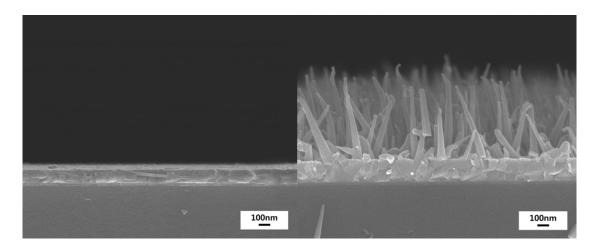
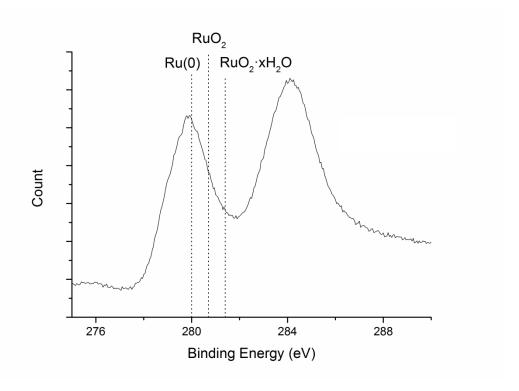
Coaxial RuO₂-ITO nanopillars for transparent supercapacitor application


Ilhwan Ryu,[†] MinHo Yang,[‡] Hyemin Kwon,[†] Hoo Keun Park,[†] Young Rag Do,[†] Sang Bok

Lee,**^{‡,§} and Sanggyu Yim*[†]


[†]Department of Chemistry, Kookmin University, Seoul 136-702, South Korea.

[‡]Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea

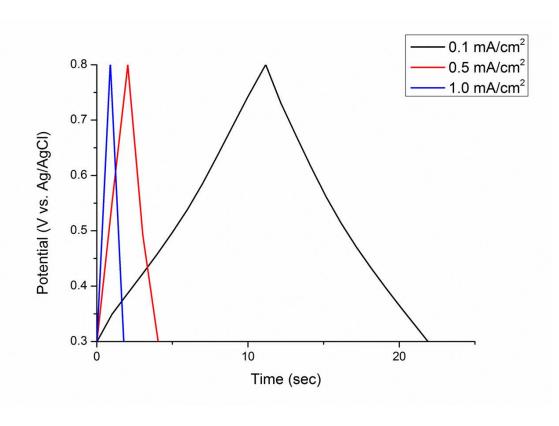

§Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.

Figure S1. Cross-sectional FE-SEM images of the ITO film with a thickness of 140 nm (left) and ITO nanopillars (right) fabricated from ITO film by RF-magnetron sputtering.

Figure S2. XPS spectra of Ru 3d for the hydrous RuO₂ deposits on ITO nanopillars by cathodic deposition at -0.8 V.

Figure S3. Charge-discharge curves at different constant current densities of 0.1, 0.5, and 1.0 mA/cm² for 30 cycle RuO₂ electrodeposited ITO coaxial (RuO₂-ITO) nanopillars.