions

[2,3- $\left.{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]$-13-(benzyloxy)dodecan-1-ol 25c

Following the $\mathrm{C}_{\mathrm{sp} 3} 3-\mathrm{C}_{\mathrm{sp} 3}$ coupling and TBDPS-deprotection methods with common synthon $11(243.4 \mathrm{mg}, 0.50 \mathrm{mmol})$, the desired compound $\mathbf{2 5 c}$ was obtained as a white solid ($151.7 \mathrm{mg}, 98 \%$). $\mathrm{Mp}=35.9^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.37-$ $7.24(\mathrm{~m}, 5 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{~m}, 2 \mathrm{H}), 3.46\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.61\left(\mathrm{qi}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right)$, 1.74-1.10 (m, 19H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=138.9,128.5,127.8,127.6,73.0,70.7,63.2$ $\left(\mathrm{d},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=37.4 \mathrm{~Hz}\right), 32.5\left(\mathrm{dt},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz},{ }^{l} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}\right), 29.9,29.7,29.6,29.5\left(\mathrm{~d},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=36.0\right.$ $\mathrm{Hz}), 26.3,25.4\left(\mathrm{dt},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz},{ }^{1} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}\right) \mathrm{ppm}$. IR (neat): $v=3357,3279,3065,3030,2915$, 2888, 2872, 2848, 2793, 1471, 1463, 1454, 1363, 1102, 1079, 1043, 1026, 1004, 991, 979, 978, 873, $748,730,698,615 \mathrm{~cm}^{-1} . \operatorname{HRMS}\left(\mathrm{ESI}^{+}, \mathrm{MeOH}\right)$ calcd for $\mathrm{C}_{18}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{32} \mathrm{D}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 333.2644$, found 333.2646 .
[2,3- $\left.{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]$-13-(benzyloxy)dodecyl 4-methylbenzenesulfonate 26c

Following the tosylation method with compound 25c ($124.2 \mathrm{mg}, 0.40 \mathrm{mmol}$), the desired compound 26c was obtained as a colorless oil ($162.7 \mathrm{mg}, 88 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.79\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.4 \mathrm{~Hz}\right), 7.38-7.24(\mathrm{~m}, 7 \mathrm{H}), 4.50(\mathrm{~s}$, $2 \mathrm{H}), 4.01(\mathrm{~m}, 2 \mathrm{H}), 3.46\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.61\left(\mathrm{qi}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.80-1.04$ (m, 18H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=144.7,138.9,133.4,129.9,128.5,128.0,127.8$, $127.6,73.0,70.8\left(\mathrm{~d},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=38.3 \mathrm{~Hz}\right), 70.7,29.93,29.73,29.72,29.65,29.64,29.61,29.49\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=\right.$ $3.8 \mathrm{~Hz}), 29.11,28.96,28.5\left(\mathrm{dt},{ }^{l} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz},{ }^{1} J_{\mathrm{C}-\mathrm{D}}=19.2 \mathrm{~Hz}\right), 26.3,25.0\left(\mathrm{dt},{ }^{1} J_{\mathrm{C}-\mathrm{C}}=34.5 \mathrm{~Hz},{ }^{1} J_{\mathrm{C}-\mathrm{D}}=\right.$ 19.2 Hz), 21.8 ppm . IR (neat): $v=3026,2988,2940,2919,2851,2798,1467,1354,1175,1126,1113$, 1095, 1027, 954, 937, 833, 814, 794, 732, 722, 695, $663 \mathrm{~cm}^{-1}$. HRMS (ESI, MeOH) calcd for $\mathrm{C}_{25}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{38} \mathrm{D}_{2} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 487.2732$, found 487.2734.
[11,12- $\left.{ }^{13} \mathrm{C}_{2}-11,12-\mathrm{D}_{2}\right]-(($ octadecyloxy $) m e t h y l)$ benzene 27c

Following the $\mathrm{C}_{\mathrm{sp}^{3}-\mathrm{C}_{\mathrm{sp}} 3}$ coupling method with compound $\mathbf{2 6 c}(139.4 \mathrm{mg}, 0.30 \mathrm{mmol})$, the desired compound 27c was obtained as a colorless oil ($109.2 \mathrm{mg}, 100 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.46\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7\right.$ $\mathrm{Hz}), 1.61\left(\mathrm{qi}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.47-1.01(\mathrm{~m}, 28 \mathrm{H}), 0.88\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=138.9,128.5,127.8,127.6,73.0,70.7,32.1,29.9,29.83,29.77,29.65,29.61,29.32$ (m), 28.9, 26.4, 22.9, 14.3 ppm . IR (neat): $v=3026,2986,2919,2851,2798,1467,1454,1355,1176$, $1113,1096,1073,1028,954,937,833,815,794,732,722,695,664 \mathrm{~cm}^{-1}$. HRMS (ESI $\left.{ }^{+}, \mathrm{MeOH}\right)$ calcd for $\mathrm{C}_{23}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{42} \mathrm{D}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+} 387.3477$, found 387.3479 .

