Supporting Information

for

Formation of substituted Tetrahydropyrans Through Oxetane Ring Opening: Application to the Synthesis of C1-C17 Fragment of Salinomycin

J. S. Yadav, ${ }^{* 1,2}$ Vinay K. Singh, ${ }^{1,2}$ P. Srihari ${ }^{2}$
${ }^{1}$ Academy of Scientific and Innovative Research; ${ }^{2}$ Division of Natural Product Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India.
yadavpub@iict.res.in
Fax: +91-4027193241

Table of Contents:

General methods
: Page S2
X-ray crystallography write up
: Page S2 - S3
Experimental procedures and data for all compounds
: Page S4 - S27

1. General methods:

All reactions requiring anhydrous conditions were conducted in flame dried glass apparatus under an atmosphere of nitrogen. THF and $\mathrm{Et}_{2} \mathrm{O}$ were freshly distilled from sodium/benzophenone ketyl prior to use. 1,2-Dichloroethane, dichloromethane were freshly distilled on CaH_{2}, toluene and benzene were distilled on molten sodium metal. Anhydrous t BuOH was obtained by drying with MgSO_{4} followed by distillation on CaH_{2} and stored under nitrogen over activated $4 \AA$ molecular sieves. Reactions were monitored by TLC analysis using silica plates with fluorescent indicator (254 nm) and Visualization of the spots on TLC plates was achieved either by exposure to iodine vapor or UV light or by dipping the plates to sulphuric acid- β-naphthol or to ethanolic anisaldehyde-sulphuric acid-acetic acid or to Phosphomolybdic acid-sulphuric acid solution and heating the plates at $120{ }^{\circ} \mathrm{C}$. All commercially available reagents were purchased from Sigma-Aldrich, and used without further purification. Infrared spectra were recorded using a thin film supported between NaCl plates or as a solid embedded in a KBr disc. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in Fourier transform mode at the field strength specified either on 300 MHz or 400 MHz or 500 MHz spectrometer. Chemical shifts in ppm are quoted relative to the residual signals of chloroform ($\delta_{\mathrm{H}} 7.26 \mathrm{ppm}$ or $\delta_{\mathrm{C}} 77.0 \mathrm{ppm}$). Multiplicities in the ${ }^{1} \mathrm{H}$ NMR spectra are described as $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ pentet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad and coupling constants are reported in Hz. For low (MS) and high (HRMS) resolution mass spectra ion mass/charge (m / z) ratios are reported as values in atomic mass units. Optical rotations were determined with a polarimeter at 589 nm . Data are reported as follows: $[\alpha] \lambda^{\text {temp }}$, concentration (c in g/100 mL), and solvent.
2. X-ray information for compound 29: X-ray data for the compound was collected at room temperature using a Bruker Smart Apex CCD diffractometer with graphite monochromated MoK α radiation ($\lambda=0.71073 \AA$) with ω-scan method. ${ }^{1}$ Preliminary lattice parameters and orientation matrices were obtained from four sets of frames. Integration and scaling of intensity data were accomplished using SAINT program. ${ }^{1}$ The structure was solved by direct methods using SHELXS97 ${ }^{2}$ and refinement was carried out by full-matrix least-squares technique using SHELXL97. ${ }^{2}$ Anisotropic displacement parameters were included for all non-hydrogen atoms. All H atoms were positioned geometrically and treated as riding on their parent O and C atoms $\left[\mathrm{O}-\mathrm{H}=0.82 \AA\right.$ amd $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.5 \mathrm{U}_{\mathrm{eq}}(\mathrm{C}$ and O$)$ for methyl H or $1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{c})$
for other H atoms]. The methyl groups were allowed to rotate but not to tip. In the absence of significant anomalous scattering efforts, Friedel pairs were merged. The absolute configuration of the procured material was known in advance.

ORTEP structure of compound 29
A view of 29, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30\% probability level and H atoms are represented by circles of arbitrary radii. The asymmetric unit contains two molecules (same numbering labeled with suffixes A and B) and molecule B has been omitted for clarity.

Crystal data for compound 29: $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{4}, M=376.52$, colorless block, $0.21 \times 0.18 \times 0.09 \mathrm{~mm}^{3}$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}$ (No. 19), $a=10.5288(6), b=15.9360(9), c=25.9755(15) ~ \AA \AA$, $V=4358.4(4) \AA^{3}, Z=8, D_{\mathrm{c}}=1.148 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=1648$, CCD Area Detector, MoK α radiation, λ $=0.71073 \AA, \quad T=294(2) \mathrm{K}, 2 \theta_{\max }=50.0^{\circ}, 42238$ reflections collected, 4295 unique $\left(\mathrm{R}_{\mathrm{int}}=\right.$ 0.0543). Final $G o o F=1.362, R 1=0.0868, w R 2=0.1738, R$ indices based on 3947 reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$ (refinement on F^{2}), 497 parameters, 0 restraints, $\mu=0.077 \mathrm{~mm}^{-1}$. CCDC 934894 contains supplementary Crystallographic data for the structure.

References:

1. Bruker (2001). SAINT (Version 6.28a) \& SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.
2. Sheldrick GM. (2008) Acta Crystallogr A64: 112-122.
(S)-Methyl-2-((2S,3R,4S,5S)-4-(benzyloxy)-6-methoxy-3,5-dimethyltetrahydro-2H-pyran-2yl)propanoate (11).

The compound 11 was obtained as pale yellow oil. $R_{f}=0.45$ (hexane: EtOAc, 9:1); $[\alpha]_{\mathrm{D}}{ }^{28}=+$ 88.7 (с 0.7, CHCl_{3}); IR (neat) $v_{\text {max: }} 2976,2925,1718,1455,1274,1176,968 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34-7.20(\mathrm{~m}, 5 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 4.45(\mathrm{~s}, 1 \mathrm{H}) 3.96-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{t}, J=5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 2.73-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.11-1.04(\mathrm{~m}, 6 \mathrm{H})$, 0.97 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.1,138.8,128.2,127.3,127.1$, 104.3, 75.0, 71.7, 69.4, 54.8, 51.6, 41.7, 36.4, 32.5, 13.1, 13.0, 7.6 ppm; HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$359.1815, found 359.1842.

(2R)-2-((2R,3R,4S,5S)-4-(Benzyloxy)-6-methoxy-3,5-dimethyltetrahydro-2H-pyran-2-yl)

 propan-1-ol (14).

To an ice cooled suspension of $\mathrm{LiAlH}_{4}(1.36 \mathrm{~g}, 35.71 \mathrm{mmol})$ in anhydrous THF (40 mL), was added a solution of ester $11(8.0 \mathrm{~g}, 23.81 \mathrm{mmol})$ in anhydrous THF (40 mL) under nitrogen atmosphere. The reaction mixture was stirred for 4 h at room temperature and quenched with aq. saturated $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution (3 mL). The precipitate formed was filtered through a pad of celite and washed with ethyl acetate (2 x 50 mL). The filtrate was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under reduced pressure. The resulting crude product was purified by silica gel column chromatography utilizing ethyl acetate and hexane (1:9) as an eluent to obtain alcohol 14 ($6.82 \mathrm{~g}, 93 \%$) as colorless oil. $R_{f}=0.5$ (hexane: EtOAc, 7:3); $[\alpha]_{\mathrm{D}}{ }^{28}=+46$ (c 0.9, CHCl_{3}); IR (neat) $v_{\text {max: }} 3425,2926,1720,1605,1454,1247,1075 _\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta 7.32-7.20(\mathrm{~m}, 5 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.58(\mathrm{~m}$, 2H), 3.57-3.50 (m, 1H), 3.33 (s, 3H), 3.12-3.05 (bs, 1H), 2.25-2.15 (m, 1H), 2.14-2.04 (m, 1H), $2.02-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.8,128.2,127.3,127.1,104.3,75.8,74.8,69.3,68.5$, 54.7, 36.3, 35.9, 33.4, 13.0, 12.0, 7.8 ppm; HRMS calculated for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 331.1885 , found 331.1875 .
(R)-2-((2R,3R,4S,5S,6S)-4-(Benzyloxy)-6-methoxy-3,5-dimethyltetrahydro-2H-pyran-2-yl) propyl acetate (15).

To a stirred solution of alcohol $14(1.2 \mathrm{~g}, 3.90 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}(1.1$ $\mathrm{mL}, 7.80 \mathrm{mmol}$), acetic anhydride ($0.55 \mathrm{~mL}, 5.85 \mathrm{mmol}$) and catalytic amount of DMAP (50 mg) were added at $0{ }^{\circ} \mathrm{C}$ and stirred at room temperature for 4 h . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and the organic layer was separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 x 20 mL). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and purified by silica gel column chromatography using ethyl acetate and hexane (1:19) as mobile phase to obtain the acetate derivative 15 ($1.29 \mathrm{~g}, 95 \%$) as colorless liquid. $R_{f}=0.6$ (hexanes:EtOAc, $8: 2$); $[\alpha]_{\mathrm{D}}{ }^{28}=+40\left(c 0.6, \mathrm{CHCl}_{3}\right)$; IR (neat) $v_{\text {max: }}$ 3448, 2924, 2854, 1734, 1458, 1371, 1245, 1077, $1021 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.32-7.20 (m, 5H), 4.49 (s, 3H), 4.29 (dd, $J=3.7,10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.04 (dd, $J=6.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.80 (t, $J=5.2,1 \mathrm{H}$), 3.56 (dd, $J=2.2,10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.25 (s, 3H), 2.26-2.06 (m, 2H), 2.04 (s, $3 \mathrm{H}), 2.03-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.2,139.0,128.3,127.3,127.2,104.4,75.4,70.2$, 69.4, 66.6, 54.6, 36.4, 34.0, 33.1, 20.9, 13.2, 12.9, 7.6 ppm ; MS (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+} 351$, found 351.

(R)-2-((2R,3R,4S,5S)-4-(Benzyloxy)-3,5-dimethyl-6-oxotetrahydro-2H-pyran-2-yl)propyl acetate (17).

A solution of acetal $15(10.0 \mathrm{~g}, 28.6 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{COOH}: \mathrm{H}_{2} \mathrm{O}:$ THF (6:3:2, 110 mL) was stirred at $60^{\circ} \mathrm{C}$ for 8 h . The reaction mixture was diluted with ethyl acetate (10 mL) and solid NaHCO_{3} was added. After the effervescence stopped, the organic layer was separated and the aqueous layer was extracted with ethyl acetate ($2 \times 100 \mathrm{~mL}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude compound was passed through a small pad of silica gel to give compound 16 ($8.63 \mathrm{~g}, 90 \%$) as colorless viscous liquid. $R_{f}=0.5$ (hexanes:EtOAc, 7:3). The compound was utilized directly without further purification.

To a solution of lactol $16(4.0 \mathrm{~g}, 11.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added TEMPO ($185 \mathrm{mg}, 1.19 \mathrm{mmol}$) followed by iodobenzene diacetate ($5.75 \mathrm{~g}, 17.85 \mathrm{mmol}$) and allowed the reaction mixture to stirred at ambient temperature for 4 h . After conversion of the diol completely to lactone, reaction mixture was quenched with saturated solution of Sodium
thiosulfate (5 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporation of solvent under reduced pressure led to the crude lactone which was purified on silica gel column chromatography to furnish the lactone $\mathbf{1 7}$ as colorless viscous liquid ($3.57 \mathrm{~g}, 90 \%$). $R_{f}=0.40$ (hexanes:EtOAc, $7: 3$); $[\alpha]_{\mathrm{D}}{ }^{28}=-38.5$ (c 1, CHCl_{3}); IR (neat) $v_{\text {max }}$: 3461, 2922, 2852, 1723, 1458, 1273, 1110, 988, $715 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta 7.36-7.22(\mathrm{~m}, 5 \mathrm{H}), 4.53(\mathrm{ABq}, J=11.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=5.2,11.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.0-3.9 (m, 2H), 2.92-2.82 (m, 1H), 2.48-2.37 (m, 1H), 2.20-2.09 (m, 1H), 2.04 (s, 3H), 1.31 (d, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$), 0.98-0.92 (m, 6H) ppm; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.1,170.9$, 137.6, 128.3, 127.7, 127.3, 78.7, 75.8, 72.4, 65.5, 38.2, 33.8, 32.7, 20.8, 12.8, 12.2, $6.1 \mathrm{ppm} ;$ HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$357.1688, found 357.1677.

(R)-2-((2R,3R,4S,5R)-4-(Benzyloxy)-3,5-dimethyl-6-oxotetrahydro-2H-pyran-2-yl) propyl acetate (10).

To a stirred solution of lactone $17(3.6 \mathrm{~g}, 10.78 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, at $0{ }^{\circ} \mathrm{C}$ was added DBU (diazabicyclo [5.4.0] undec-7-ene, $1.61 \mathrm{~mL}, 10.78 \mathrm{mmol}$) and the resulting solution was stirred at room temperature for 4 h . Then the reaction mixture was diluted with water (5 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give crude 3-epi-lactone which was purified on silica gel using to furnish the 3-epi-lactone 10 as colorless liquid ($3.35 \mathrm{~g}, 92 \%$). $R_{f}=0.49$ (hexanes:EtOAc, 7:3); $[\alpha]_{\mathrm{D}}{ }^{28}=-54.4\left(c 0.6, \mathrm{CHCl}_{3}\right)$; IR (neat) $v_{\text {max }}: 3465,2975,2932,1735$, $1457,1270,1109,986,714 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.18(\mathrm{~m}, 5 \mathrm{H}), 4.48$ (ABq, $J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.31-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.05$ (dd, $J=5.4,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.40$ (dd, $J=4.1,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~s}$, $3 \mathrm{H}), 1.30(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.93-0.85(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.0$, 171.0, 137.6, 128.5, 128.0, 127.6, 80.8, 79.4, 70.8, 65.5, 38.4, 34.5, 30.6, 20.8, 14.6, 12.7, 4.2 ppm; HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 357.1662$, found 357.1677.

(2R,3R,4S,5R,6S)-5-(Benzyloxy)-2,4,6-trimethylheptane-1,3,7-triol (18).

To an ice cooled suspension of $\mathrm{LiAlH}_{4}(0.54 \mathrm{~g}, 14.08 \mathrm{mmol})$ in anhydrous THF (15 mL), was added a solution of lactone $10(2.35 \mathrm{~g}, 7.04 \mathrm{mmol})$ in anhydrous THF (15 mL) under nitrogen
atmosphere. The reaction mixture was stirred for 4 h at room temperature and quenched with aq. saturated $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution. The precipitate formed was filtered through a pad of celite and washed with ethyl acetate. The filtrate was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated to dryness under reduced pressure. The resulting crude product was purified by silica gel column chromatography utilizing ethyl acetate and hexane (50:50) as an eluent to obtain alcohol 18 (1.97 g, 95\%) as colorless oil. $R_{f}=0.49$ (EtOAc) $[\alpha]_{\mathrm{D}}{ }^{28}=-8.8$ (c $0.8, \mathrm{CHCl}_{3}$); IR (neat) $v_{\text {max }}$: 3508, $1462,1036 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~d}, \mathrm{~J}=9.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.63-3.48 (m, 5H), 2.06-1.94 (m, 1H), 1.91-1.76 (m, 2H), 1.03-0.96 (m, 6H), 0.73 (d, J $=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.1,128.3,127.6,127.6,84.3,76.3,75.4$, $68.5,65.1,38.1,37.3,36.5,13.1,12.1,10.4 \mathrm{ppm}$; HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 319.1837, found 319.1833.

(2S,3R,4R)-3-(Benzyloxy)-2-methyl-4-((4R,5R)-2,2,5-trimethyl-1,3-dioxan-4-yl)pentan-1-ol (19).

To a stirred solution of compound 18 ($1.2 \mathrm{~g}, 4.05 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ was added 2,2-dimethoxypropane ($0.74 \mathrm{~mL}, 6.07 \mathrm{mmol}$) followed by a catalytic amount of \pm camphor sulphonic acid ($47 \mathrm{mg}, 0.20 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 h at room temperature and quenched with saturated $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 x 10 mL). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure, and purified by silica gel chromatography to afford compound 19 ($1.25 \mathrm{~g}, 93 \%$) as viscous liquid. $R_{f}=0.49$ (hexanes:EtOAc, 7:3) [$\left.\alpha\right]_{\mathrm{D}}{ }^{28}=-14.5$ (c $0.85, \mathrm{CHCl}_{3}$); IR (neat) $v_{\text {max }}$: 3484, 2967, 2879, 1458, 1382, 1068, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta 7.32-7.20(\mathrm{~m}, 5 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=5.0,12.0 \mathrm{~Hz}$, 2H), 3.56 (d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.45 (t, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}$), $1.94-1.81$ (m, 3H), 1.37 (s, 6H), 0.88 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.72(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 139.2,128.3$ (2C), 127.2, 126.9 (2C), 98.0, 79.1, 74.1, 73.3, 66.2 (2C), 37.8, 36.6, 30.3, 29.8, 19.5, 12.4, 9.6, 9.4 ppm; HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$359.2198, found 359.2210.
(2R,3S,4R)-3-(Benzyloxy)-2-methyl-4-((4R,5R)-2,2,5-trimethyl-1,3-dioxan-4-yl)pentanal (20)

Iodoxybenzoic acid ($1.25 \mathrm{~g}, 4.47 \mathrm{mmol}$) was taken in anhydrous DMSO (2 mL) and stirred for 30 min . Alcohol $19(1.0 \mathrm{~g}, 2.98 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added to the reaction mixture at room temperature and stirred for 4 h . After completion of the reaction (monitored by TLC), the reaction mixture was quenched with water (7 mL) and the solid formed was filtered through celite. The organic layer was separated and aqueous layer extracted with ether (3×15 mL). The combined organic layers were washed with brine (6 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and purified by silica gel column chromatography using ethyl acetate and hexane (1:19) as mobile phase to obtain aldehyde 20 ($0.92 \mathrm{~g}, 93 \%$) as colorless liquid. $R_{f}=0.50$ (hexanes:EtOAc, 9:1); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.76(\mathrm{~d}, J=1.7$ $\mathrm{Hz}, 1 \mathrm{H}$), $7.36-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.67-4.48(\mathrm{ABq}, J=11.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.93-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.61(\mathrm{~m}$, 2H), 3.50-3.40 (m, 1H), 2.73-2.64 (m, 1H), 2.04-1.75 (m, 2H), 1.34 (s, 6H), 1.21 (d, J = 6.9 Hz, 3H), 0.81 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.71$ (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. MS (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{4}$ [$\mathrm{M}+\mathrm{H}]^{+} 335$, found 335.
(4S,5R,6R,E)-Ethyl-5-(benzyloxy)-4-methyl-6-((4R,5R)-2,2,5-trimethyl-1,3-dioxan-4-yl)hept-2-enoate (21).

The aldehyde 20 ($0.92 \mathrm{~g}, 2.74 \mathrm{mmol}$) obtained from above was treated with the stabilized C2Wittig ylide ($1.24 \mathrm{~g}, 3.56 \mathrm{mmol}$) in benzene (20 mL) at reflux temperature for 4 h . After completion of the reaction (TLC analysis), benzene was removed under vacuum, and the crude ester was subjected to silica gel column chromatography using EtOAc and hexane (4:96) as an eluent to afford α, β-unsaturated ester $21(1.05 \mathrm{~g}, 95 \%)$ as colorless liquid. $R_{f}=0.50$ (hexanes:EtOAc, 9:1); $[\alpha]_{\mathrm{D}}{ }^{28}=+21.1\left(c 0.7, \mathrm{CHCl}_{3}\right.$); IR (neat) $v_{\text {max }}: 3438,2977,2931,1718$, 1649, 1262, 1179,_1058, 956, $739 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}: \delta 7.34-7.09(\mathrm{~m}, 6 \mathrm{H}$), 5.83 (d, $J=15.8,1 \mathrm{H}$), 4.47 (ABq, $11.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.16$ (dd, $J=7.5,14.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.87 (dd, $J=1.5,10.5$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.65(\mathrm{dd}, J=5.2,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.41(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{q}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.77$ (m, 2H), 1.34 (s, 6H), 1.31-1.25 (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$), 1.09 (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.86$ (d, $J=6.7 \mathrm{~Hz}$, 3H), 0.71 (d, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.5,153.3,138.7,128.2$, 127.2, 127.1, 120.2, 97.9, 82.0, 74.4, 73.1, 66.2, 60.0, 38.5, 36.8, 30.3, 29.7, 19.4, 14.2, 12.3, 11.0, 9.4 ppm ; HRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 427.2440$, found 427.2443.
(4S,5R,6R)-Ethyl 5-(benzyloxy)-4-methyl-6-((4R,5R)-2,2,5-trimethyl-1,3-dioxan-4-yl) heptanoate (22).

$\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.45 \mathrm{~g}, 1.90 \mathrm{mmol})$.was added to a stirred solution of conjugated alkene $21(3.50 \mathrm{~g}$, $8.66 \mathrm{mmol})$ in $\mathrm{MeOH}(30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. Then was added $\mathrm{NaBH}_{4}(0.66 \mathrm{~g}, 17.32 \mathrm{mmol})$ in portions. The reaction mixture was stirred for another 4 h and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The reaction mixture was concentrated to get the residue, which was extracted with EtOAc (3 x 30 mL). The organic extract was washed with brine (10 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude reaction mixture was purified by silica gel column chromatography using EtOAc and hexane (5:95) as an eluent to provide the corresponding saturated ester compound 22 ($3.20 \mathrm{~g}, 91 \%$) as clear oil. $R_{f}=0.50$ (hexanes:EtOAc, 9:1); $[\alpha]_{\mathrm{D}}{ }^{28}=-20.0\left(c 0.7, \mathrm{CHCl}_{3}\right)$; IR (neat) $v_{\text {max }}: 3450,2925,2854,1734,1377,1175,1007 \mathrm{~cm}^{-}$
${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31-7.18(\mathrm{~m}, 5 \mathrm{H}), 4.66-4.55(\mathrm{ABq}, J=12.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{q}$, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.35(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.22(\mathrm{~m}$, $2 \mathrm{H}), 1.91-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.73-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, $0.91(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.71(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.7,139.2,128.2,127.1,126.7,97.9,82.2,74.5,73.3,66.2,60.2,36.8,35.1$, 32.8, 30.3, $30.2,29.8,19.4,14.2,12.4,12.2,9.5 \mathrm{ppm}$; HRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+$ $\mathrm{Na}]^{+}$429.2609, found 429.2616.

(4S,5R,6R)-5-(Benzyloxy)-4-methyl-6-((4R,5R)-2,2,5-trimethyl-1,3-dioxan-4-yl)heptanal (9).

A solution of saturated ester $22(6.0 \mathrm{~g}, 14.78 \mathrm{mmol})$ in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $-78{ }^{\circ} \mathrm{C}$ DIBAL-H ($10.4 \mathrm{~mL}, 17.74 \mathrm{mmol}$; 25% solution in toluene) was added drop wise over a period of 5 minutes. The resulting mixture was stirred for 0.5 h at $-78{ }^{\circ} \mathrm{C}$ and quenched with saturated aqueous sodium-potassium tartrate solution (20 mL). The mixture was warmed to room temperature and stirred for 2.5 h . Organic layer was separated and aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 80 \mathrm{~mL})$. Combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Silica gel column chromatography of the crude product using EtOAc and hexane (5:95) as an eluent afforded the aldehyde 9 (4.42 g, 90\%) as colorless liquid. $R_{f}=0.50$ (hexanes:EtOAc, 9:1); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.79$ (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.43-7.29 (m, 5H), 4.65 (s, 2H), 3.90 (d, J $=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=5.28,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{t}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.33(\mathrm{~m}, 1 \mathrm{H})$, 2.64-2.25 (m, 2H), 2.01-1.75 (m, 4H), 1.74-1.50 (m, 1H), 1.40 (s, 3H), 1.38 (s, 3H), 1.09 (d, J = $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.72(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; MS (ESI) calculated for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 335$, found 335 .

1-(4-Benzyl-2-thioxothiazolidin-3-yl)butan-1-one (23).

To a stirred solution of 4-benzyl-2-thioxothiazolidine ($2.2 \mathrm{~g}, 10.5 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(1.9 \mathrm{~mL}, 13.65 \mathrm{mmol})$ followed by n-butyryl chloride ($1.2 \mathrm{~mL}, 11.5$ mmol) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at room temperature and quenched with saturated ammonium chloride solution (5 mL). The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 x 25 mL). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated to dryness under reduced pressure, and purified by silica gel chromatography using EtOAc and hexane (5: 95) as an eluent to afford compound $23(2.64 \mathrm{~g}, 90 \%)$ as a solid. M.P. $=101{ }^{\circ} \mathrm{C} ; R_{f}=$ 0.50 (hexanes:EtOAc, 9:1); $[\alpha]_{\mathrm{D}}{ }^{28}=-204.0$ (c 1, CHCl_{3}); IR (KBr): 2958, 2925, 1694, 1162, 1062, $1034 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.20(\mathrm{~m}, 5 \mathrm{H}), 5.37-5.29(\mathrm{~m}, 1 \mathrm{H})$, 3.41$3.28(\mathrm{~m}, 2 \mathrm{H}), 3.25-3.17(\mathrm{~m}, 1 \mathrm{H}), 3.13-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.86(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.29(\mathrm{~m}$, $1 \mathrm{H}), 1.80-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.0(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.1,173.8$, 136.5, 129.3, 128.7, 127.1, 68.5, 40.2, 36.7, 31.8, 18.1, 13.5 ppm ; HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NOS}_{2}[\mathrm{M}+\mathrm{H}]^{+}$280.0827, found 280.0824.

1-(4-Benzyl-2-thioxothiazolidin-3-yl)-7-(benzyloxy)-2-ethyl-3-hydroxy-6-methyl-8-(2,2,5-trimethyl-1,3-dioxan-4-yl)nonan-1-one (24).

To the solution of thione $23(2.47 \mathrm{~g}, 8.84 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added neat $\mathrm{TiCl}_{4}(1.0 \mathrm{~mL}, 9.11 \mathrm{mmol})$ dropwise, and the resulting slurry was stirred for 15 min . DIPEA ($1.67 \mathrm{~mL}, 9.67 \mathrm{mmol}$) was added dropwise, and the resultant deep red solution was stirred for 15 min . N-methyl pyrrolidinone ($1.69 \mathrm{~mL}, 17.68 \mathrm{mmol}$) was added and stirred for 15 min . at $0^{\circ} \mathrm{C}$. The resulting mixture was added by aldehyde ($1.6 \mathrm{~g}, 4.42 \mathrm{mmol}$) 9 dropwise in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for another 1 h . Temperature was gradually increased to $0^{\circ} \mathrm{C}$ and stirred for another 1 h , quenched by the addition of a saturated NaHCO_{3} solution. The layers were separated and the aqueous layer was then extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to give a crude yellow oil, which was purified by flash chromatography using EtOAc and hexane (5:95) as an eluent to provide the compound 24 ($2.42 \mathrm{~g}, 86 \%$) as yellow oil. $R_{f}=0.50$ (hexanes:EtOAc, 7:3); $[\alpha]_{\mathrm{D}}{ }^{28}=-69.5\left(c \quad 2.4, \mathrm{CHCl}_{3}\right)$; IR (neat) $v_{\text {max }}: 3442,2922,2855,1724,1636,1033 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.16(\mathrm{~m}, 10 \mathrm{H}), 5.39-5.29(\mathrm{~m}, 1 \mathrm{H}), 4.94-4.86(\mathrm{~m}, 1 \mathrm{H}), 4.67-4.52(\mathrm{~m}$,

2H), 3.87-3.74 (m, 2H), 3.67-3.58 (m, 1H), 3.49-3.18 (m, 5H), 3.09-2.98 (m, 1H), 2.87-2.78 (m, $1 \mathrm{H}), 2.07-1.77(\mathrm{~m}, 2 \mathrm{H}) 1.74-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.22(\mathrm{~m}, 11 \mathrm{H}), 0.99(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.70(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 201.8,176.5,139.5,136.4,129.3,128.8,128.2,127.2,127.0,126.7,97.9,82.6,74.5$, 73.4, 72.9, 69.1, 66.2, 49.5, 36.9, 36.8, 35.4, 32.8, 31.6, 31.5, 30.3, 29.8, 19.5, 19.4, 12.6, 12.4, 11.9, 9.6 ppm; HRMS calculated for $\mathrm{C}_{36} \mathrm{H}_{51} \mathrm{NO}_{5} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 664.3095$, found 664.3106 .
(2S,3S,6S,7R,8R)-7-(Benzyloxy)-2-ethyl-6-methyl-8-((4R,5R)-2,2,5-trimethyl-1,3-dioxan-4-yl)nonane-1,3-diol (25).

A solution of sodium borohydride ($0.7 \mathrm{~g}, 18.50 \mathrm{mmol}$) in water (10 mL) was added drop wise to a cooled ($0{ }^{\circ} \mathrm{C}$) solution of amide $24(6.0 \mathrm{~g}, 9.35 \mathrm{mmol})$ in THF (90.0 mL). Stirring was continued for 2 h with concomitant warming of the mixture to room temperature. The solution was treated with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (40 mL), stirred for 1 h , The layers were separated and the aqueous layer was then extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \times 20 \mathrm{~mL})$. The organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give a crude oil which was purified by silica gel chromatography using ethyl acetate and hexane (2:8) as an eluent to yield a viscous diol 25 ($3.7 \mathrm{~g}, 90 \%$) as colorless viscous liquid. $R_{f}=0.50$ (hexanes:EtOAc, 6:4); $[\alpha]_{\mathrm{D}}{ }^{28}=$ -20.9 (c 2, CHCl_{3}); IR (neat) $v_{\text {max }}$: 3413, 2931, 2877, 1457, 1377, 1196, 1060, $1013 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34-7.17(\mathrm{~m}, 5 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 3.86-3.58(\mathrm{~m}, 5 \mathrm{H}), 3.49-3.32(\mathrm{~m}$, $2 \mathrm{H}), 1.90-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.26-$ $1.07(\mathrm{~m}, 4 \mathrm{H}), 0.98(\mathrm{~m}, 9 \mathrm{H}), 0.71(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.5$, 128.2, 127.1, 126.8, 97.9, 82.8, 75.5, 74.5, 73.5, 66.2, 64.4, 45.9, 36.9, 35.5, 31.8, 31.5, 30.3, 29.9, 19.5, 18.0, 12.6, 12.4, 12.2, 9.6 ppm ; HRMS calculated For $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 459.3103, found 459.3086.
(2S,3S,6S,7R,8R)-7-(Benzyloxy)-2-ethyl-3-hydroxy-6-methyl-8-((4R,5R)-2,2,5-trimethyl-1,3-dioxan-4-yl)nonyl 4-methylbenzenesulfonate (26).

