Asymmetric Rhodium(I)-Catalyzed C-C Activations with Zwitterionic Bis-Phospholane Ligands

Evelyne Parker, and Nicolai Cramer*
Laboratory of Asymmetric Catalysis and Synthesis École Polytechnique Fédérale de Lausanne (EPFL) SB ISIC LCSA BCH 4305
CH-1015 Lausanne, Switzerland
E-Mail: Nicolai.cramer@epfl.ch

Supplementary Information

Table of Content:

Experimental Section	page	2
HPLC-Traces	page	5
NMR Spectra	page	9

General procedure for substrates synthesis:

The required cyclobutanones were prepared according to the reported procedures:
a) L. R. Krepski, A. Hassner J. Org. Chem. 1978, 43, 2879-2882;
b) B. D. Johnston, E. Czyzewska, A. C. Oehlschlager J. Org. Chem., 1987, 52, 3693-3697;
c) W. Cao, I. Erden, R. H. Grow, J. R. Keeffe, J. Song, M. B. Trudell, T. L. Wadsworth, F. Xu, J. Zheng

Can. J. Chem. 1999, 77, 1009;
d) P. P. Shao, F. Ye Tetrahedron Lett. 2008, 49, 3554-3557;
e) P. E. Pigou, C. H. Schiesser J. Org. Chem., 1988, 53, 3841-3843;
f) R. R. Galucci, R. Going J. Org. Chem. 1981, 46, 2532;
g) K. Sugimoto, R. Hayashi, H. Nemoto, N. Toyooka, Y. Matsuya, Org. Lett. 2012, 14, 3510-3513.

Procedure A (Suzuki coupling):

A dried microwave vial was charged with the respective cyclobutanone (1 equiv.), $\operatorname{Pd}(\mathrm{OAc})_{2}$ (10 $\mathrm{mol} \%$), dppf ($12 \mathrm{~mol} \%$) and potassium vinyltrifluoroborate (3 equiv.). The system was sealed, evacuated and back filled with nitrogen. Dry and degassed mixture of dioxane / n-PrOH (ratio 2:1, 0.3 M) and distilled triethylamine (3 equiv.) were added and the mixture was stirred at $110^{\circ} \mathrm{C}$ for 6 h . The reaction mixture was filtered through a short pad of celite/silica and poured in sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. Aqueous layers were extracted with EtOAc (x3). Combined organic layers were washed with water and brine, dried over MgSO_{4}, filtered and evaporated in vacuo. The residue was purified on a silica gel column eluting with the appropriate mixture of pentane/ethyl acetate to afford the desired product in $74-96 \%$ yield.

Procedure B (1,4 - addition):

In a flame-dried Schlenk tube containing Cul ($66.7 \mathrm{mg}, 0.35 \mathrm{mmol}$) was added a freshly prepared (2 -(prop-1-en-2-yl)phenyl)magnesium bromide ($0.7 \mathrm{~mL}, 1.40 \mathrm{mmol}, 2 \mathrm{M}$ solution in $\mathrm{Et}_{2} \mathrm{O}$) at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 10 min , then warmed up to room temperature and stirred for additional 10 min . A solution of 3-phenylcyclobut-2-enone ($101 \mathrm{mg}, 0.7 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(0.7 \mathrm{~mL})$ was added dropwise at $0^{\circ} \mathrm{C}$ and the reaction mixture was gradually warmed up to room temperature over 3 h . The reaction mixture was carefully quenched at $0^{\circ} \mathrm{C}$ with aq. $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($x 3$). The combined organic layers were washed with water and brine, dried over MgSO_{4}, and evaporated in vacuo. The residue was purified on a silica gel column eluting with a mixture of pentane/ethyl acetate to afford the desired product ($75 \mathrm{mg}, 0.29 \mathrm{mmol}$) in 41% yield.

3-methyl-3-(2-vinylphenyl)cyclobutanone (11a)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.53-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}$, $1 \mathrm{H}), 6.86\left(\mathrm{dd},{ }^{3} J_{H-H}=17.3 \mathrm{~Hz},{ }^{3} J_{H-H}=10.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.65\left(\mathrm{~d},{ }^{3} J_{H-H}=17.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.32\left(\mathrm{~d},{ }^{3} J_{H-H}=10.9\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 3.59-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.17-3.07(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $206.9,144.7,136.1,135.3,128.0,127.1,127.0,126.6,116.1,59.7,34.4,29.5 \mathrm{ppm}$; IR (ATR) $\tilde{v}=$ 3061, 3025, 2957, 2921, 2865, 1781, 1480, 1444, 1378, 1271, 1183, 1144, 1080, 1057, 993, 915, 757, 650, 551, 477, $427 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calc'd. for $\left[\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}\right]^{+}: 187.1117$, found: 187.1117; $\boldsymbol{R}_{\boldsymbol{f}}=0.53$ (Pentane/Ethyl Acetate 9:1).
 $5.54\left(\mathrm{dd},{ }^{3} J_{H-H}=17.2 \mathrm{~Hz},{ }^{2} J_{H-H}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.21\left(\mathrm{dd},{ }^{3} J_{H-H}=10.9 \mathrm{~Hz},{ }^{2} J_{H-H}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.83(\mathrm{~s}$, $3 \mathrm{H}), 3.56-3.47(\mathrm{~m}, 2 \mathrm{H}), 3.15-3.05(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 206.8, 159.3, 146.2, 134.6, 128.8, 128.4, 114.2, 113.0, 111.6, $9.6,55.3,34.5,29.4 \mathrm{ppm} ; \operatorname{IR}($ ATR $) \tilde{v}=$ 3085, 2957, 2921, 2865, 2836, 1779, 1603, 1566, 1485, 1466, 1379, 1325, 1294, 1230, 1185, 1144, 1064, 1046, 1025, 992, 908, 868, 816, 730, 544, 464, $439 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calc'd. for $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{2}\right]^{+}: 217.1223$, found: 217.1227; $\boldsymbol{R}_{\boldsymbol{f}}=0.37$ (Pentane/Ethyl Acetate 9:1).

3-ethyl-3-(2-vinylphenyl)cyclobutanone (11c)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.57-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.04(\mathrm{~m}$, $1 \mathrm{H}), 6.86\left(\mathrm{dd},{ }^{3} J_{H-H}=17.3 \mathrm{~Hz},{ }^{3} J_{H-H}=10.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.62\left(\mathrm{dd},{ }^{3} J_{H-H}=17.3 \mathrm{~Hz},{ }^{2} J_{H-H}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.29$ $\left(\mathrm{dd},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=10.9 \mathrm{~Hz},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.54-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.20-3.09(\mathrm{~m}, 2 \mathrm{H}), 1.91\left(\mathrm{q},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=7.3 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 0.76\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.3 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=207.1,142.2,136.4,135.4$, 128.4, 127.3, 127.2, 127.0, 115.9, 57.9, 38.5, 33.6, 9.8 ppm ; IR (ATR) $\tilde{v}=3061,2964,2921,2853$, 1779, 1480, 1460, 1381, 1314, 1181, 1142, 1117, 1080, 993, 772, 755, $431 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calc'd. for $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}\right]^{+}$: 201.1274, found: 201.1274; $\boldsymbol{R}_{\boldsymbol{f}}=0.56$ (Pentane/Ethyl Acetate 9:1).

3-((benzyloxy)methyl)-3-(2-vinylphenyl)cyclobutanone (11d)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.57-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.15(\mathrm{~m}$, $3 \mathrm{H}), 6.82\left(\mathrm{dd},{ }^{3} J_{H-H}=17.3 \mathrm{~Hz},{ }^{3} J_{H-H}=10.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.60\left(\mathrm{dd},{ }^{3} J_{H-H}=17.3 \mathrm{~Hz},{ }^{2} J_{H-H}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.27$
$\left(\mathrm{dd},{ }^{3} J_{H-H}=10.9 \mathrm{~Hz},{ }^{2} J_{H-H}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.51(\mathrm{~s}, 2 \mathrm{H}), 3.66\left(\mathrm{~d},{ }^{2} J_{H-H}=1.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.42\left(\mathrm{~d},{ }^{2} J_{H-H}=1.5\right.$ $\left.\mathrm{Hz}, 4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=205.8,140.7,137.9,137.0,135.4,128.3,128.3$, 127.8, 127.6, 127.5, 127.4, 127.3, 127.1, 116.2, 76.2, 73.2, 55.8, 38.8 ppm ; IR (ATR) $\tilde{v}=3062,3028$, 2921, 2854, 1782, 1480, 1453, 1374, 1241, 1205, 1090, 1027, 989, 908, 758, 729, 697, 649, 477, 431 cm^{-1}; HRMS (ESI) m / z calc'd. for $\left[\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{2}\right]^{+}$: 293.1536, found: 293.1534; $\boldsymbol{R}_{\boldsymbol{f}}=0.39$ (Pentane/Ethyl Acetate 9:1).

TIPSO \quad 3-(((triisopropylsilyl)oxy)methyl)-3-(2-vinylphenyl)cyclobutanone (11e)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.56-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.15(\mathrm{~m}$, $1 \mathrm{H}), 6.85\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{H-H}=17.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{H-H}=10.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.62\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{H-H}=17.3 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{H-H}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.31$ $\left(\mathrm{dd},{ }^{3} J_{H-H}=10.9 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{H-H}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.90\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{H-H}=1.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.49-3.35(\mathrm{~m}, 4 \mathrm{H}), 1.14-0.93$ $\left.(\mathrm{m}, 21 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=205.8,140.6,137.1,135.5,128.4,127.7,127.5$, 127.1, 116.3, 69.9, 55.1, 40.3, 17.9, 11.9 ppm ; IR (ATR) $\tilde{v}=2941,2891,2865,1787,1462,1383$, 1373, 1110, 1090, 1068, 1013, 994, 915, 881, 801, $756,682,660,475 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calc'd. for [$\left.\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{2} \mathrm{Si}\right]^{+}$: 359.2401, found: 359.2395; $\boldsymbol{R}_{\boldsymbol{f}}=0.67$ (Pentane/Ethyl Acetate 9:1).

3-phenyl-3-(2-(prop-1-en-2-yl)phenyl)cyclobutanone (11f)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.45-7.11(\mathrm{~m}, 9 \mathrm{H}), 4.95\left(\mathrm{dq},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=1.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 4.45\left(\mathrm{dq},{ }^{2} \mathrm{~J}_{H-H}=2.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}-H}=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.87-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.62-3.53$ $(\mathrm{m}, 2 \mathrm{H}), 1.79\left(\mathrm{dd},{ }^{4} \mathrm{~J}_{H-H}=1.6 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{H-H}=1.0 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=207.0$, $148.5,145.0,143.3,142.8,129.9,129.4,128.5,127.0,126.8,126.2,125.8,116.6,61.7,41.8,25.3$ ppm; IR (ATR) $\tilde{v}=3058,3020,2973,2915,1780,1639,1599,1495,1446,1375,1121,1082,1023$, $905,758,700,658,560,549,483 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calc'd. for $\left[\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}\right]^{+}: 263.1430$, found: 263.1428; $\boldsymbol{R}_{f}=0.56$ (Pentane/Ethyl Acetate 9:1).

HPLC-Traces for ketones 14:

(5S,9R)-5-methyl-8,9-dihydro-5H-5,9-methanobenzo[7]annulen-7(6H)-one (14a)

(5S,9R)-2-methoxy-9-methyl-8,9-dihydro-5H-5,9-methanobenzo[7]annulen-7(6H)-one (14b)

(5S,9R)-5-ethyl-8,9-dihydro-5H-5,9-methanobenzo[7]annulen-7(6H)-one (14c)

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	10.614		0.2783	3234.61206	179.46782	49.9848
2	15.031		0.2938	3236.57300	170.28099	50.0152

(5R,9R)-5-(((triisopropylsilyl)oxy)methyl)-8,9-dihydro-5H-5,9-methanobenzo[7]annulen-7(6H)one (14e)

(5S,9S)-5-methyl-9-phenyl-8,9-dihydro-5H-5,9-methanobenzo[7]annulen-7(6H)-one (14f)

[^0]

THF

THF

[^1]

$\iint 1$
$\iint \quad \int$
$\int / \int /\left.\right|^{\int}$

か

[^2]
-

[^3]

$\stackrel{\infty}{\infty}$
$\stackrel{\cong}{\circ}$

					$$					$\begin{aligned} & \underset{\sim}{\sim} \\ & \hline \end{aligned}$			$\begin{aligned} & \text { 〒 } \\ & \underset{\sim}{2} \end{aligned}$						
0	8.5	8.0	7.5	7.		6.5	6.0	5.5	5.0	$\begin{gathered} \mathrm{I}^{1.5} \\ \mathrm{f}(\mathrm{ppm}) \end{gathered}$	4.0		3.5	3.0	2.5	2.0	1.5	1.0	0.5

ミֵN

[^4]

$\stackrel{\text { ® }}{1}$

[^5]

[^6]

210	200	190	180	170	160	150	140	130	120	$\begin{gathered} 110 \\ \mathrm{fl}^{1}(\mathrm{ppm}) \end{gathered}$	100	90	80	70	60	50	40	30	20	10

$\stackrel{\circ}{9}$

[^0]:

[^1]:

[^2]: $\begin{array}{lllllllllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 1\end{array}$

[^3]:

[^4]:

[^5]:

[^6]:

