Supporting Information

Synthesis and Biological Evaluation of

New Bisphosphonate-Dextran Conjugates Targeting Breast Primary Tumor

Evelyne Migianu-Griffoni, ${ }^{*, \dagger}$ Imène Chebbi, ${ }^{\dagger}$ Souad Kachbi, ${ }^{\dagger}$ Maelle Monteil, ${ }^{\dagger}$ Odile Sainte-Catherine, ${ }^{\dagger}$ Frédéric Chaubet, ${ }^{\dagger}$ Olivier Oudar, ${ }^{\dagger}$ and Marc Lecouvey*, ${ }^{\dagger}$

\dagger Université Paris 13, Sorbonne Paris Cité, Laboratoire de Chimie, Structure, Propriétés de Biomatériaux et d’Agents Thérapeutiques (CSPBAT), CNRS UMR 7244, 74, Rue Marcel Cachin F93017 Bobigny, France
* Université Paris 13, Sorbonne Paris Cité, Laboratoire BPC, INSERM U 698, 99, Avenue JeanBaptiste Clément F-93430 Villetaneuse, France
* To whom correspondence should be addressed

Determination of the degree of substitution (D.S.) in CarboxyMethyl (CM) groups of CMD 1

The CM content was determined on dried aliquots of dextran derivatives ($25-45 \mathrm{mg}$) by acidimetric titration with NaOH solution in water/acetone mixture ($1 / 1-\mathrm{v} / \mathrm{v}$) acidified with $2 \mathrm{~N}_{\mathrm{NNO}}^{3}$. Two equivalence volumes were distinguished : the first one $\mathrm{V}_{\text {eq1 }}$ corresponding to the equivalence of the excess of strong acid HNO_{3}; and the second one assigned to the equivalence of the weak carboxylic acid groups of CMD 1. Thus, the amount of $C M$ functions per gram of polymer $n_{C M}$ could be calculated by the relation (1) and was about $3.87 \pm 0.04 \mathrm{mmol} . \mathrm{g}^{-1}$.

$$
\begin{equation*}
\mathrm{n}_{\mathrm{CM}}=\left(\mathrm{V}_{\mathrm{eq} 2}-\mathrm{V}_{\mathrm{eq} 1}\right) \times \mathrm{C}_{\mathrm{NaOH}} / \mathrm{m}_{\mathrm{CMD}} \tag{1}
\end{equation*}
$$

The amount of remaining free hydroxyl groups $n_{\text {R-O-H }}$ per gram of polymer must be determined by the equation (2).

$$
\begin{equation*}
\left(\mathrm{n}_{\mathrm{R}-\mathrm{O}-\mathrm{H}} \times \mathrm{M}_{\mathrm{R}-\mathrm{O}-\mathrm{H}}\right)+\left(\mathrm{n}_{\mathrm{CM}} \times \mathrm{M}_{\mathrm{R}-\mathrm{O}-\mathrm{CM}}\right)=1 \tag{2}
\end{equation*}
$$

Besides, each glucosidic unit of the dextran macromolecule has a molecular weight of 162.16 Da . Each unit bears three hydroxyl groups on carbon atoms 2,3 and 4 which could be replaced by a CM group. So, the average molecular weight of one glucosidic unit can be assimilated to three R-O-H subunits with $\mathrm{M}_{\mathrm{R}-\mathrm{O}-\mathrm{H}}=54.05 \mathrm{Da}$. When the hydrogen atom is replaced by a CM group, the molecular weight $\mathrm{M}_{\mathrm{R}-\mathrm{O}-\mathrm{CM}}$ of the subunit is equal to $134.07 \mathrm{Da}\left(\mathrm{CM}=\mathrm{CH}_{2}-\mathrm{COONa}\right)$. Thus, equation (2) gave $\mathrm{n}_{\mathrm{R}-\mathrm{O}-\mathrm{H}}=$ $8.90 \pm 0.09 \mathrm{mmol} . \mathrm{g}^{-1}$. Finally, the D.S. of CMD 1 (0.91) could be determined by the equation (3).

$$
\begin{equation*}
\text { D.S. }=\left(3 \times n_{\mathrm{CM}}\right) /\left(\mathrm{n}_{\mathrm{CM}}+\mathrm{n}_{\mathrm{R}-\mathrm{O}-\mathrm{H}}\right) \tag{3}
\end{equation*}
$$

NMR spectra :

CMD-BPA2 3a- ${ }^{1} \mathrm{H}$ NMR

CMD-BPA2 3a- ${ }^{31}$ P NMR

CMD-BPA3 3b- ${ }^{1} \mathrm{H}$ NMR

CMD-BPA3 3b- ${ }^{31}$ P NMR

