
Supporting Information for: 

Advanced capabilities of the PYXAID program: Integration schemes, 

decoherence effects, multi-excitonic states, and field-matter interaction.  

Alexey V. Akimov[1,2] and Oleg V. Prezhdo[1]* 

[1] Department of Chemistry, University of Rochester, Rochester, NY 14627 

[2] Chemistry Department, Brookhaven National Laboratory, Upton, NY, 11973 

*Corresponding author. Email: oleg.prezhdo@rochester.edu 

 

Section A: Derivation of the action the operators 
( )( )dtiLi

1exp  and 
( )( )dtiLij

2exp  

We present the detailed derivation of the action of the operators ( )( )dtiLi

1exp  and ( )( )dtiLij

2exp  given by 

Eq. 9. Namely, we want to show that: 
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The derivation is based on the Taylor series representation of exponent followed by applying powers of 

the corresponding operators and subsequent manipulation of the resulting terms. The derivation of the 

action of the operators of the type ( )( )dtiLi

1exp  is well-know in the field of non-Hamiltonian molecular 

dynamics. We present the derivation for this type of operators only for completeness: 



( ) ( ) ( ) iiiiiiiiii

i

i

ii

i

iii

i

ii

cdtcdtdtcdtcdtc

c
c

cdt
c

cdtc
c

cdt

⋅=




 +⋅+⋅+=+⋅⋅+⋅⋅+=

=











+









∂
∂

⋅⋅+
∂
∂

⋅⋅+=








∂
∂

⋅⋅

ααααα

ααα

exp...
!2

1
1...

!2

1

...
!2

1
1exp

22

2

.  (A.2) 

The derivation of the action, Eq. A.1b, is similar, but is slightly more complex. Also, unlike Eq. A.2, 

in which only one variable is affected, we now consider the action on the pair of variables: 
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where, for simplicity of notation, we use: 

ijij H
dti

dt
h

⋅
−=⋅= βφ .          (A.4) 

 

Section B: Derivation of the matrix elements for field-matter interaction Hamiltonian 

We derive Eq. 13b of the main text, starting with Eq. 13a and using a number of assumptions and 

approximations. First, we transform Eq. 13a from the classical to the quantum version. Using the 

correspondence principle, ∇−→
r

h
r

ip , and specifying the particle to be an electron ( eq −= ), one can 

write a semi-classical Hamiltonian describing the electronic excitation in response to interaction with an 

electromagnetic field (e.g. laser): 
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From the practical point of view, one needs to compute matrix elements of the Hamiltonian: 
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In many periodic DFT codes, including the QE package, the KS orbitals are typically represented by 

expansion in a plane-wave basis. In the momentum representation, the expansion takes the form: 
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Note that in this expansion, the units of the coefficients 
Gi

c r
,

 are 2/3Bohr− , because they include the unit 

cell dimension factor 
Ω

1
 from an alternative formulation of the wavefunction expansion: 
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For computing observables, it is convenient to normalize the wavefunctions first. Then, the coefficients 

Gi
c r

,
become unit-less (but change numerically), and the units of the observables coincide with the units 

of the operator. 

In the current version of the PYXAID program we focus on a single k-point (Gamma-point, 

( )TK 000=
r

). Then, the wavefunctions, Eq. B.3, can be simplified: 
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Finally, to define a field-matter interaction, we need to specify the form of the vector field. Normally, 

it can be expressed as a combination of plane waves (e.g. Sun radiation) with possible modulation of 

their amplitudes (e.g. laser pulse). The vector potential in this case can be written as: 
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where k
r

is the wavevector of each plane wave, related to its angular frequency kω  by: 

c
kk kω=≡
r

.           (B.8) 

The amplitude modulation is described by the ( )tA
k
r

r
 and ( )tA

k

*
r

r
terms. Two common forms of the 

amplitude modulation are described in the main text. 