$\left[11,12-{ }^{13} \mathrm{C}_{2}-11,12-\mathrm{D}_{2}\right]$-stearyl alcohol 28c

Following the TBDPS-deprotection method with compound 27c (91.2 mg, 0.25 mmol), the desired alcohol 28c was obtained as a white solid ($63.5 \mathrm{mg}, 93 \%$). $\mathrm{Mp}=$ $58.2{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.64\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.57(\mathrm{qi}, 2 \mathrm{H}$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.50-1.01(\mathrm{~m}, 29 \mathrm{H}), 0.88\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.6 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=63.3,33.0,32.1,29.82,29.76,29.64,29.59,29.3(\mathrm{~m}), 29.06,28.9,25.9,22.9,14.3 \mathrm{ppm}$. IR (neat): v $=3322,3235,2965,2955,2915,2870,2848,1471,1463,1062,729,721 \mathrm{~cm}^{-1} . \mathrm{HRMS}^{2}\left(\mathrm{ESI}{ }^{+}, \mathrm{MeOH}+\right.$ HCOONa) calcd for $\mathrm{C}_{16}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{36} \mathrm{D}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}$297.3008, found 297.3008.
$\left[11,12-{ }^{13} \mathrm{C}_{2}-11,12-\mathrm{D}_{2}\right]$-stearic acid 29c

Following the Jones' oxidation method with alcohol 28c ($41.2 \mathrm{mg}, 0.15 \mathrm{mmol}$), the desired labeled stearic acid 29c was obtained as a white solid ($35.2 \mathrm{mg}, 81 \%$). $\mathrm{Mp}=$ $69.8{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.35\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.4 \mathrm{~Hz}\right), 1.63(\mathrm{qi}, 2 \mathrm{H}$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.4 \mathrm{~Hz}\right), 1.47-1.01(\mathrm{~m}, 26 \mathrm{H}), 0.88\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.8 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=179.3,34.0,32.1,29.77,29.74,29.63,29.58,29.3(\mathrm{~m}), 28.9,24.8,22.8,14.3 \mathrm{ppm} . \operatorname{IR}$ (neat): $v=$ 2954, 2913, 2870, 2847, 1699, 1471, 1430, 1310, 1296, 941, $720 \mathrm{~cm}^{-1}$. HRMS (ESI- MeOH) calcd for $\mathrm{C}_{16}{ }^{13} \mathrm{C}_{2} \mathrm{H}_{33} \mathrm{D}_{2} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]-287.2835$, found 287.2813.

V. References

${ }^{1}$ Uesato, S.; Kobayashi, K.; Inouye, H. Chem. Pharm. Bull. 1982, 30, 927.
${ }^{2}$ Hayes, M. P.; Hatala, P. J.; Sherer, B. A.; Tong, X.; Zanatta, N.; Borer, P. N.; Kallmerten, J. Tetrahedron 2001, 57, 1515.
${ }^{3}$ Bock, P. L.; Boschetto, D. M.; Rasmussen, J. R. Demers, J. P.; Whitesides, G .M. J. Am. Chem. Soc. 1974, 96, 2814.
${ }^{4}$ Love, B. E.; Jones, E. G. J. Org. Chem. 1999, 64, 3755.

VI. NMR spectra of labeled compounds

Synthesis of the common synthons 10 and 11
Ethyl [2- $\left.{ }^{13} \mathrm{C}\right]$-2-(diethylphosphono)acetate 2

Ethyl [2- $\left.{ }^{13} \mathrm{C}\right]$-4-(benzyloxy)but-2-enoate (\boldsymbol{E})-3

Ethyl [2- $\left.{ }^{13} \mathrm{C}\right]$-4-(benzyloxy)but-2-enoate (\boldsymbol{Z})-3

(E)-[2- $\left.{ }^{13} \mathrm{C}\right]$-4-(benzyloxy)but-2-en-1-ol 4

(E)-[2- $\left.{ }^{13} \mathrm{C}\right]$-((4-(benzyloxy)but-2-en-1-yl)oxy)(tert-butyl)diphenylsilane 5

[1- $\left.{ }^{13} \mathrm{C}\right]$-2-((tert-butyldiphenylsilyl)oxy)acetaldehyde 6