p-Toluenesulfonyl chloride ($1.73 \mathrm{~g}, 9.11 \mathrm{mmol}$) was added to a stirred solution of alcohol 25 (4.0 $\mathrm{g}, 9.17 \mathrm{mmol})$ in pyridine: $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)(38 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. And stirred for 8 h , the reaction was
quenched by addition of ice (0.5 g). The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 35 \mathrm{~mL}$) and washed with aq. saturated copper sulfate solution (7 mL) followed by aq. saturated NaHCO_{3} solution (7 mL) and brine (10 mL). The organic layer was filtered, dried over $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under vacuum. The residue was purified by silica gel chromatography using ethyl acetate and hexane (1:9) as an eluent to give tosylated product 26 ($4.33 \mathrm{~g}, 80 \%$) as colorless oil. $R_{f}=0.50$ (hexanes:EtOAc, 8:2); $[\alpha]_{\mathrm{D}}{ }^{28}=-4.2\left(c 1.3, \mathrm{CHCl}_{3}\right.$); IR (neat) $v_{\text {max }}: 3456,2962,2927,2855,1726$, 1458, 1362, 1176, 1098, $949 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.38-$ $7.30(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 3 \mathrm{H}), 4.67-4.56(\mathrm{~m}, 2 \mathrm{H}), 4.14-4.0(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.72-3.61 (m, 2H), $3.49(\mathrm{t}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.44$ (s, 3H), 1.94-1.80 $(\mathrm{m}, 1 \mathrm{H}) 1.69-1.53(\mathrm{~m}, 5 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 4 \mathrm{H}), 0.92-0.79(\mathrm{~m}, 9 \mathrm{H}), 0.71$ (d, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.8,139.5,133.0,129.8,128.2,127.9$, $127.2,126.9,98.0,82.9,74.6,73.5,71.2,70.4,66.3,44.9,36.9,35.5,32.2,31.7,30.3,29.9,21.6$, 19.5, 18.3, 12.6, 12.4, 11.9, 9.7 ppm; HRMS calculated for $\mathrm{C}_{33} \mathrm{H}_{51} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 591.3355$, found 591.3335.
(4R,5R)-4-((2R,3R,4S)-3-(Benzyloxy)-6-((2S,3S)-3-ethyloxetan-2-yl)-4-methylhexan-2-yl)-2,2,5-trimethyl-1,3-dioxane (27).

To an ice cooled suspension of NaH (60% dispersion in mineral oil) ($0.32 \mathrm{~g}, 8.12 \mathrm{mmol}$) in THF (20 mL) was added to stirred solution of tosylate 26 ($4.0 \mathrm{~g}, 6.67 \mathrm{mmol}$) under nitrogen atmosphere. The reaction mixture was stirred for 3 h at room temperature and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (3 mL). Organic layer separated and aqueous layer extracted with EtOAc ($2 \times 10 \mathrm{~mL}$). Combined organic layer dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The crude product was purified by flash chromatography (using ethyl acetate and hexane (2:8) as an eluent to afford the oxetane $27(2.6 \mathrm{~g}, 92 \%)$ as colorless liquid. $R_{f}=0.60$ | (hexanes:EtOAc, 8:2); IR (neat) $v_{\max }$: 2931, 2868, 1458, 1062, $734 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{28}=-10.1$ (c 1, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.79-4.70(\mathrm{~m}, 2 \mathrm{H}), 4.61(\mathrm{ABq}, J=$ $11.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.16-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ (dd, $J=4.8,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.48$ ($\mathrm{t}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.39(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.74(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.81(\mathrm{~m}, 3 \mathrm{H}) 1.74-1.53$ (m, 3H), 1.50-1.41 (m, 4H), 1.38 (s, 3H), 1.36 (s, 3H), 0.92 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.85-0.79$ (m, $6 \mathrm{H}), 0.70(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.5,128.2$ (2C), 127.0, 126.8 (2C), 98.0, 84.9, 82.6, 74.4, 74.2, 73.5, 66.3, 39.4, 36.9, 35.5, 30.3 (2C) 30.2, 29.9, 21.5, 19.5, 12.6, 12.4, 11.6, 9.6 ppm ; HRMS calculated for $\mathrm{C}_{26} \mathrm{H}_{43} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 419.31610$, found 419.31559.

4-((2S,3S)-3-Methyloxetan-2-yl)butan-1-ol (1a).

($70 \mathrm{mg}, 0.3 \mathrm{mmol}$) benzyl ether of alcohol 1a treated by with $\mathrm{Pd}(\mathrm{OH})_{2}(10 \mathrm{mg}, 20 \mathrm{wt} \%$ on activated charcoal) under hydrogen atmosphere to yield in $\mathbf{1 a}(56 \mathrm{mg}, 92 \%)$ yield as a colorless liquid. $R_{f}=0.25$ (hexanes:EtOAc, 5:5); $[\alpha]_{\mathrm{D}}{ }^{28}=-1.3\left(c 0.3, \mathrm{CHCl}_{3}\right.$); IR (neat) $v_{\text {max }}$: 3418, 2924, $2864 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.86-4.81(\mathrm{~m}, 1 \mathrm{H}), 4.78-4.74(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{t}, \mathrm{J}=$ $5.64 \mathrm{~Hz}, 1 \mathrm{H}$), 3.66-3.61 (m, 2H), 3.06-2.97 (m, 1H), 1.86-1.77 (m, 1H), 1.65-1.53 (m, 4H), 1.47$1.37(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 85.1,75.6,62.6$, 32.2, 31.6, 31.1, 20.8, 13.2 ppm ; HRMS calculated for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 145.1220$, found 145.1223.

(S)-2-((R)-Tetrahydro-2H-pyran-2-yl)propan-1-ol (1b).

A solution of oxetane $1 \mathbf{1 a}(20 \mathrm{mg}, 0.138 \mathrm{mmol})$, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: i-\mathrm{PrOH}(15: 1) 1 \mathrm{~mL}$ was cooled to 0 ${ }^{\circ} \mathrm{C}$. To this CSA ($3.2 \mathrm{mg}, 0.138 \mathrm{mmol}$) was added the reaction mixture was allowed to warm to room temperature and stirred for 2 h before quenching with solid $\mathrm{NaHCO}_{3} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. The combined organic layer was washed with brine (3 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure to obtain the crude product which was purified by flash column chromatography with ethyl acetate and hexane (5:5) as an eluent to afford the primary alcohol 1b (18.8 mg, 94%) as colorless liquid. $R_{f}=0.5$ (hexanes:EtOAc, 5:5); $[\alpha]_{\mathrm{D}}{ }^{28}=-1.4$ (c 1.0, CHCl_{3}); IR (neat) $v_{\text {max }}: 2958,2926,2855,1725,1460,1272 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.04-$ $3.95(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.17(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.79-$ $1.64(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.42(\mathrm{~m}, 3 \mathrm{H}), 1.40-1.20(\mathrm{~m}, 1 \mathrm{H}), 0.83(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 84.4,68.6,68.2,40.3,30.0,25.9,23.2,13.4 \mathrm{ppm}$; HRMS calculated for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$167.1038, found 167.1042.

(5S,6S)-7-Methoxy-6-methylheptane-1,5-diol (1c).

Colorless liquid 1c ($8 \mathrm{mg}, 93 \%$). $R_{f}=0.35$ (hexanes:EtOAc, 5:5); $[\alpha]_{\mathrm{D}}{ }^{28}=+1.4\left(c .05, \mathrm{CHCl}_{3}\right)$; IR (neat) $v_{\text {max }}$: 3448, 2924, 2854, 1734, 1458, 1371, 1245, 1077, $1021 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta 3.76-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.45-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.82$ $(\mathrm{m}, 1 \mathrm{H}), 1.68-1.47(\mathrm{~m}, 5 \mathrm{H}), 1.45-1.38(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=7.01 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; MS (ESI) calculated for $\mathrm{C}_{9} \mathrm{H}_{21} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$177, found 177 .
(S)-4-(Oxetan-2-yl)butan-1-ol (2a).

Colorless liquid 2a. $R_{f}=0.2$ (hexanes:EtOAc, 5:5); $[\alpha]_{\mathrm{D}}{ }^{28}=+2.1\left(c 0.8, \mathrm{CHCl}_{3}\right)$; IR (neat) $v_{\text {max }}$: 3417, 2922, $2854 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.91-4.79(\mathrm{~m}, 1 \mathrm{H}), 4.67(\mathrm{~m}, 1 \mathrm{H}), 4.55-$ $4.46(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{t}, J=6.42 \mathrm{~Hz}, 2 \mathrm{H}), 2.73-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.76(\mathrm{~m}$, 2H), 1.74-1.54 (m, 2H), 1.50-1.32 (m, 2H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 82.8,68.1$, 62.5, 37.5, 32.3, 27.5, 20.3 ppm ; HRMS calculated for $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$131.1064, found 131.1066.

(R)-2-(Tetrahydro-2H-pyran-2-yl)ethanol (2b).

A solution of oxetane (2a) ($20 \mathrm{mg}, 0.153 \mathrm{mmol}$), in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: i-\mathrm{PrOH}(15: 1) 1 \mathrm{~mL}$ was cooled to 0 ${ }^{\circ} \mathrm{C}$. To this CSA ($3.5 \mathrm{mg}, 0.153 \mathrm{mmol}$) was added the reaction mixture was allowed to warm up to room temperature and stirred for 2 h before quenching with solid $\mathrm{NaHCO}_{3} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. The combined organic layer was washed with brine (3 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated under reduced pressure to obtain the crude product which was purified by flash column chromatography with ethyl acetate and hexane (5:5) as an eluent to afford the alcohol $\mathbf{2 b}$ (18.8 $\mathrm{mg}, 94 \%$) as colorless liquid. $R_{f}=0.6$ (hexanes:EtOAc, 5:5); $\left.\alpha \alpha\right]_{\mathrm{D}}{ }^{28}=-7.9\left(c 0.9, \mathrm{CHCl}_{3}\right)$; IR (neat) $v_{\max }$: 2959, 2926, 1754, 1458, $1271 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.03-3.94$ (m, $1 \mathrm{H}), 3.78(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.58-3.48(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.30(\mathrm{~m}, 8 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 78.6,68.4,61.6,38.1,31.9,25.8,23.3 \mathrm{ppm}$; HRMS calculated for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+$ $\mathrm{Na}]^{+}$153.0882, found 153.0886.
(R)-2,2-dimethyl-4-(oxetan-2-yl)butan-1-ol (3a).

Colorless liquid 3a. $R_{f}=0.3$ (hexanes:EtOAc, 6:4); $[\alpha]_{\mathrm{D}}{ }^{28}=-7.9\left(c 1.2, \mathrm{CHCl}_{3}\right)$; IR (neat) $v_{\text {max }}$: 3414, 2924, 2854, 1729, 1458, $1068 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.84-4.73(\mathrm{~m}, 1 \mathrm{H})$, 4.71-4.62 (m, 1H), 4.56-4.46 (m, 1H), $3.33(\mathrm{q}, J=10.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.72-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.26$ $(\mathrm{m}, 1 \mathrm{H}), 1.82-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.13(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 83.3,71.2,68.1,34.7,32.2,32.1,27.4,24.0,23.8 \mathrm{ppm}$; HRMS calculated for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}+$ $\mathrm{H}]^{+}$159.1379, found 159.1378
(S)-2-(5,5-dimethyltetrahydro-2H-pyran-2-yl)ethanol (3b).

Primary alcohol $\mathbf{3 b}$ ($9.3 \mathrm{mg}, 93$ \%) was obtained from corresponding oxetane $\mathbf{3 a}$ ($10 \mathrm{mg}, 0.06$ mmol). $R_{f}=0.3$ (hexanes:EtOAc, 8:2); $[\alpha]_{\mathrm{D}}{ }^{28}=-6.2$ (c 2.0, CHCl_{3}); IR (neat) $v_{\text {max }}: 3412,2920$, 2851, 1720, 1451, $1063 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.78(\mathrm{~s}, 2 \mathrm{H})$, 3.49-3.38 (m, 2H), 3.16 (d, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.86 (bs, 1H), 1.84-1.64 (m, 2H), 1.61-1.10 (m, 4H), 1.03 (s, 3H), 0.80 (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 78.2,78.1,61.2,37.4,36.4,29.8,28.2,27.1,23.3$ ppm; HRMS calculated for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$159.1379, found 159.1373.

(S)-1-((S)-oxetan-2-yl)heptan-4-ol (4a).

Colorless liquid 4a. $R_{f}=0.5$ (hexanes:EtOAc, 7:3); $[\alpha]_{\mathrm{D}}{ }^{28}=+8.2$ (c 2, CHCl_{3}); IR (neat) $v_{\text {max }}$: 3412, 2927, 2853, 1729, 1452, $1061 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.98-4.78(\mathrm{~m}, 1 \mathrm{H})$, 4.71-4.62 (m, 1H), 4.55-4.46 (m, 1H), 3.66-3.56 (m, 1H), 2.72-2.59 (m, 1H), 2.41-2.27 (m, 1H), 1.91-1.57 (m, 3H), 1.55-1.26 (m, 7H), $0.93(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 82.7,71.2,68.0,39.6,37.7,37.0,27.5,20.0,18.8,14.0 \mathrm{ppm}$; HRMS calculated for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$173.1536, found 173.1530.

2-((2R,6S)-6-propyltetrahydro-2H-pyran-2-yl)ethanol (4b).

Primary alcohol 4b (11 mg, 92 \%) was obtained from corresponding oxetane $\mathbf{4 a}$ ($12 \mathrm{mg}, 0.07$ mmol). $R_{f}=0.5$ (hexanes:EtOAc, 8:2); $[\alpha]_{\mathrm{D}}{ }^{28}=-36.5$ (c 1.5, CHCl_{3}); IR (neat) $v_{\text {max }}$: 3411, 2920, 2855, 1726, 1459, $1055 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.93-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.74(\mathrm{~m}$, 3H), 2.89-2.84 (m, 1H), 1.97-1.88 (m, 1H), 1.81-1.59 (m, 5H), 1.57-1.50 (m, 1H), 1.47-1.25 (m, 5 H), $0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 71.4,70.9,61.8,36.0,34.4$, 30.9, 29.4, 19.0, 18.4, 14.0 ppm ; HRMS calculated for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$195.1340, found 195.1338

(S)-1-((R)-oxetan-2-yl)heptan-4-ol (5a).

Colorless liquid 5a. $R_{f}=0.5$ (hexanes:EtOAc, 7:3); $[\alpha]_{\mathrm{D}}{ }^{28}=-2.8$ (c 2, CHCl_{3}); IR (neat) $v_{\text {max }}$: 3412, 2927, 2853, 1729, 1452, $1061 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.88-4.78(\mathrm{~m}, 1 \mathrm{H})$, 4.70-4.63 (m, 1H), 4.54-4.47 (m, 1H), 3.66-3.57 (m, 1H), 2.71-2.61 (m, 1H), 2.39-2.29 (m, 1H), $1.91-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.28(\mathrm{~m}, 8 \mathrm{H}), 0.93(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 82.7,71.3,68.0,39.7,37.8,37.1,27.6,20.4,18.8,14.0$ ppm; HRMS calculated for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$173.1536, found 173.1530.

2-((2S,6S)-6-propyltetrahydro-2H-pyran-2-yl)ethanol (5b).

Primary alcohol $5 \mathbf{b}$ ($13.9 \mathrm{mg}, 93$ \%) was obtained from corresponding oxetane $5 \mathbf{5 a}$ ($15 \mathrm{mg}, 0.08$ mmol). $R_{f}=0.45$ (hexanes:EtOAc, 7:3); $[\alpha]_{D}{ }^{28}=-0.5\left(c 0.5, \mathrm{CHCl}_{3}\right.$); IR (neat) $v_{\text {max }}: 3411,2920$, 2855, 1726, 1459, $1055 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.84-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.54(\mathrm{~m}$, $1 \mathrm{H}), 3.36-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.12$ (bs, 1H), 1.85-1.71 (m, 2H), 1.70-1.63 (m, 2H), 1.60-1.45 (m, 4H), 1.44-1.25 (m, 4H), 1.24-1.14 (m, 1H), $0.90(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 78.8,77.8,62.0,38.5,37.8,31.6,31.3,23.4,18.8,14.0 \mathrm{ppm}$; HRMS calculated for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$195.1354, found 195.1340.
(S)-2,2-dimethyl-1-((S)-oxetan-2-yl)dodecan-4-ol (6a).

Colorless liquid 6a. $R_{f}=0.4$ (hexanes:EtOAc, 7:3); $[\alpha]_{D}{ }^{28}=+6.7\left(c 1.1, \mathrm{CHCl}_{3}\right)$; IR (neat) $v_{\text {max }}$: 3418, 2920, 2853, 1721, 1453, $1065 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.12-5.10(\mathrm{~m}, 1 \mathrm{H})$, 4.69-4.60 (m, 1H), 4.50-4.49 (m, 1H), 3.81-3.69 (m, 1H), 2.71-2.59 (m, 1H), 2.46-2.31 (m, 1H), 1.93 (dd, $J=6.8,14.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.66-1.53 (m, 3H), 1.44-1.35 (m, 3H), 1.34-1.21 (m, 11H), 0.96 $(\mathrm{m}, 3 \mathrm{H}), 0.95(\mathrm{~m}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 80.6,69.1$, 68.0, 50.8, 50.0, 39.7, 32.6, 31.9, 29.6 (2C), 29.6, 29.2, 28.7, 27.7, 25.6, 22.6, 14.1 ppm; HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$293.2447, found 293.2439.

2-((2R,6S)-6-heptyl-4,4-dimethyltetrahydro-2H-pyran-2-yl)ethanol (6b).

Primary alcohol 6b (15.4 mg, 91 \%) was obtained from corresponding oxetane $\mathbf{6 a}$ ($17 \mathrm{mg}, 0.06$ mmol). $R_{f}=0.4$ (hexanes:EtOAc, 7:3); $[\alpha]_{\mathrm{D}}{ }^{28}=-14.8\left(c 1.3, \mathrm{CHCl}_{3}\right.$); IR (neat) $v_{\text {max }}: 3410,2912$, 2850, 1727, 1455, $1060 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.03-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.75(\mathrm{~m}$, $3 \mathrm{H}), 3.04-2.99(\mathrm{bs}, 1 \mathrm{H}), 1.93-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.22(\mathrm{~m}, 18 \mathrm{H}) 1.02(\mathrm{~s}, 3 \mathrm{H})$, $1.00(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 70.3,70.1,62.2$, 43.3, 42.3, 37.1, 35.2, 31.8, 31.3, 30.7, 29.7, 29.5, 29.2, 28.3, 26.2, 22.6, 14.1 ppm ; HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$271.2631, found 271.2629.

(R)-2-((2S,3R,4R)-3-(Benzyloxy)-5-(methoxymethoxy)-4-methylpentan-2-yl)oxetane (7a).

Colorless liquid 7a. (89 mg, 92 \%). $R_{f}=0.3$ (hexanes:EtOAc, $8: 2$); $[\alpha]_{\mathrm{D}}{ }^{28}=+1.2\left(c 0.8, \mathrm{CHCl}_{3}\right)$; IR (neat) $v_{\text {max }}: 3448,2924,1458,1045 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39-7.27(\mathrm{~m}, 5 \mathrm{H})$, 5.02-4.93 (m, 1H) 4.70-4.58 (m, 3H), 4.54 (s, 2H), 4.47-4.39 (m, 1H), $3.71(\mathrm{dd}, J=4.5,9.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.46$ (dd, $J=7.5,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.22$ (dd, $J=4.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.48(\mathrm{~m}$, 2H), 2.18-2.00 (m, 2H), 1.08 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 1.07 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 137.7,129.7,128.5,127.8,96.7,86.7,75.7,69.7,68.2,66.2,55.3,37.7,36.6$, 34.2, 14.9, 11.8 ppm; HRMS calculated for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$331.1872, found 331.1879.

2-((2S,3S,4S,5R)-4-(Benzyloxy)-3,5-dimethyltetrahydro-2H-pyran-2-yl)ethanol (7b).

Primary alcohol 7b ($30 \mathrm{mg}, 70$ \%) was obtained from the corresponding oxetane ($50 \mathrm{mg}, 0.16$ mmol) as colorless liquid. $R_{f}=0.5$ (hexanes:EtOAc, 6:4); $[\alpha]_{\mathrm{D}}{ }^{28}=+11.4\left(c 0.75, \mathrm{CHCl}_{3}\right)$; IR (neat) $v_{\max }: 3424,2924,2854,1729,1068 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.28$ (m, 5H), 4.74 (s, 2H), 4.72-4.68 (m, 1H), 3.87-3.78 (m, 3H), 3.60 (dd, $J=4.4,11.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.55 (dd, $J=2.0,9.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.09-2.01 (m, 2H), 1.99-1.92 (m, 1H), 1.90-1.82 (m, 1H), 1.25 (d, $J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}$), $0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 137.9,128.5,127.9$, 127.8, 86.5, 76.4, 64.2, 61.7, 60.0, 42.7, 39.4, 35.8, 16.4, 10.4 ppm ; HRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$287.1611, found 287.1617.
(S)-4-((2R,3R,4S)-3-(Benzyloxy)-4-((2R,3S)-3-ethyloxetan-2-yl)pentan-2-yl)-2,2-dimethyl-1,3-dioxane (8a).

Colorless liquid 8a. $R_{f}=0.3$ (hexanes:EtOAc, 8:2); $[\alpha]_{\mathrm{D}}{ }^{28}=+26.5\left(c 0.7, \mathrm{CHCl}_{3}\right)$; IR (neat) $v_{\text {max: }}$ 3450, 2960, 2930, 1721, $1021 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.27$ (m, 5H), 4.80-4.76 (m, 1H), 4.69-4.65 (m, 1H), 4.53 (ABq, J = $11.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.19-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.92(\mathrm{~m}, 2 \mathrm{H})$, 3.86-3.81 (m, 1H), $3.18(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.75(\mathrm{~m}$, 2H), 1.74-1.65 (m, 2H), 1.40 (s, 3H), 1.37 (s, 3H), 1.33-1.23 (m, 1H), 0.99 (d, J = 7.0 Hz, 3H), 0.97 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) 0.75(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.8$, 128.1, 127.2, 127.1, 98.1, 86.3, 84.5, 73.7, 73.3, 68.2, 60.1, 41.2, 41.1, 37.4, 29.9, 29.1, 22.4, 19.3, 12.6, 11.6, 11.2 ppm ; HRMS calculated for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$399.2499, found 399.2505 .

2R,3R,4S)-4-((2R,3S,6R)-6-((S)-1-Hydroxybutan-2-yl)-3-methyltetrahydro-2H-pyran-2-yl)-2-methylpentane-1,3-diol (8b).

Diol $\mathbf{8 b}$ ($28.5 \mathrm{mg}, 80 \%$) obtained as colorless liquid from corresponding oxetane ($40 \mathrm{mg}, 0.106$ mmol). $R_{f}=0.35$ (hexanes:EtOAc, $6: 4$); $[\alpha]_{D}{ }^{28}=-4.3\left(c 0.6, \mathrm{CHCl}_{3}\right.$); IR (neat) $v_{\text {max }}: 3414,2924$, 2854, 1729, 1458, $1068 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H})$, 4.24-4.19 (m, 1H), 3.87-3.77 (m, 2H), $3.72(\mathrm{dd}, J=4.6,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.56-$ $3.52(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.43(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.45-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.07$ (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 0.97-0.90 (m, 6H) ppm; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.9,128.3,127.5$, 127.2, 82.9, 80.0, 75.6, 70.6, 68.0, 62.2, 44.7, 38.5, 36.5, 29.7, 20.8, 14.6, 11.7, 11.4 ppm; HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$359.2187, found 359.2192.
(S)-4-((2R,3R,4S)-3-(Benzyloxy)-4-((2S,3R)-3-ethyloxetan-2-yl)pentan-2-yl)-2,2-dimethyl-1,3-dioxane (9a).

Colorless liquid 9a. $R_{f}=0.3$ (hexanes:EtOAc, $8: 2$); $[\alpha]_{\mathrm{D}}{ }^{28}=-0.9\left(c \quad 0.5, \mathrm{CHCl}_{3}\right)$; IR (neat) $v_{\text {max }}$: 3450, 2960, 2930, 1721, $1021 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.94$ (dd, $J=6.8,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.73-4.57(\mathrm{~m}, 3 \mathrm{H}), 4.39-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.00-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.77(\mathrm{~m}$, 1 H), 3.41 (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.67-2.54 (m, 1H), 2.47-2.34 (m, 1H), 1.96-1.65 (m, 4H), 1.39 (s, $3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.20-1.12(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.88-0.79(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.2,128.1,127.1,127.0,97.9,85.1,83.1,74.6,73.2,67.1,60.2,41.1$, 40.0, 35.9, 30.0, 28.2, 20.9, 19.5, 13.2, 11.0, 10.5 ppm ; HRMS calculated for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+$ $\mathrm{Na}]^{+}$399.2495, found 399.2505.

(R)-2-((2R,3R,4R,5R,6S)-4-(Benzyloxy)-6-(2-hydroxyethyl)-3,5-dimethyltetrahydro-2H-pyran-2-yl)butan-1-ol (9b).

Diol 9b ($32 \mathrm{mg}, 80 \%$ yield) a colorless liquid was obtained from the corresponding oxetane (45 $\mathrm{mg}, 0.12 \mathrm{mmol}$). $R_{f}=0.35$ (hexanes:EtOAc, $6: 4$); $[\alpha]_{\mathrm{D}}{ }^{28}=-5.6$ (c $0.7, \mathrm{CHCl}_{3}$); IR (neat) $v_{\text {max: }}$ 3414, 2924, 2854, 1729, 1458, $1068 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33-7.17$ (m, 5H), 4.47 (s, 2H), 4.18-4.12 (m, 1H), 3.79-3.65 (m, 2H), 3.58-3.38 (m, 3H), 3.30-3.21 (m, 1H), 2.41$2.19(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.44(\mathrm{~m}, 3 \mathrm{H}), 0.94-$ $0.74(\mathrm{~m}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 138.8,128.3,127.4,127.2,83.6,79.7,78.1$,
69.1, 64.1, 60.3, 42.4, 36.2, 35.0, 33.5, 19.6, 11.3, 8.8, 8.7 ppm ; HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$359.2183, found 359.2192.
$(2 R, 3 R, 4 S)-6-((2 S, 3 S)-3-E t h y l o x e t a n-2-y l)-4-m e t h y l-2-((4 R, 5 R)-2,2,5-t r i m e t h y l-1,3-d i o x a n-$ 4-yl)hexan-3-ol (8).

To a solution of compound $27(2.0 \mathrm{~g}, 4.78 \mathrm{mmol})$ in ethyl acetate $(10 \mathrm{~mL})$ was added $\mathrm{Pd}(\mathrm{OH})_{2}$ ($200 \mathrm{mg}, 20 \mathrm{wt} \%$ on activated charcoal) under H_{2} atmosphere with stirring at room temperature for 4 h . The reaction mixture was filtered on a small pad of celite, concentrated under reduced pressure, and was purified by silica gel chromatography using ethyl acetate and hexane (2:8) as an eluent to afford the secondary alcohol 8 ($1.49 \mathrm{~g}, 95 \%$) as a colorless liquid. $R_{f}=0.30$ (hexane:EtOAc, 8:2); $[\alpha]_{\mathrm{D}}{ }^{28}=-13.8$ (c 1, CHCl_{3}); IR (neat) $v_{\text {max }}$: 3427, 2961, 2874, 1459, 1382, $1198,868 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.84-4.76(\mathrm{~m}, 1 \mathrm{H}), 4.73$ (dd, $J=6.0,7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.14(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=2.2,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{t}, J=11.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.32(\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.78(\mathrm{~m}$, $3 \mathrm{H}) 1.75-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.17(\mathrm{~m}, 1 \mathrm{H}), 1.01-0.93(\mathrm{~m}, 6 \mathrm{H}), 0.87-$ $0.79(\mathrm{~m}, 3 \mathrm{H}), 0.71(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 98.0,84.6,77.5$, 75.0, 74.2, 66.3, 39.2, 35.6, 30.4 (2C), 29.6, 28.9, 28.5, 21.4, 19.0, 14.0, 12.0, 11.5, 10.7 ppm ; HRMS calculated For $\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$329.2687, found 329.2686.
(2R,3R,4S)-4-((2R,3S,6R)-6-((S)-1-Hydroxybutan-2-yl)-3-methyltetrahydro-2H-pyran-2-yl)-2-methylpentane-1,3-diol (28).

A solution of oxetane $8(1.40 \mathrm{~g}, 4.27 \mathrm{mmol})$, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: i-\mathrm{PrOH}(15: 1) 12 \mathrm{~mL}$ was cooled to $0{ }^{\circ} \mathrm{C}$. To this CSA ($97 \mathrm{mg}, 0.42 \mathrm{mmol}$) was added the reaction mixture was allowed to warm up to room temperature and stirred for 2 h before quenching with solid $\mathrm{NaHCO}_{3} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic layer was washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure to get the crude product which was purified by flash column chromatography with ethyl acetate and hexane (5:5) as an eluent to afford the alcohol 28 as colorless liquid (1.13 $\mid \mathrm{g}, 92 \%$) $R_{f}=0.5$ (EtOAc); IR (neat) $v_{\text {max }}$: 3379, 2929, 1655, 1461, 1026, $768 \mathrm{~cm}^{-1} .[\alpha]_{\mathrm{D}}{ }^{28}=-$ 36.1 ($c 1, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.92$ (dd, $J=1.5,9.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.77(\mathrm{~d}, J=4.5$

Hz, 2H), 3.73-3.61 (m, 4H), 3.35-3.15 (bs, 4H), 2.07-1.97 (m, 1H), 1.94-1.78 (m, 3H), 1.73-1.60 $(\mathrm{m}, 1 \mathrm{H}) 1.53-1.11(\mathrm{~m}, 5 \mathrm{H}), 1.01-0.88(\mathrm{~m}, 6 \mathrm{H}), 0.82-0.72(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm}{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 75.6,74.4,71.8,68.7,63.8,40.7,36.8,36.6,28.5,26.4,22.1,20.9,13.0,11.9,10.8$, 7.6 ppm; HRMS calculated For $\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$289.2357, found 289.2374.
(2S)-2-((2R,5S,6R)-5-Methyl-6-((1R)-1-((4R,5R)-5-methyl-2-phenyl-1,3-dioxan-4-yl) ethyl)tetrahydro-2H-pyran-2-yl) butan-1-ol (29).

To a solution of triol 28 ($0.52 \mathrm{mg}, 1.80 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added the benzaldehyde dimethyl acetal $(0.29 \mathrm{~mL}, 2.16 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. To the reaction mixture was added a catalytic amount of CSA ($20 \mathrm{mg}, 0.09 \mathrm{mmol}$) and the reaction mixture was stirred at rt for 1 h . After completion of the reaction, the reaction mixture was quenched by adding a saturated solution of NaHCO_{3} at $0{ }^{\circ} \mathrm{C}$ and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Crude product was purified by column chromatography to obtain alcohol using ethyl acetate and hexane (1:9) as an eluent to afford the alcohol 29 as a crystalline solid ($0.61 \mathrm{~g}, 90 \%$). M.P. $=$ $109{ }^{\circ} \mathrm{C} ; R_{f}=0.50$ (hexanes:EtOAc, 7:3); $[\alpha]_{\mathrm{D}}{ }^{28}=-68.2$ (c 1, CHCl_{3}); IR (KBr): 3448, 2960, 1638, 10211, $759 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.31(\mathrm{~m}, 3 \mathrm{H})$, $5.55(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=4.5,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.71(\mathrm{~m}, 3 \mathrm{H}), 3.69-3.47(\mathrm{~m}, 3 \mathrm{H}), 2.19-2.02$ $(\mathrm{m}, 1 \mathrm{H}), 1.98-1.72(\mathrm{~m}, 5 \mathrm{H}), 1.55-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.20(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $0.92-0.83(\mathrm{~m}, 6 \mathrm{H}), 0.76(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.0,128.6$, 128.1, 126.2 , 101.2, 80.7, 73.9, 73.3, 71.2, 60.7, 39.9, 35.5, 30.2, 28.3, 26.4, 20.7, 20.5, 12.1, 11.5, 11.3, 8.5 ppm ; HRMS calculated For $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 377.2688$, found 377.2686.

Tert-Butyl((2S)-2-((2R,5S,6R)-5-methyl-6-((1R)-1-((4R,5R)-5-methyl-2-phenyl-1,3-dioxan-4yl) ethyl)tetrahydro-2H-pyran-2-yl)butoxy)diphenylsilane (30).

Alcohol 29 ($0.48 \mathrm{~g}, 1.27 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and treated with imidazole ($0.12 \mathrm{~g}, 1.9 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After 30 minutes TBDPSCl ($0.50 \mathrm{~mL}, 1.53 \mathrm{mmol}$) was added via syringe. The reaction mixture was allowed to warm to room temperature and stirred
for 2 h and quenched with saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine (3 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Crude product was purified by column chromatography using ethyl acetate and hexane (2:98) as an eluent to afford the compound 30 as colorless liquid ($0.72 \mathrm{~g}, 92 \%$). $R_{f}=0.40$ (hexanes:EtOAc, 95:5); IR (neat) $v_{\text {max }}$: 3449, 2957, 2857, 1460, 1110, $70_{-} Z \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{28}=-31.7$ (c 1, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 7.76-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.24-$ $7.12(\mathrm{~m}, 3 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 2 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=4.5,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.84(\mathrm{~m}$, 2 H), 3.72 (dd, $J=1.5,9.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.61-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{t}, J=11.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.02-1.82(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.53-1.34(\mathrm{~m}, 3 \mathrm{H}), 1.32-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.04-0.95(\mathrm{~m}$, 12 H), $0.81-0.75(\mathrm{~m}, 6 \mathrm{H}), 0.68(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.8$, 135.9, 135.8, 134.0, 133.5, 129.5, 129.4, 128.2, 127.8, 127.7, 127.6, 125.9, 100.5, 80.0, 72.7, 72.6, 69.2, 59.8, 38.4, 35.5, 30.2, 28.2, 26.8, 26.4, 20.0, 19.4, 19.3, 11.8, 11.6, 11.3, 8.2 ppm; HRMS calculated For $\mathrm{C}_{39} \mathrm{H}_{54} \mathrm{O}_{4} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+}$637.3686, found 637.3683.

(2R,3R,4S)-3-(Benzyloxy)-4-((2R,3S,6R)-6-((S)-1-(tert-butyldiphenylsilyloxy)butan-2-yl)-3-methyltetrahydro-2H-pyran-2-yl)-2-methylpentan-1-ol (31).

To a solution of compound $30(0.90 \mathrm{~g}, 1.46 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added DIBAL-H ($3 \mathrm{~mL}, 1 \mathrm{M}$ in toluene) at $-15{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred at same temperature while monitoring the reaction. After completion, the reaction was quenched by the addition of aq. saturated solution of sodium potassium tartrate (5 mL). The mixture was stirred for 2.5 h at room temperature. Then the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$ and washed with brine (5 mL). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Crude product was purified by column chromatography using ethyl acetate and hexane (2:98) as an eluent to afford the compound 31 as colorless liquid ($0.81 \mathrm{~g}, 90 \%$). $R_{f}=0.60$ (hexanes:EtOAc, $8: 2$); $[\alpha]_{\mathrm{D}}{ }^{28}=-30.5$ ($c 1, \mathrm{CHCl}_{3}$); IR (neat) $v_{\text {max }}: 3449$, 2929, 2860, 1108, $701 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.31(\mathrm{~m}$, 6 H), 7.30-7.21 (m, 3H), 7.16-7.12 (m, 2H), 4.29 (ABq, $J=11.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.90-3.80(\mathrm{~m}, 2 \mathrm{H})$, 3.73 (dd $J=3.5,9.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.62 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.52-3.44 (m, 3H), 3.00-2.90 (m, 1H), 1.96-1.78 (m, 4H), 1.77-1.64 (m, 2H), 1.54-1.32 (m, 4H), 1.05 (s, 9H), 0.96 (d, J = $6.9 \mathrm{~Hz}, 3 \mathrm{H}$), 0.86 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$), $0.78-0.71(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.7,135.7$, 135.7, 134.8, 133.9, 133.8, 129.6, 128.2, 127.7, 127.6, 127.3, 127.2, 82.7, 74.5, 73.8, 72.4, 66.8, 61.9, 40.8, 38.8, 36.7, 29.4, 27.0, 26.8, 26.5, 21.4, 19.4, 13.9, 12.9, 10.7, 10.1 ppm ; HRMS calculated For $\mathrm{C}_{39} \mathrm{H}_{56} \mathrm{O}_{4} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+} 639.3853$, found 639.3840.
(5R,6R,7S)-6-(Benzyloxy)-7-((2R,3S,6R)-6-((S)-1-(tert-butyldiphenylsilyloxy)butan-2-yl)-3 -methyltetrahydro-2H-pyran-2-yl)-5-methyloctan-4-ol (32).

To a solution of alcohol $31(0.30 \mathrm{~g}, 0.487 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ under argon atmosphere, Dess-Martin periodinane ($2.4 \mathrm{~mL}, 0.30 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) and $\mathrm{NaHCO}_{3}(50 \mathrm{mg}, 0.58$ mmol) were added. After stirring for 2 h at room temperature, aqueous saturated sodium thiosulfate (5 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ were added. The organic phase was separated and washed with brine. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ filtered, and concentrated under reduced pressure. Crude product was purified over small pad of silica gel column to afford the product aldehyde as colorless liquid ($0.28 \mathrm{~g}, 93 \%$). $R_{f}=0.45$ (hexanes:EtOAc, 95:5).
To a stirred solution of aldehyde ($0.28 \mathrm{~g}, 0.39 \mathrm{mmol}$) in anhydrous THF (3 mL) was cooled to $78{ }^{\circ} \mathrm{C}$, a solution ($0.6 \mathrm{~mL}, 0.5 \mathrm{M}$ of n-propyl magnesium bromide in THF \{prepared from magnesium (120 mg) and n-propyl bromide (0.50 mL) in THF (5 mL) \} was added drop wise. After 1 h at $-78{ }^{\circ} \mathrm{C}$ the reaction mixture was quenched by the addition of a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The product was extracted with diethyl ether ($2 \times 5 \mathrm{~mL}$) and washed with brine (3 mL). The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Crude product was purified by column chromatography using ethyl acetate and hexane (2:98) an eluent to afford the compound 32 ($0.28 \mathrm{~g}, 95 \%$) as colorless liquid (88% yield for two steps). $R_{f}=0.40$ (hexanes:EtOAc, 95:5); $[\alpha]_{\mathrm{D}}{ }^{28}=-25.6$ (c 1, CHCl_{3}); IR (neat) $v_{\text {max }}$: 3457, 3069, 2959, 2856, 1460, 1110, $702 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.74-7.63(\mathrm{~m}$, 4H), 7.43-7.31 (m, 6H), 7.29-7.21 (m, 3H), 7.16-7.10 (m, 2H), 4.27 (ABq, $J=11.4 \mathrm{~Hz}, 2 \mathrm{H})$, 3.89-3.73 (m, 4H), 3.63-3.58 (m, 1H), 3.42 (dd, $J=2.4,10.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.98-2.92 (m, 1H), 1.99$1.90(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.34(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.18(\mathrm{~m}, 4 \mathrm{H}), 1.05$ (s, 9H), $0.95(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.92-0.84(\mathrm{~m}, 6 \mathrm{H}), 0.81-0.71(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 138.7,135.7,134.0,133.9,129.6,129.5,128.2,127.6,127.3,127.2,83.5,75.6,74.4$, 72.5, 71.6, 62.2, 41.7, 40.6, 37.5, 36.8, 29.3, 26.9, 26.8, 21.3, 19.6, 19.5, 19.4, 14.1, 12.8, 10.7, 10.6, 10.5 ppm ; HRMS calculated For $\mathrm{C}_{42} \mathrm{H}_{62} \mathrm{O}_{4} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+}$681.43099, found 681.43096.
(5S,6S,7S)-6-(Benzyloxy)-7-((2R,3S,6R)-6-((S)-1-(tert-butyldiphenylsilyloxy)butan-2-yl)-3-methyltetrahydro-2H-pyran-2-yl)-5-methyloctan-4-one (6).

To a solution of alcohol $32(0.20 \mathrm{~g}, 0.30 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL) under argon, Dess-Martin periodinane ($1.5 \mathrm{~mL}, 0.30 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) and $\mathrm{NaHCO}_{3}(40 \mathrm{mg}, 0.45 \mathrm{mmol}$) were added. After stirring for 2 h at room temperature, aqueous saturated sodium thiosulfate (2 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) were added. The organic phase was separated and washed with brine. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Crude product was purified by column chromatography using ethyl acetate and hexane (2:98) as an eluent to afford the compound 6 as colorless liquid. ($0.18 \mathrm{~g}, 90 \%$). $R_{f}=0.40$ (hexane:EtOAc, 95:5); $[\alpha]_{\mathrm{D}}{ }^{28}=-$ 14.9 (c 1, CHCl_{3}); IR (neat) $v_{\max }$: 2961, 2856, 1726, 1458, 1282, 1119, $977 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.74-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.27-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 2 \mathrm{H})$, 4.36-4.21 (m, 2H), $4.03(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.72-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{dd}, \mathrm{J}=$ $3.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.33(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.63$ (m, 5H), 1.55-1.22 (m, 6H), $1.07(\mathrm{~s}, 9 \mathrm{H}), 0.97-0.89(\mathrm{~m}, 6 \mathrm{H}), 0.87-0.78(\mathrm{~m}, 6 \mathrm{H}), 0.75-0.68(\mathrm{t}, J=9.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 213.8,139.3,135.7$ (2C), 135.6 (2C), 134.2, 133.9, 129.4 (2C), 127.9 (2C), 127.6 (2C), 127.5 (2C), 126.9 (3C), 80.4, 73.7, 73.3, 72.0, 62.1, 48.6, 45.7, 42.2, 36.2, 29.9, 29.7, 27.0 (4C), 22.2, 19.5, 16.7, 13.9 (2C), 13.7, 11.1, 9.4 ppm; HRMS calculated For $\mathrm{C}_{42} \mathrm{H}_{60} \mathrm{O}_{4} \mathrm{NaSi}$ $[\mathrm{M}+\mathrm{Na}]^{+}$679.4151, found 679.4153.
(2R,4S)-2,4-Dimethylpentane-1,5-diol (33)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.53-3.38(\mathrm{~m}, 4 \mathrm{H}), 1.80-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.18(\mathrm{~m}, 2 \mathrm{H}), 0.97-$ 0.83 (m, 6H) ppm; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 67.1,36.7,32.8,17.6 \mathrm{ppm} . \mathrm{MS}$ (ESI) calculated for $\mathrm{C}_{7} \mathrm{H}_{17} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 133$, found 133 .

(2S,4R)-5-Hydroxy-2,4-dimethylpentyl acetate (34).

To a stirred solution of meso-diol $33(4.0 \mathrm{~g}, 22.9 \mathrm{mmol})$ in THF (130 mL) and water ($170 \mu \mathrm{~L}$) was added PPL (Porcine Pancreatic Lipase) enzyme (11.6 g) and vinyl acetate ($8.4 \mathrm{~mL}, 91.6$ mmol) at room temperature. The reaction mixture was stirred for 12 h at room temperature. After complete conversion of the starting material (as indicated by TLC), the reaction mixture was filtered off through a pad of celite, washed with ethyl acetate, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and purified by column chromatography using ethyl acetate and hexane (4:96) as an eluent afford the mono acetate compound 34 ($2.47 \mathrm{~g}, 47 \%$) as a colorless liquid. $R_{f}=$
0.5 (hexane:EtOAc, 9:1); $[\alpha]_{\mathrm{D}}{ }^{28}=+9.8\left(c 0.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.97$ (dd, $J=5.2,10.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.84 (dd, $J=6.9,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.49$ (dd, $J=5.4,10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.40 (dd, J $=6.4,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.30-$ $1.15(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}{ }^{13}{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 171.5,69.2,67.4,37.1,32.8,29.8,20.8,17.7,17.2 \mathrm{ppm}$. MS (ESI) calculated for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$197, found 197.

(2S,4R)-5-(Benzyloxy)-2,4-dimethylpentyl acetate (35).

A solution of monoacetate compound 34 ($100 \mathrm{mg}, 0.63 \mathrm{mmol}$) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL) was added to the solution of benzyl imidate ($240 \mathrm{mg}, 0.95 \mathrm{mmol}$) in cyclohexane (2 mL). The reaction was cooled to $0^{\circ} \mathrm{C}$ and treated with $\mathrm{TfOH}(3 \mu \mathrm{~L}, 0.03 \mathrm{mmol})$. The reaction mixture was warmed to room temperature, stirred for 24 h . After completion of the reaction, the reaction mixture was quenched by adding a saturated solution of NaHCO_{3} at $0{ }^{\circ} \mathrm{C}$ and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Crude product was purified by column chromatography using ethyl acetate and hexane (2:98) as an eluent to afford the alcohol 35 (134 $\mathrm{mg}, 80 \%$) as colorless liquid $R_{f}=0.55$ (hexanes:EtOAc, 95:5); $[\alpha]_{\mathrm{D}}{ }^{28}=+5.1$ (c 1.8, CHCl_{3}); IR (neat) $v_{\text {max }}: 2919,2851,1738,1240,769 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.29(\mathrm{~m}$, 5 H), 4.50 (s, 2H), 3.96 (dd, $J=5.2,10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.82 (dd, $J=6.7,10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.33 (dd, $J=$ $6.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.23$ (dd, $J=6.7,9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.04 (s, 3H), 1.95-1.81 (m, 2H), 1.52-1.41 (m, $1 \mathrm{H}), 1.30-1.15(\mathrm{~m}, 1 \mathrm{H}), 0.99-0.91(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.2,138.7$, 128.2 (2C), 127.4 (3C), 75.6, 72.9, 69.3, 37.8, 30.8, 30.0, 20.8, 17.8, 17.7 ppm; HRMS calculated For $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$287.1616, found 287.1617.

(2S,4R)-5-(Benzyloxy)-2,4-dimethylpentan-1-ol (36).

To an ice cooled suspension of LiAlH_{4} ($86 \mathrm{mg}, 2.27 \mathrm{mmol}$) in anhydrous THF (2 mL), was added a solution of compound 35 ($300 \mathrm{mg}, 1.13 \mathrm{mmol}$) in anhydrous THF (2 mL) under nitrogen atmosphere. The reaction mixture was stirred for 2 h at room temperature and quenched with saturated $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution. The precipitate formed was filtered through a pad of celite and washed with ethyl acetate. The filtrate was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated to dryness under reduced pressure. The resulting crude product was purified by silica gel column chromatography utilizing ethyl acetate and hexane (1:9) as an eluent to obtain alcohol 36 (227
$\mathrm{mg}, 90 \%$) as colorless oil. $R_{f}=0.5$ (hexanes:EtOAc, 3:7); $[\alpha]_{\mathrm{D}}{ }^{28}=-2.6$ (c 1, CHCl_{3}); IR (neat) $\mid v_{\text {max }}: 3416,2923,2856,1457,1098,1031,770 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45-7.26$ (m, 5H), $4.50(\mathrm{~s}, 2 \mathrm{H}), 3.54-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.35-3.21(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.60(\mathrm{~m}$, $2 \mathrm{H}), 1.53-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.0-0.87(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.5,128.3$, 127.5, 127.4, 75.8, 73.0, 67.8, 37.6, 33.1, 30.9, 18.1, 17.6 ppm; HRMS calculated For $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$245.1511, found 245.1512 .
(2S,4R)-5-(Benzyloxy)-2,4-dimethylpentanal (7).

To a solution of alcohol $36(40 \mathrm{mg}, 0.18 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ under argon, Dess-Martin periodinane ($0.72 \mathrm{~mL}, 0.21 \mathrm{mmol}, 0.3 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) and $\mathrm{NaHCO}_{3}(17 \mathrm{mg}, 0.21 \mathrm{mmol}$) were added. After stirring for 2 h at room temperature, saturated aqueous sodium thiosulfate (1 mL) and ether (5 mL) were added. The organic phase was separated and washed with brine (2 mL). The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (hexanes:EtOAc, 95:5) on silica gel to give the desired aldehyde 7 ($36 \mathrm{mg}, 90 \%$) as colourless oil. $R_{f}=0.4$ (hexanes:EtOAc, $9: 1$); ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.49(\mathrm{~s}, 1 \mathrm{H}) 7.31-7.17(\mathrm{~m}, 5 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 3.23(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.43-2.36$ $(\mathrm{m}, 1 \mathrm{H}), 1.86-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.43(\mathrm{~m}, 1 \mathrm{H}) 1.03(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 205.2,138.5,128.3,127.5,75.3,73.0,44.2,35.0,31.2$, 17.5, 14.3 ppm; HRMS calculated For $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$243.1354, found 243.1355.
(2S,3S,4S,6R,7S,8S,10R)-3,11-Bis(benzyloxy)-2-((2R,3S,6R)-6-((S)-1-(tert-butyldiphenyl silyloxy)butan-2-yl)-3-methyltetrahydro-2H-pyran-2-yl)-6-ethyl-7-hydroxy-4,8,10-trimethylundecan-5-one (4).

To a solution of ketone $6(90 \mathrm{mg}, 0.13 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added solution of $(0.30 \mathrm{~mL}, 0.50 \mathrm{M}) i-\mathrm{PrOTiCl}_{3}$ dropwise at $-78{ }^{\circ} \mathrm{C}$ under argon. The pale yellow solution was stirred for 5 min , and DIPEA ($0.30 \mathrm{~mL}, 0.50 \mathrm{M}$) was added dropwise at $-78{ }^{\circ} \mathrm{C}$. The resulting orange-red solution was stirred for 30 min at $-78{ }^{\circ} \mathrm{C}$, then aldehyde 7 ($40 \mathrm{mg}, 0.18 \mathrm{mmol}$) dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added. After 3 h at $-78^{\circ} \mathrm{C}$ the reaction was quenched by addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and vigorously stirred at room temperature. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ the organic layer was successively washed with brine. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ filtered and concentrated under reduced pressure. Crude
product was purified by silica gel column chromatography using ethyl acetate and hexane (4:96) as an eluent to afford the product 4 as colorless liquid. (90 mg , ($94: 6 \mathrm{dr}$), 85% based on recovered starting material) recovered ketone ($10 \mathrm{mg}, 11 \%$). $R_{f}=0.45$ (hexanes:EtOAc, 9:1); $\mid[\alpha]_{\mathrm{D}}{ }^{28}=-17.2\left(c 1, \mathrm{CHCl}_{3}\right)$; IR (neat) $v_{\text {max }}: 3448,2927,2855,1458,1260,1091,802 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.67-7.60(\mathrm{~m}, 5 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.07$ (m, 2H), 7.04-7.01 (m, 2H), 4.44-4.34 (m, 3H), 4.14 (d, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.0(\mathrm{~d}, J=9.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.86(\mathrm{dd}, J=4.9,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.47(\mathrm{~m}, 1 \mathrm{H})$, $3.29(\mathrm{dd}, J=4.7,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.89(\mathrm{~m}$, $1 \mathrm{H}), 2.56-2.52(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.60(\mathrm{~m}, 7 \mathrm{H}), 1.51-1.30(\mathrm{~m}, 7 \mathrm{H}) 1.01(\mathrm{~s}, 9 \mathrm{H})$, $0.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.87-0.79(\mathrm{~m}, 12 \mathrm{H}), 0.68-0.63(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.53(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 217.9,139.0,138.9,135.8,135.7,134.2,133.9,129.5$, 129.4, 128.2, 128.1, 127.6, 127.5, 127.4, 127.3, 127.2, 127.1, 80.3, 75.8, 74.3, 74.0, 73.8, 72.9, 71.9, 62.3, 55.9, 48.8, 42.6, 38.4, 36.3, 33.5, 31.1, 30.1, 29.7, 27.1, 22.5, 19.5, 19.4, 19.3, 16.7, 15.9, 14.3, 14.0, 13.2, 11.1, 9.7 ppm; HRMS calculated For $\mathrm{C}_{56} \mathrm{H}_{80} \mathrm{O}_{6} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+} 899.5615$, found 899.5640.