With the assumptions mentioned above, the matrix elements of the perturbation Hamiltonian are given 

by: 
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Further simplifications can be made to obtain the result, Eq. B.9. First,  using the relation 

kk
AA rr

rr

−
=*             (B.10) 

and the fact that the frequencies depend only on the magnitude of the wavevectors 
kk
rr

−
=ωω , Eq. B.9 

can be simplified by reversing the summation order in the second part: 
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Here, 

∑ +
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is the transition dipole moment in the momentum representation (up to a coefficient). Note that, in 

general, 
kij
r

r

,
µ  depends on the wavevector k

r
, thus giving different perturbation magnitudes for different 

excitation energies and crystal momenta. However, in most practical applications, the size of the 

molecular system a  is notably smaller than the excitation wavelength 
k

1
~λ . Therefore, the following 

(dipole) approximation is valid: ( ) 1, <<rk
rr

 or, equivalently, Gk
rr

<< . This result immediately simplifies 

Eq. B.12 by removing the dependence on the excitation wavevector, leading to Eq. 14 of the main text. 

Eq. B.11 is the result present as Eq. 13 of the main text. 

 

Section C: Derivation of the relations between fluence and the field modulation parameters 

We review the basic relations between radiation fluence and vector potential. Then, we present 

specific relations for the two modulation protocols of the vector potential implemented in the current 

version of the PYXAID program – the simple pulse, and the saw-tooth protocol. Finally, we provide 

numerical estimates of the proportionality constants and pre-factors.  

 

C.1 Basic relations 

In our derivations of the general and specific relations below, we assume that the electromagnetic field 

is monochromatic, so that the vector potential can be written: 

( ) ( ) ( )trktAtrA ω−=
rrrrr

cos2, .          (C.1) 

Further, we assume that the field propagates in the x direction of some external Cartesian coordinate 

system: ( )Tkk 001=
r

, and that it is linearly polarized, such that the vector potential has only one 

component, ( )T
yAA 00=

r
. Under these assumptions, the Maxwell equations for the electromagnetic 

field, Eq. 12, lead to: 
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The x-component of the Poynting vector is then given by: 
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The units of S are W/m
2
 , such that the quantity has the meaning of the instantaneous radiation power 

per unit area. The radiation intensity is given by averaging xS over a time-period: 
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Because we are using the dipole approximation ( ) 1, <<rk
rr

, the above expression simplifies: 
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The units of I are also W/m
2
, but it has the meaning of the time-averaged power per unit area.  

Further, one can compute the laser fluence (J/m
2
 in SI units) by integrating I over the exposure time 

(e.g. laser pulse duration) τ : 

∫=
τ

0

dtSF ,            (C.6a) 

or simply as: 

τIF = .            (C.6b) 

Note, that the sign of S may, in general, be negative. The negative sign implies radiation and energy 

loss. The positive sign indicated absorption and energy gain. Because we are only interested in 

absorption, we focus on the absolute value of the time-averages Poynting vector S , rather than 

S itself: 
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C.2 Fluence for the step-function modulation protocol 

The step-function modulation protocol is given by: 
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In this case, the first term in Eq. C.5 vanishes and the second gives: 
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The last equality arises from the assumption that the pulse duration T contains an integer number of 

field oscillation periods: 

fnTT = ,             (C.9a) 

where 

ω
π

ν
21

==fT .           (C.9b) 

In other words, the condition nT πω 2= should be satisfied. In our implementation, the validity of such 

condition is verified before calculations. If the input parameters do not satisfy this condition, a warning 

is printed and the laser pulse duration, T , is adjusted downward with respect to n, that is to: 
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Using Eq. C.8 and C.6, we obtain: 
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or, equivalently: 
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For practical purposes, it is useful to present numerical estimates of the conversion prefactors. First, 

we estimate yA  if the fluence is 1 mJ/cm
2
, the pulse duration time is 1 fs, and the wavelength is 1 nm: 
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In SI units the constant 
em

eh
is: 
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Therefore,  
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Summarizing, the following expression holds for the pulse modulation function: 
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C.3 Fluence for the saw-tooth modulation protocol 

The saw-tooth modulation protocol is defined by: 
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In this case, the fluence is given by: 
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The vector field amplitude is: 
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Similarly to the simple pulse modulation protocol, the estimate of the conversion prefactor in y

e

A
m
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is 

given by: 
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Thus,  
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