Ethyl [2,3- $\left.{ }^{13} \mathrm{C}_{2}\right]$-4-((tert-butyldiphenylsilyl)oxy)but-2-enoate (\boldsymbol{E})-7

ल্ল্ল욱

Ethyl $\left[2,3-{ }^{13} \mathrm{C}_{2}\right]$-4-((tert-butyldiphenylsilyl)oxy)but-2-enoate (Z)-7

Ethyl [2,3- $\left.{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]$-4-((tert-butyldiphenylsilyl)oxy)butanoate $\mathbf{8}$

[2,3- $\left.{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]-4-(($ tert-butyldiphenylsilyl)oxy)butan-1-ol 9

$\left[2,3-{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]-(4$-bromobutoxy)(tert-butyl)diphenylsilane $\mathbf{1 0}$

$\left[2,3-{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]$-4-((tert-butyldiphenylsilyl)oxy)butyl 4-methylbenzenesulfonate $\mathbf{1 1}$

2,3-labeled positions

[2,3- $\left.{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]$-tert-butyl(octadecyloxy)diphenylsilane $\mathbf{1 3}$

[2,3- $\left.{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]$-stearyl alcohol 14

[2,3- $\left.{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]$-stearic acid $\mathbf{1 5}$
$\underbrace{\text { Gi̛ }}$

With different protecting groups

[2,3- $\left.{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]-12-(($ tetrahydro-2H-pyran-2-yl)oxy)dodecan-1-ol 16

[2,3- $\left.{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]-12$-((4-methoxybenzyl)oxy)dodecan-1-ol 17

16,17-labeled positions

[2,3- $\left.{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]$-18-(benzyloxy)octadecan-1-ol 19

®.

[2,3- $\left.{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]$-18-(benzyloxy)octadecyl 4-methylbenzenesulfonate 20

$\left[16,17-{ }_{-}^{13} \mathrm{C}_{2}-16,17-\mathrm{D}_{2}\right]-(($ octadecyloxy $)$ methyl)benzene 21

$\left[16,17-{ }^{13} \mathrm{C}_{2}-16,17-\mathrm{D}_{2}\right]$-stearyl alcohol 22

$\left[16,17-{ }_{-}^{13} \mathrm{C}_{2}-16,17-\mathrm{D}_{2}\right]$-stearic acid 23

9,10-labeled positions

[2,3-3 $\left.{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]$-11-(benzyloxy)dodecan-1-ol 25a

[2,3- $\left.{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]$-11-(benzyloxy)dodecyl 4-methylbenzenesulfonate 26a

$\left[9,10-{ }^{13} \mathrm{C}_{2}-9,10-\mathrm{D}_{2}\right]$-((octadecyloxy)methyl)benzene 27a

$\left[9,10-{ }^{13} \mathrm{C}_{2}-9,10-\mathrm{D}_{2}\right]$-stearyl alcohol 28a

[^0]$\left[9,10-{ }^{13} \mathrm{C}_{2}-9,10-\mathrm{D}_{2}\right]$-stearic acid 29a

10,11-labeled positions

[2,3- $\left.{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]$-12-(benzyloxy)dodecan-1-ol 25b

$\left[2,3-{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]$-12-(benzyloxy)dodecyl 4-methylbenzenesulfonate 26b

[10,11- $\left.{ }^{13} \mathrm{C}_{2}-10,11-\mathrm{D}_{2}\right]-(($ octadecyloxy $)$ methyl $)$ benzene 27b

$\left[10,11-{ }^{13} \mathrm{C}_{2}-10,11-\mathrm{D}_{2}\right]$-stearyl alcohol 28b

8

$\left[10,11-{ }^{13} \mathrm{C}_{2}-10,11-\mathrm{D}_{2}\right]$-stearic acid 29b

11,12-labeled positions

[2,3- $\left.{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]$-13-(benzyloxy)dodecan-1-ol 25c

[^1]$\left[2,3-{ }^{13} \mathrm{C}_{2}-2,3-\mathrm{D}_{2}\right]$-13-(benzyloxy)dodecyl 4-methylbenzenesulfonate 26c

[^2]$\left[11,12-{ }^{13} \mathrm{C}_{2}-11,12-\mathrm{D}_{2}\right]-(($ octadecyloxy $)$ methyl)benzene 27c

$\left[11,12-{ }^{13} \mathrm{C}_{2}-11,12-\mathrm{D}_{2}\right]$-stearyl alcohol 28c

 © M

[11,12- $\left.{ }^{13} \mathrm{C}_{2}-11,12-\mathrm{D}_{2}\right]$-stearic acid 29c

[^0]:

[^1]:

[^2]:

