Supporting Information
$\mathbf{I n C l}_{3}$-Catalyzed Alkylative Rearrangement of Propargylic Acetates Using Alkyl Chlorides, Alcohols, and Acetates: Facile Synthesis of α-Alkyl- α, β-Unsaturated Carbonyl Compounds
Yoshiharu Onishi, Yoshihiro Nishimoto, Makoto Yasuda, and Akio Baba*
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1
Yamadaoka, Suita, Osaka 565-0871, Japan
Table of Contents
General. S2

1. Materials. S2
2. Experimental Procedures. S9
3. Product Data S12
4. References. S22
5. NMR Spectra. S23

General.

New compounds were characterized by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{13} \mathrm{C}$ off-resonance, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{HCOSY}$, NOESY, HMQC, HMBC, IR, MS, HRMS, and elemental analysis. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra were obtained with TMS as internal standard. IR spectra were recorded as thin film or as solids in KBr pellets on HORIBA FT-720 spectrophotometer. Column chromatography was performed on silica gel (MERCK silica gel 60 or Fuji Silysia FL100DX). Bulb-to-bulb distillation (Kugelrohr) was accomplished in Sibata GTO-250RS at the oven temperature and pressure indicated. Yields were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of crude products using internal standard.

1. Materials.

Commercial solvents and reagents were used as received with the following exception. $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ was dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ and distilled under ordinary pressure. Alkyl chlorides $\left(\mathbf{1} \mathbf{c}^{\mathbf{1}}, \mathbf{1} \mathbf{d}^{\mathbf{1}}, \mathbf{1} \mathbf{j}^{\mathbf{1}}\right.$), propargylic acetates $\left(\mathbf{2 a}{ }^{\mathbf{4}}, \mathbf{2} \mathbf{b}^{\mathbf{5}}, \mathbf{2} \mathbf{d}^{6}, \mathbf{2} \mathbf{h}^{7}, \mathbf{2} \mathbf{i}^{8}\right)$, and alkyl acetates $\left(\mathbf{5}^{9}, \mathbf{6}^{\mathbf{1 0}}\right)$ were prepared by known methods ${ }^{11-15}$ and these compounds were reported. Propargylic acetates ($\mathbf{2 c}, \mathbf{2 e}, \mathbf{2 f}, \mathbf{2 j}, \mathbf{2 k}$) were prepared and the experimental details are described below (These preparation methods were not optimized.). Other alkyl chlorides ($\mathbf{1 a}, \mathbf{1 b}, \mathbf{1 e}, \mathbf{1 f}, \mathbf{1 g}, \mathbf{1 h}$) and propargyl acetate $\mathbf{2 g}$ are commercially available.

(1c) 1-Chloro-1-(4-Chlorophenyl)ethane ${ }^{1}$

To a stirred solution of $\mathrm{BiCl}_{3}(1.5 \mathrm{mmol})$ and 1-(4-chlorophenyl)ethanol (30 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ $\mathrm{mL})$ was slowly added $\mathrm{Me}_{3} \mathrm{SiCl}(36 \mathrm{mmol})$ at room temperature. The mixture was stirred for 23 h , and then quenched by water $(50 \mathrm{~mL})$. The mixture was extracted with EtOAc (30 mL x 3). The collected organic layer was washed with brine $(100 \mathrm{~mL})$ and then dried over MgSO_{4}. The solvent was evaporated and the residue was purified by distillation under reduced pressure to give the product ($4.58 \mathrm{~g}, 89 \%$). The analytical data for this compound matched that previously reported. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR charts are listed below.

(1d) 1-Chloro-1-(4-tolyl)ethane ${ }^{1}$

To a stirred solution of $\mathrm{BiCl}_{3}(1.5 \mathrm{mmol})$ and 1-(4-tolyl)ethanol (30 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was slowly added $\mathrm{Me}_{3} \mathrm{SiCl}(36 \mathrm{mmol})$ at room temperature. The mixture was stirred for 12 h , and then quenched by water $(50 \mathrm{~mL})$. The mixture was extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The collected
organic layer was washed with brine (100 mL) and then dried over MgSO_{4}. The solvent was evaporated and the residue was purified by distillation under reduced pressure to give the product ($3.89 \mathrm{~g}, 85 \%$). The analytical data for this compound matched that previously reported. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR charts are listed below.

(1i) Ethyl 3-chloro-3-phenylpropionate

To a stirred solution of $\mathrm{BiCl}_{3}(1 \quad \mathrm{mmol}, 0.33 \mathrm{~g})$ and methyl 3-hydroxy-3-(4-methylphenyl)-propionate ($20 \mathrm{mmol}, 3.7 \mathrm{~g}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL}$) was slowly added $\mathrm{Me}_{3} \mathrm{SiCl}(30 \mathrm{mmol}, 3.4 \mathrm{~g})$ at room temperature. The mixture was stirred for 3 h , and then quenched by water $(50 \mathrm{~mL})$. The mixture was extracted with diethyl ether $(30 \mathrm{~mL} \times 3)$. The collected organic layer was washed with brine (20 mL) and then dried over MgSO_{4}. The solvent was evaporated and the residue was purified by distillation under reduced pressure to give the product $(2.9 \mathrm{~g}, 71 \%) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR charts are listed below.; IR: (neat) $1743(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; b.p. $150{ }^{\circ} \mathrm{C}(0.6 \mathrm{mmHg}) ;{ }^{1} \mathrm{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.33(\mathrm{dd}, J=8.7,5.8$ $\mathrm{Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.18\left(\mathrm{dd}, J=16.4,8.7 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}^{\mathrm{A}}\right), 3.02(\mathrm{dd}, J=16.4,5.8 \mathrm{~Hz}$, $1 \mathrm{H}, 2-\mathrm{H}^{\mathrm{B}}$), $2.34(\mathrm{~s}, 3 \mathrm{H}, \mathrm{p}-\mathrm{Me}){ }^{13} \mathrm{C}$ NMR: ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 170.1 ($\mathrm{s}, \mathrm{C}-1$), 138.6 ($\mathrm{s}, \mathrm{C}-\mathrm{p}$), 137.3 (s , C-i), 129.4 (d, C-m), 126.8 (d, C-o), 57.9 (d, C-3), 52.0 (q, OMe), 44.6 (t, C-2), 21.1 ($q, p-M e$); MS: (EI, 70 eV$) \mathrm{m} / \mathrm{z} 214(\mathrm{M}+2,9), 212\left(\mathrm{M}^{+}, 27\right), 177$ (33), 139 (34), 135 (100), 117 (22); HRMS: (EI, $70 \mathrm{eV})$ Calculated $\left(\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{2}\right) 212.0604\left(\mathrm{M}^{+}\right)$, Found: 212.0606.

(1j) 1,5-Dichloro-1-phenylpentane ${ }^{1}$

To a stirred solution of $\mathrm{BiCl}_{3}(0.35 \mathrm{mmol}, 0.12 \mathrm{~g})$ and 5-chloro-1-phenylpentan-1-ol ($5.5 \mathrm{mmol}, 1.1$ g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ was slowly added $\mathrm{Me}_{3} \mathrm{SiCl}(8.5 \mathrm{mmol}, 1.0 \mathrm{~g})$ at room temperature. The mixture was stirred for 3 h , and then quenched by water $(50 \mathrm{~mL})$. The mixture was extracted with diethyl ether ($30 \mathrm{~mL} \times 3$). The collected organic layer was washed with brine (20 mL) and then dried over MgSO_{4}. The solvent was evaporated and the residue was purified by column chromatography (hexane, column length 10 cm , diagram 5 cm) to give the product ($0.53 \mathrm{~g}, 44 \%$). The analytical data for this compound matched that previously reported (Ravikumar, P. C.; Yao, Lihua; Fleming, Fraser F. J. Org. Chem. 2009, 74, 7294-7299.). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR charts are listed below.

(2a) 3-Acetoxy-1-phenyl-1-propyne ${ }^{4}$

To a stirred solution of phenylacetylene (100 mmol) in THF $(80 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was slowly added $n-\mathrm{BuLi}(1.6 \mathrm{M}$ solution in hexane, 120 mmol$)$. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 20 min before the addition of paraformaldehyde $(120 \mathrm{mmol})$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 20 min and at room temperature for additional 3 h . After addition of acetic anhydride (105 mmol) at room temperature, the resulting solution was stirred for 10 h . The mixture was quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq. $(30 \mathrm{~mL})$ and then extracted with EtOAc $(30 \times 3 \mathrm{~mL})$. The collected organic layer was dried over MgSO_{4}. The solvent was evaporated and the residue was purified by column chromatography (hexane/EtOAc $=95: 5$, column length 10 cm , diagram 5 $\mathrm{cm})$. Further purification was performed by distillation under reduced pressure to give the product ($13.0 \mathrm{~g}, 73 \%$).

(2b) 3-Acetoxy-1-(4-chlorophenyl)-1-propyne ${ }^{5}$

To a stirred solution of 1-chloro-4-iodobenzene (30 mmol), 2-propynyl acetate (30 mmol), triethylamine (90 mmol), and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.36 \mathrm{mmol})$ in $\mathrm{MeCN}(180 \mathrm{~mL})$ was added $\mathrm{CuI}(0.36$ $\mathrm{mmol})$. The mixture was heated to reflux for 25 h and then diluted by EtOAc $(30 \mathrm{~mL})$. The resulting solution was filtered by silica gel column. The solvent was evaporated and the residue was purified by column chromatography (hexane $/ E t O A c=95: 5$, column length 10 cm , diagram 5 cm). Further purification was performed by distillation under reduced pressure to give the product ($4.82 \mathrm{~g}, 78 \%$). The analytical data for this compound matched that previously reported. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR charts are listed below.

(2c) 3-Acetoxy-1-(4-methoxyphenyl)-1-propyne

To a stirred solution of 4-iodoanisole ($30 \mathrm{mmol}, 7.00 \mathrm{~g}$), 2-propynyl acetate ($30 \mathrm{mmol}, 2.96 \mathrm{~g}$), and triethylamine $(90 \mathrm{mmol}, 9.128 \mathrm{~g})$ in $\mathrm{MeCN}(180 \mathrm{~mL})$ was added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.36 \mathrm{mmol}, 0.256 \mathrm{~g})$ and $\mathrm{CuI}(0.40 \mathrm{mmol}, 0.077 \mathrm{~g})$. The mixture was heated to reflux for 24 h and then diluted by EtOAc $(30 \mathrm{~mL})$. The solution was filtered through a pad of silica gel, and the solvent was evaporated. The
residue was purified by column chromatography (hexane $/ \mathrm{EtOAc}=95: 5$, column length 10 cm , diagram 5 cm). Further purification was performed by distillation under reduced pressure to give the product ($1.848 \mathrm{~g}, 26 \%$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR charts are listed below.; IR: (neat) 2233 (C $\equiv \mathrm{C}$), 1747 $(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.39(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, o), 6.83(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, m)$, $4.89\left(\mathrm{~s}, 2 \mathrm{H}, 3-\mathrm{H}_{2}\right), 3.79(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.12(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOMe}) ;{ }^{13} \mathrm{C}$ NMR: $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.2(\mathrm{~s}$, OCOMe), 159.9 (s, p), 133.3 (d, o), 114.0 ($\mathrm{s}, i), 113.8(\mathrm{~d}, m), 86.4(\mathrm{~s}, \mathrm{C}-1), 81.5(\mathrm{~s}, \mathrm{C}-2), 55.1$ (q, OMe), 52.9 (t, C-3), 20.7 (q, OCOMe); MS: (EI, 70 eV) m/z $204\left(\mathrm{M}^{+}, 29\right), 189\left(\mathrm{M}^{+}-\mathrm{Me}, 41\right), 145$ $\left(\mathrm{M}^{+}-\mathrm{OAc}, 69\right), 144$ (100), 133 (33); HRMS: (EI, 70 eV) Calculated $\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3}\right) 204.0786\left(\mathrm{M}^{+}\right)$ Found: 204.0795

(2d) 3-Acetoxy-1-(2-thienyl)-1-propyne ${ }^{6}$

To a stirred solution of 2-iodothiophene (35 mmol), 2-propynyl acetate (35 mmol), triethylamine $(105 \mathrm{mmol})$, and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.42 \mathrm{mmol})$ in $\mathrm{MeCN}(210 \mathrm{~mL})$ was added $\mathrm{CuI}(0.42 \mathrm{mmol})$. The mixture was stirred at room temperature for 9 h and then diluted by EtOAc (30 mL). The resulting solution was filtered by silica gel column. The solvent was evaporated and the residue was purified by column chromatography (hexane $/ E t O A c=95: 5$, column length 10 cm , diagram 5 cm). Further purification was performed by distillation under reduced pressure to give the product ($4.79 \mathrm{~g}, 73 \%$). The analytical data for this compound matched that previously reported. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR charts are listed below.

(2e) 1-Acetoxy-2-hexyne

To a stirred solution of 1-pentyne ($51 \mathrm{mmol}, 3.470 \mathrm{~g}$) in THF $(50 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was slowly added $n-B u L i(1.6 \mathrm{M}$ solution in hexane, $60 \mathrm{mmol}, 37.5 \mathrm{~mL})$. The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 20 min before the addition of paraformaldehyde ($62 \mathrm{mmol}, 1.907 \mathrm{~g}$). The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 20 min and at room temperature for additional 2 h . After addition of acetic anhydride (56 mmol , 5.722 g) at room temperature, the resulting solution was stirred for 21 h . The mixture was quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq. (30 mL) and then extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The collected organic layer was dried over MgSO_{4}. The solvent was evaporated and the residue was purified by column chromatography (hexane/EtOAc $=95: 5$, column length 10 cm , diagram 5 cm). Further purification
was performed by distillation under reduced pressure to give the product $(2.305 \mathrm{~g}, 32 \%) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR charts are listed below.; IR: (neat) $2237(\mathrm{C}=\mathrm{C}), 1747(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: (400 MHz , $\left.\mathrm{CDCl}_{3}\right) 4.67\left(\mathrm{t}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}_{2}\right), 2.20\left(\mathrm{tt}, J=7.2,2.4 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}_{2}\right), 2.09(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COMe}), 1.54$ (qt, $\left.J=7.6,7.2 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{H}_{2}\right), 0.98\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, 6-\mathrm{H}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR: $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.3$ (s, COMe), 87.4 (s, C-3), 74.0 (s, C-2), 52.8 (t, C-1), 21.8 (t, C-5), 20.7 (q, COMe), 20.6 (t, C-4), 13.3 (q, C-6); MS: (CI, 200 eV) m/z 141 (M + 1, 85), 99 (100), 81 (M - OAc, 45); HRMS: (CI, 200 eV) Calculated $\left(\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{O}_{2}\right) 141.0916(\mathrm{M}+1)$ Found: 141.0918

(2f) 3-Acetoxy-1-cyclopropyl-1-propyne

To a stirred solution of cyclopropylacetylene ($24 \mathrm{mmol}, 1.56 \mathrm{~g}$) in THF (20 mL) at $0^{\circ} \mathrm{C}$ was slowly added n - $\operatorname{BuLi}\left(1.6 \mathrm{M}\right.$ solution in hexanes, $20 \mathrm{mmol}, 12.5 \mathrm{~mL}$). The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 20 min before the addition of paraformaldehyde ($23 \mathrm{mmol}, 0.72 \mathrm{~g}$). The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min and at room temperature for additional 6 h . After addition of acetic anhydride (24 $\mathrm{mmol}, 2.49 \mathrm{~g}$) at room temperature, the resulting solution was stirred for 2 h . The mixture was quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq. $(20 \mathrm{~mL})$ and then extracted with $\mathrm{EtOAc}(20 \mathrm{~mL} x 3)$. The collected organic layer was dried over MgSO_{4}. The solvent was evaporated and the residue was purified by column chromatography (hexane $/$ EtOAc $=95: 5$, column length 10 cm , diagram 3 cm). Further purification was performed by distillation under reduced pressure to give the product ($0.994 \mathrm{~g}, 36 \%$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR charts are listed below.; IR: (neat) $2240(\mathrm{C}=\mathrm{C}), 1739(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.63$ (d, $J=2.0 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}_{2}$), 2.09 (s, COMe), $1.31-1.23\left(\mathrm{~m}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 0.81-0.771$ (m, 2H, $\left.2^{\prime}-\mathrm{H}^{\mathrm{A}}\right), 0.767-0.69\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}^{\mathrm{B}}\right) ;{ }^{13} \mathrm{C}$ NMR: ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 170.3 ($\left.\mathrm{s}, \mathrm{COMe}\right), 90.7$ (s, C-1), 69.2 ($\mathrm{s}, \mathrm{C}-2$), 52.8 (t, C-3), 20.8 (q, COMe), 8.2 (t, C-2'), 0.6 (d, C-1'); MS: (EI, 70 eV) m/z $138\left(\mathrm{M}^{+}, 0.6\right), 96(100), 78(50), 77(50), 43$ (COMe, 73); HRMS: (EI, 70 eV) Calculated ($\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$) $138.0681\left(\mathrm{M}^{+}\right)$Found: 138.0677; Analysis: $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$ (138.16) Calcd: C, 69.54 ; H, 7.30 Found: C, 69.26; H, 7.22

(2h) 3-Acetoxy-1-phenyl-1-butyne ${ }^{7}$

To a stirred solution of phenylacetylene (50 mmol) in THF (50 mL) at $0{ }^{\circ} \mathrm{C}$ was slowly added $n-B u L i\left(1.6 \mathrm{M}\right.$ solution in hexane, 60 mmol). The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 20 min before the addition of acetaldehyde (60 mmol). The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , and
then acetic anhydride (55 mmol) was added. The resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 10 min and at room temperature for additional 10 h . The mixture was quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq. $(30 \mathrm{~mL})$ and then extracted with EtOAc $(30 \times 3 \mathrm{~mL})$. The collected organic layer was dried over MgSO_{4}. The solvent was evaporated and the residue was purified by column chromatography (hexane/EtOAc $=95: 5$, column length 10 cm , diagram 5 cm). Further purification was performed by distillation under reduced pressure to give the product $(6.54 \mathrm{~g}$, $69 \%) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR charts are listed below.

(2i) 3-Acetoxy-1-phenyl-1-pentyne ${ }^{8}$

To a stirred solution of phenylacetylene (120 mmol) in THF $(150 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was slowly added $n-\mathrm{BuLi}(1.6 \mathrm{M}$ solution in hexane, 120 mmol$)$. The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 20 min before the addition of propionaldehyde (100 mmol). The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , and then acetic anhydride (120 mmol) was added. The resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 10 min and at room temperature for additional 10 h . The mixture was quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq. $(30 \mathrm{~mL})$ and then extracted with EtOAc ($30 \times 3 \mathrm{~mL}$). The collected organic layer was dried over MgSO_{4}. The solvent was evaporated and the residue was purified by distillation under reduced pressure to give the product $(19.1 \mathrm{~g}, 54 \%) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR charts are listed below.

(2j) 3-Acetoxy-4-methyl-1-phenyl-1-pentyne

To a stirred solution of phenylacetylene ($125 \mathrm{mmol}, 12.8 \mathrm{~g}$) in THF $(210 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was slowly added $n-\operatorname{BuLi}\left(1.6 \mathrm{M}\right.$ solution in hexane, $120 \mathrm{mmol}, 75 \mathrm{~mL}$). The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 15 min before the slow addition of isobutyraldehyde ($100 \mathrm{mmol}, 7.19 \mathrm{~g}$). The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . After addition of acetic anhydride ($222 \mathrm{mmol}, 22.7 \mathrm{~g}$) at $-78{ }^{\circ} \mathrm{C}$, the resulting solution was stirred for 15 min at $-78^{\circ} \mathrm{C}$ and at room temperature for additional 2 h . The mixture was quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq. (50 mL) and then extracted with EtOAc (50 mL x 3). The collected organic layer was dried over MgSO_{4}. The solvent was evaporated and the residue was purified by column chromatography (hexane/EtOAc $=95: 5$, column length 10 cm , diagram 10 cm). Further purification was performed by distillation under reduced pressure to give the product as an yellow liquid ($6.391 \mathrm{~g}, 30 \%$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR charts are listed below.; IR: (neat) $2229(\mathrm{C} \equiv \mathrm{C}), 1739(\mathrm{C}=\mathrm{O})$
$\mathrm{cm}^{-1}:{ }^{1} \mathrm{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}, o), 7.32-7.25(\mathrm{~m}, 3 \mathrm{H}, m$ and $p), 5.46(\mathrm{~d}, J=$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 2.15-2.02\left(\mathrm{~m}, 4 \mathrm{H}, 4-\mathrm{H}\right.$ and COMe), $1.09\left(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 5-\mathrm{H}_{3}\right), 1.06(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR: ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 170.1 ($\mathrm{s}, \mathrm{COMe}$), 131.9 (d, C-o), 128.5 (d, C-p), 128.2 (d, C-m), 122.4 ($\mathrm{s}, \mathrm{C}-\mathrm{i}$), 85.7 ($\mathrm{s}, \mathrm{C}-1$), 85.2 ($\mathrm{s}, \mathrm{C}-2$), 69.4 (d, C-3), 32.6 (d, C-4), 21.0 (q, COMe), 18.3 (q, C-5), 17.6 (q, 4-Me); MS: (EI, 70 eV) m/z 216 ($\mathrm{M}^{+}, 20$), 174 (50), 173 (M^{+}- COMe and M^{+}- i-Pr, 20), 156 (33), 145 (28), 141 (28), 131 (100), 43 (COMe, 47); HRMS: (EI, 70 eV) Calculated $\left(\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}\right) 216.1150\left(\mathrm{M}^{+}\right)$Found: 216.1143
(2k) 3-Acetoxy-1-ethoxy-1-propyne

To a stirred solution of ethoxyacetylene ($40 \mathrm{wt} \%$ solution in hexane, $28 \mathrm{mmol}, 4.99 \mathrm{~g}$) in THF (20 $\mathrm{mL})$ at $0{ }^{\circ} \mathrm{C}$ was slowly added $n-\mathrm{BuLi}(1.6 \mathrm{M}$ solution in hexanes, $24 \mathrm{mmol}, 15 \mathrm{~mL})$. The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 20 min before the addition of paraformaldehyde ($30 \mathrm{mmol}, 0.91 \mathrm{~g}$). The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 min and at room temperature for additional 5 h . After addition of acetic anhydride ($30 \mathrm{mmol}, 3.05 \mathrm{~g}$) at room temperature, the resulting solution was stirred for 2 h . The mixture was quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq. $(20 \mathrm{~mL})$ and then extracted with EtOAc (20 mL x 3). The collected organic layer was dried over MgSO_{4}. The solvent was evaporated and the residue was purified by column chromatography (hexane $/ \mathrm{EtOAc}=95: 5$, column length 10 cm , diagram 3 cm). Further purification was performed by distillation under reduced pressure to give the product ($0.908 \mathrm{~g}, 27 \%$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR charts are listed below.; IR: (neat) $2275(\mathrm{C} \equiv \mathrm{C}), 1747(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.70\left(\mathrm{~s}, 2 \mathrm{H}, 1-\mathrm{H}_{2}\right), 4.13\left(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.08(\mathrm{~s}, 3 \mathrm{H}$, COMe), $1.38\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR: ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$); 170.5 ($\mathrm{s}, \mathrm{COMe}$), 94.9 ($\mathrm{s}, \mathrm{C}-3$), $74.8\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 52.8(\mathrm{t}, \mathrm{C}-1), 33.0(\mathrm{~s}, \mathrm{C}-2), 20.9(\mathrm{q}, \mathrm{COMe}), 14.3\left(\mathrm{q}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \mathrm{MS}$: (CI, 200 eV) m/z $143(\mathrm{M}+1,61), 115$ (36), 101 (100), 83 (M - OAc, 51); HRMS: (CI, 200 eV) Calculated $\left(\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{O}_{3}\right) 143.0708(\mathrm{M}+1)$ Found: 141.0710

(5) 1-Phenylethyl acetate ${ }^{9}$

To a stirred solution of 1-phenylethanol $(50 \mathrm{mmol})$ and acetic anhydride $(75 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(10$ mL) was added dehydrated pyridine (75 mmol) at room temperature. After stirring for 6 h , resulting solution was diluted by ethyl acetate (30 mL) and quenched by $2 \mathrm{~N} \mathrm{HCl} \mathrm{aq}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was washed water ($20 \mathrm{~mL} \times 3$) and saturated $\mathrm{NaHCO}_{3} \mathrm{aq}(20 \mathrm{~mL} x \mathrm{l}$), and then the collected organic layer was dried over MgSO_{4}. The solvent was evaporated, and then the residue was purified by distillation under reduced pressure to give the product as a colorless liquid ($7.96 \mathrm{~g}, 97 \%$).

The analytical data of this compound matched that previously reported. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chart are listed below.
(6) 2-(1-Acetoxyethyl)-5-bromothiophene ${ }^{10}$

To a stirred solution of 2-bromo-5-(1-hydroxyethyl)thiophene ($20 \mathrm{mmol}, 4.0 \mathrm{~g}$) and acetic anhydride $(30 \mathrm{mmol}, 2.9 \mathrm{~g})$ in dry $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added dehydrated pyridine $(25 \mathrm{mmol})$ at room temperature. After stirring for 14 h , resulting solution was diluted by ethyl acetate $(30 \mathrm{~mL})$ and quenched by water. The mixture was washed water $(20 \mathrm{~mL} x \mathrm{3})$ and saturated NaHCO_{3} aq ($20 \mathrm{~mL} \times 1$), and then the collected organic layer was dried over MgSO_{4}. The solvent was evaporated, and then the residue was purified by distillation under reduced pressure to give the product as a colorless liquid ($3.4 \mathrm{~g}, 71 \%$). The analytical data of this compound matched that previously reported. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chart are listed below.

2. Experimental Procedures.

2.1. Typical Procedure for the Reaction of Alkyl Chloride 1a with Propargylic Acetate 2a (Table 1, entry 1).

To a mixture of $\mathrm{InCl}_{3}(0.05 \mathrm{mmol})$ and propargylic acetate $\mathbf{2 a}(1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added alkyl chloride 1a (0.5 mmol) under nitrogen. The resulting mixture was stirred for 3 h at room temperature and then quenched with water $(10 \mathrm{~mL})$. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} x$ 3). The collected organic layer was dried over MgSO_{4}, and the solvent was removed under reduced pressure to afford the crude product, which was analyzed by NMR spectroscopy. The detail of further purification was described in Product Data.

2.2. Experimental Procedure for the Reaction of Alkyl Chloride 1c with Propargylic Acetate 2a

 (Table 2, entry 2).To a mixture of $\mathrm{InCl}_{3}(0.075 \mathrm{mmol})$ and propargylic acetate $\mathbf{2 a}(1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added alkyl chloride $\mathbf{1 c}(0.5 \mathrm{mmol})$ under nitrogen. The resulting mixture was heated to reflux for 3 h and then quenched with water $(10 \mathrm{~mL})$. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$. The collected organic layer was dried over MgSO_{4}, and the solvent was removed under reduced pressure to afford the crude product, which was analyzed by NMR spectroscopy. The detail of further purification was described in Product Data.

2.3. Experimental Procedure for Reactions of Alkyl Chloride 1 with Propargylic Acetate 2a

(Table 2, entries 5, 9, and 10).
To a mixture of $\mathrm{InCl}_{3}(0.075 \mathrm{mmol})$ and propargylic acetate $\mathbf{2 a}(1 \mathrm{mmol})$ in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(1 \mathrm{~mL})$ was added alkyl chloride $\mathbf{1}(0.5 \mathrm{mmol})$ under nitrogen. The resulting mixture was heated to reflux for 3 h and then quenched with water $(10 \mathrm{~mL})$. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} x 3)$. The collected organic layer was dried over MgSO_{4}, and the solvent was removed under reduced pressure to afford the crude product, which was analyzed by NMR spectroscopy. The detail of further purification was described in Product Data.

2.4. Experimental Procedure for the Reaction of Alkyl Chloride 1i with Propargylic Acetate 2a

 (Table 2, entry 8).To a mixture of $\mathrm{InCl}_{3}(0.05 \mathrm{mmol})$ and propargylic acetate $\mathbf{2 a}(1 \mathrm{mmol})$ in 1,4-dichlorobutane (1 $\mathrm{mL})$ was added alkyl chloride $\mathbf{1 i}(0.5 \mathrm{mmol})$ under nitrogen. The resulting mixture was heated at 150 ${ }^{\circ} \mathrm{C}$ for 3 h and then quenched with water $(10 \mathrm{~mL})$. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$. The collected organic layer was dried over MgSO_{4}, and the solvent was removed under reduced pressure to afford the crude product, which was analyzed by NMR spectroscopy. The detail of further purification was described in Product Data.

2.5. Experimental Procedure for the Reaction of Alkyl Chloride 1b with Propargylic Acetate 2c

 (Table 3, entry 2).To a mixture of $\mathrm{InCl}_{3}(0.05 \mathrm{mmol})$ and propargylic acetate $2 \mathbf{c}(1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added alkyl chloride 1b (0.5 mmol) under nitrogen. The resulting mixture was stirred for 5 h at room temperature and then quenched with water $(10 \mathrm{~mL})$. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} x$ 3). The collected organic layer was dried over MgSO_{4}, and the solvent was removed under reduced pressure to afford the crude product, which was analyzed by NMR spectroscopy. The detail of further purification was described in Product Data.

2.6. Experimental Procedure for Reactions of Alkyl Chloride 1b with Propargylic Acetate 2

(Table 3, entries 4 and 6).
To a mixture of $\mathrm{InCl}_{3}(0.05 \mathrm{mmol})$ and propargylic acetate $2(1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added alkyl chloride $\mathbf{1 b}(0.5 \mathrm{mmol})$ under nitrogen. The resulting mixture was heated to reflux for 3 h and then quenched with water $(10 \mathrm{~mL})$. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} x 3)$. The collected organic layer was dried over MgSO_{4}, and the solvent was removed under reduced pressure to afford the crude product, which was analyzed by NMR spectroscopy. The detail of further purification was described in Product Data.

2.7. Experimental Procedure for the Reaction of Alkyl Chloride 1b with Propargylic Acetate 2h

 (Table 3, entry 7).To a mixture of $\mathrm{InCl}_{3}(0.05 \mathrm{mmol})$ and propargylic acetate $\mathbf{2 h}(1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added alkyl chloride $\mathbf{1 b}(0.5 \mathrm{mmol})$ under nitrogen. The resulting mixture was stirred for 30 min at room temperature and then quenched with water $(10 \mathrm{~mL})$. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} x$ 3). The collected organic layer was dried over MgSO_{4}, and the solvent was removed under reduced pressure to afford the crude product, which was analyzed by NMR spectroscopy. The detail of further purification was described in Product Data.

2.8. Experimental Procedure for Reactions of Alchol 4 or Alkyl Acetate 5 with Propargylic Acetate 2a (Eqs 1 and 2).

To a mixture of $\mathrm{InCl}_{3}(0.025 \mathrm{mmol})$ and propargylic acetate 2a $(1 \mathrm{mmol})$ in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(1 \mathrm{~mL})$ was added alcohol 4 (or alkyl acetate 5) (0.5 mmol) under nitrogen. The resulting mixture was heated to reflux for 1 h at room temperature and then quenched with water $(10 \mathrm{~mL})$. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($10 \mathrm{~mL} \times 3$). The collected organic layer was dried over MgSO_{4}, and the solvent was removed under reduced pressure to afford the crude product, which was analyzed by NMR spectroscopy. The detail of further purification was described in Product Data.

2.9. Experimental Procedure for the Reaction of Alkyl Acetate 6 with Propargylic Acetate 2a (Eq. 3).

To a mixture of $\mathrm{InCl}_{3}(0.05 \mathrm{mmol})$ and propargylic acetate $\mathbf{2 a}(1 \mathrm{mmol})$ in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(1 \mathrm{~mL})$ was added alkyl acetate $6(0.5 \mathrm{mmol})$ under nitrogen. The resulting mixture was heated to reflux for 1 h and then quenched with water $(10 \mathrm{~mL})$. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$. The collected organic layer was dried over MgSO_{4}, and the solvent was removed under reduced pressure to afford the crude product, which was analyzed by NMR spectroscopy. The detail of further purification was described in Product Data.

2.10. Experimental Procedure of Eq. 4.

A mixture of $\mathrm{InCl}_{3}(0.5 \mathrm{mmol})$ and propargylic acetate $2(0.5 \mathrm{mmol})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was stirred at room temperature for 2 h . And then, it was observed by ${ }^{1} \mathrm{H}$ NMR in situ that the rearrangement of 2 to the corresponding allenyl acetate $\mathbf{8}$ did not occur, and $\mathbf{2}$ was recovered in 91% yield.

3. Product Data.

The spectral data of $\mathbf{3 a} \mathbf{a}^{\mathbf{1 6}}, \mathbf{3} \mathbf{e} \mathbf{a}^{\mathbf{1 7}}, \mathbf{3} \mathbf{b} \mathbf{k}^{\mathbf{1 8}}$ was in excellent agreements with the reported data. The detailed procedure and spectral data for other products are shown below.

(3aa) 1-Phenyl-2-(1-phenylethyl)-2-propen-1-one ${ }^{16}$

According to a typical procedure, $\mathrm{InCl}_{3}(0.05 \mathrm{mmol}, 0.010 \mathrm{~g}), 1$-chloro-1-phenylethane $(0.5 \mathrm{mmol}$, 0.075 g), and 1-phenyl-3-acetoxy-2-propyne ($1 \mathrm{mmol}, 0.185 \mathrm{~g}$) gave the crude product. Purification was performed by flash column chromatography (hexane $/ \mathrm{EtOAc}=95: 5$, column length 10.5 cm , diagram 2.8 cm) to give the product $\mathbf{3 a a}(0.088 \mathrm{~g}, 70 \%) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chart are listed below.

(3ba) 2-Benzhydryl-1-phenylpropen-1-one

According to a typical procedure, $\mathrm{InCl}_{3}(0.06 \mathrm{mmol}, 0.013 \mathrm{~g})$, benzhydryl chloride $(0.36 \mathrm{mmol}$, 0.074 g), and 3-phenyl-2-propynyl acetate ($1.02 \mathrm{mmol}, 0.177 \mathrm{~g}$) gave the crude product. Purification was performed by flash column chromatography (hexane $/ \mathrm{EtOAc}=95: 5$, column length 10.5 cm , diagram 2.8 cm) to give the product as a white solid ($0.101 \mathrm{~g}, 93 \%$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chart are listed below.; mp: 114-116 ${ }^{\circ} \mathrm{C}$; IR: $(\mathrm{KBr}) 1650(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.79(\mathrm{~d}, \mathrm{~J}$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}, o), 7.51(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, p), 7.42(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, m), 7.32-7.18\left(\mathrm{~m}, 10 \mathrm{H}, 1^{\prime}-\mathrm{Ph}_{2}\right)$, $5.92\left(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}^{\mathrm{A}}\right), 5.71\left(\mathrm{~s}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 5.53\left(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}^{\mathrm{B}}\right) ;{ }^{13} \mathrm{C}$ NMR: ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 196.8 (s, $\mathrm{C}-1$), 151.0 ($\mathrm{s}, \mathrm{C}-2$), 141.5 ($\mathrm{s}, \mathrm{C}-\mathrm{i}$ '), 137.5 ($\mathrm{s}, \mathrm{C}-\mathrm{i}$), 132.3 (d, C-p), 129.6 (d, C-o), 129.2 (d, C-o'), 128.6 (t, C-3), 128.5 (d, C-m’), 128.2 (d, C-m), 126.6 (d, C-p'), 52.2 (d, C-1'); MS: (EI, 70 eV) m/z $298\left(\mathrm{M}^{+}, 100\right), 297$ (58), 192 (28), 115 (20), 105 (PhCO, 51), $77\left(\mathrm{C}_{6} \mathrm{H}_{5}, 31\right)$; HRMS: (EI, 70 eV) Calculated $\left(\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}\right) 298.1358\left(\mathrm{M}^{+}\right)$Found: 298.1357; Analysis: $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}$ (298.38) Calcd: C, 88.56; H, 6.08 Found: C, 88.26; H, 5.99

(3ca) 2-(4-Chlorophenylethyl)-1-phenylpropen-1-one

According to an experimental procedure in section 2.2., $\operatorname{InCl}_{3}(0.058 \mathrm{mmol}, 0.013 \mathrm{~g})$,

1-chloro-1-(4-chlorophenyl)ethane ($0.51 \mathrm{mmol}, 0.090 \mathrm{~g}$), and 3-phenyl-2-propynyl acetate (1.03 mmol, 0.181 g) gave the crude product. Purification was performed by flash column chromatography (hexane $/ E t O A c=95: 5$, column length 10.5 cm , diagram 2.8 cm). Further purification was performed by recrystallization from hexane/EtOAc to give the product as a white solid ($0.04 \mathrm{~g}, 29 \%$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chart are listed below.; mp: 88-90 ${ }^{\circ} \mathrm{C}$; IR: (KBr) $1650(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: (400 MHz , $\left.\mathrm{CDCl}_{3}\right) 7.67(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, o), 7.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, p), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, m), 7.25-7.20$ $\left(\mathrm{m}, 4 \mathrm{H}, o^{\prime}\right.$ and $\left.m^{\prime}\right), 5.77\left(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}^{\mathrm{A}}\right), 5.66\left(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}^{\mathrm{B}}\right), 4.28\left(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 1.45(\mathrm{~d}, J$ $\left.=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 2^{\prime}-\mathrm{H}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR: $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 197.6(\mathrm{~s}, \mathrm{C}-1), 151.8(\mathrm{~s}, \mathrm{C}-2), 142.4$ ($\mathrm{s}, \mathrm{C}-\mathrm{i}$)), 137.6 ($\mathrm{s}, \mathrm{C}-\mathrm{i}$), 132.2 (d, C-p), 132.0 (s, C-p'), 129.4 (d, C-o), 128.9 (d), 128.5 (d), 128.1 (d), 123.9 (t, C-3), 39.9 (d, C-1'), 19.9 ($\mathrm{q}, \mathrm{C}-2^{\prime}$); MS: (EI, 70 eV) m/z $272\left(\mathrm{M}^{+}+2,24\right), 271$ (35), $270\left(\mathrm{M}^{+}, 74\right)$, 269 (73), 255 ($\mathrm{M}^{+}-\mathrm{Me}, 35$), $235\left(\mathrm{M}^{+}-\mathrm{Cl}, 86\right), 105$ (PhCO, 100), $77\left(\mathrm{C}_{6} \mathrm{H}_{5}, 49\right)$; HRMS: (EI, 70 eV)

Calculated $\left(\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClO}\right) 270.0811\left(\mathrm{M}^{+}\right)$Found: 270.0809

(3da) 1-Phenyl-2-\{1-(4-tolyl)ethyl\}-propen-1-one

According to a typical procedure, $\mathrm{InCl}_{3}(0.06 \mathrm{mmol}, 0.013 \mathrm{~g}), 1$-(4-tolyl)-1-chloroethane $(0.48 \mathrm{mmol}$, 0.074 g), and 3-phenyl-2-propynyl acetate ($0.99 \mathrm{mmol}, 0.172 \mathrm{~g}$) gave the crude product. Purification was performed by flash column chromatography (hexane/EtOAc $=95: 5$, column length 10.5 cm , diagram 2.8 cm). Further purification was performed by distillation under reduced pressure to give the product as a pale yellow liquid $(0.092 \mathrm{~g}, 76 \%) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chart are listed below.; IR: (neat) $1658(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.69(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, o), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}, p), 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, m), 7.17\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, o^{\prime}\right), 7.10\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, m^{\prime}\right), 5.76(\mathrm{~s}$, $\left.1 \mathrm{H}, 3-\mathrm{H}^{\mathrm{A}}\right), 5.63\left(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}^{\mathrm{B}}\right), 4.28\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}_{3}\right), 2.29\left(\mathrm{~s}, 1 \mathrm{H}, p^{\prime}-\mathrm{Me}\right), 1.48(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}, 2^{\prime}-\mathrm{H}_{3}$) ${ }^{13}{ }^{13} \mathrm{C}$ NMR: ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 198.0 ($\mathrm{s}, \mathrm{C}-1$), 152.5 ($\mathrm{s}, \mathrm{C}-2$), 140.7 ($\mathrm{s}, \mathrm{C}-\mathrm{i}$) , 137.8 (s , C-i), 135.8 ($\mathrm{s}, \mathrm{C}-p^{\prime}$), 132.2 (d, C-p), 129.5 (d, C-m), 129.1 (d, C-o’), 128.0 (d, C-o), 127.5 (d, C-m'), 123.3 (t, C-3), 40.1 (d, C-1’), 20.9 (q, Me), 20.1 (q, C-2'); MS: (EI, 70 eV) m/z 250 (${ }^{+}, 42$), 235 $\left(\mathrm{M}^{+}-\mathrm{Me}, 100\right), 105(\mathrm{PhCO}, 71), 77\left(\mathrm{C}_{6} \mathrm{H}_{5}, 37\right)$; HRMS: (EI, 70 eV$)$ Calculated $\left(\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}\right) 250.1358$ $\left(\mathrm{M}^{+}\right)$Found: 250.1357; Analysis: $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}$ (250.33) Calcd: C, 86.36; H, 7.25 Found: C, 86.16; H, 7.36

(3fa) 1-Phenyl-2-(4-tolyl)methylpropen-1-one

According to an experimental procedure in section 2.3., $\mathrm{InCl}_{3}(0.08 \mathrm{mmol}, 0.018 \mathrm{~g}), 4$-methylbenzyl chloride ($0.46 \mathrm{mmol}, 0.064 \mathrm{~g}$), and 3-phenyl-2-propynyl acetate ($2.52 \mathrm{mmol}, 0.439 \mathrm{~g}$) gave the crude product. Purification was performed by flash column chromatography (hexane/EtOAc $=95: 5$, column length 10.5 cm , diagram 2.8 cm). Further purification was performed by distillation under reduced pressure to give the product $(0.055 \mathrm{~g}, 51 \%) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chart are listed below.; IR: (neat) $1658(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.71(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, o), 7.51(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}, p), 7.40(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, m), 7.14\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, o^{\prime}\right), 7.10\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, m^{\prime}\right)$, $7.10\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{m}^{\prime}\right), 5.75\left(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}^{\mathrm{A}}\right), 5.66\left(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}^{\mathrm{B}}\right), 3.76\left(\mathrm{~s}, 2 \mathrm{H}, 1^{\prime}-\mathrm{H}_{2}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, p^{\prime}-\mathrm{Me}\right) ;{ }^{13} \mathrm{C}$ NMR: (100 MHz, CDCl_{3}) 197.7 ($\mathrm{s}, \mathrm{C}-1$), 147.8 ($\mathrm{s}, \mathrm{C}-2$), 137.7 ($\mathrm{s}, \mathrm{C}-\mathrm{i}$), 135.8 ($\mathrm{s}, \mathrm{C}-\mathrm{p}$)), 135.5 (s , C-i'), 132.1 (d, C-p), 129.5 (d, C-o), 129.2 (d, C-m'), 129.0 (d, C-o’), 128.1 (d, C-m), 126.8 (t, C-3), 37.9 (t, C-1'), 21.0 (q, Me); MS: (EI, 70 eV) m/z 236 ($\mathrm{M}^{+}, 100$), 235 (65), 221 (${ }^{+}-\mathrm{Me}, 98$), 115 (25), 105 (PhCO and $\mathrm{MeC}_{6} \mathrm{CH}_{4} \mathrm{CH}_{2}, 84$), $77\left(\mathrm{C}_{6} \mathrm{H}_{5}, 66\right)$; HRMS: (EI, 70 eV) Calculated $\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}\right)$ $236.1201\left(\mathrm{M}^{+}\right)$Found: 236.1202; Analysis: $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}$ (236.31) Calcd: C, 86.40; H, 6.82 Found: C, 86.23; H, 6.75

(3ga) 2-(2-Cyclohexenyl)-1-phenylpropen-1-one

According to a typical procedure, $\mathrm{InCl}_{3}(0.06 \mathrm{mmol}, 0.013 \mathrm{~g}), 3$-chlorocyclohexene $(0.57 \mathrm{mmol}$, 0.066 g), and 3-phenyl-2-propynyl acetate $(0.93 \mathrm{mmol}, 0.162 \mathrm{~g})$ gave the crude product. Purification was performed by flash column chromatography (hexane $/ \mathrm{EtOAc}=95: 5$, column length 10.5 cm , diagram 2.8 cm). Further purification was performed by distillation under reduced pressure to give the product ($0.033 \mathrm{~g}, 45 \%$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chart are listed below.; IR: (neat) $1658(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, o), 7.54(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, p), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}, m), 5.93-5.89\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 5.79\left(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}^{\mathrm{A}}\right), 5.63-5.61\left(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}^{\mathrm{B}}\right.$ and $\left.2^{\prime}-\mathrm{H}\right), 3.69(\mathrm{~m}, 1 \mathrm{H}$, $\left.1^{\prime}-\mathrm{H}\right), 2.07-2.03\left(\mathrm{~m}, 2 \mathrm{H}, 4^{\prime}-\mathrm{H}_{2}\right), 1.95-1.87\left(\mathrm{~m}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}^{\mathrm{A}}\right), 1.73-1.58\left(\mathrm{~m}, 2 \mathrm{H}, 5^{\prime}-\mathrm{H}_{2}\right), 1.52-1.44(\mathrm{~m}$, $1 \mathrm{H}, 6^{\prime}-\mathrm{H}^{\mathrm{B}}$); ${ }^{13} \mathrm{C}$ NMR: (100 MHz, CDCl_{3}) 198.5 ($\mathrm{s}, \mathrm{C}-1$), 151.5 ($\mathrm{s}, \mathrm{C}-2$), 138.1 ($\mathrm{s}, \mathrm{C}-\mathrm{i}$), 132.2 (d, C-p), 129.5 ($\mathrm{d}, \mathrm{C}-\mathrm{o}$), 129.3 ($\mathrm{d}, \mathrm{C}-3$ '), 128.3 ($\mathrm{d}, \mathrm{C}-2$ '), 128.2 (d, C-m), 125.1 (t, C-3), 36.5 (d, C-1'), 28.1 (t, C-6'), 25.1 (t, C-4'), 19.9 (t, C-5’); MS: (EI, 70 eV) m/z 212 (${ }^{+}, 100$), 211 (88), 105 (PhCO, 55), $77\left(\mathrm{C}_{6} \mathrm{H}_{5}, 45\right)$; HRMS: (EI, 70 eV) Calculated $\left(\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}\right) 212.1201\left(\mathrm{M}^{+}\right)$Found: 212.1199

(3ha) 2-Adamantyl-1-phenylpropen-1-one

According to an experimental procedure in section 2.4., $\mathrm{InCl}_{3}(0.1 \mathrm{mmol}, 0.021 \mathrm{~g})$, adamantyl chloride ($1 \mathrm{mmol}, 0.166 \mathrm{~g}$), and 3-phenyl-2-propynyl acetate ($2 \mathrm{mmol}, 0.350 \mathrm{~g}$) gave the crude product. Purification was performed by flash column chromatography (hexane/EtOAc $=95: 5$, column length 10.5 cm , diagram 2.8 cm) to give the product as a white solid ($0.15 \mathrm{~g}, 58 \%) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chart are listed below.; mp: 56-58 ${ }^{\circ} \mathrm{C}$; IR: (KBr) $1658(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: (400 MHz , $\left.\mathrm{CDCl}_{3}\right) 7.91(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, o), 7.55(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, p), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, m), 5.52(\mathrm{~s}$, $\left.1 \mathrm{H}, 3-\mathrm{H}^{\mathrm{A}}\right), 5.10\left(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}^{\mathrm{B}}\right), 2.05-1.97\left(\mathrm{~m}, 3 \mathrm{H}, 3{ }^{\prime}-\mathrm{H} x 3\right), 1.91-1.81\left(\mathrm{~m}, 6 \mathrm{H}, 2^{\prime}-\mathrm{H}_{2} \mathrm{x} 3\right)$, $1.76-1.65\left(\mathrm{~m}, 6 \mathrm{H}, 4^{\prime}-\mathrm{H}_{2} \times 3\right) ;{ }^{13} \mathrm{C}$ NMR: ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 200.0 (s, C-1), 157.3 (s, C-2), 138.0 (s , C-i), 132.8 (d, C-p), 130.0 (d, C-o), 128.2 (d, C-m), 115.6 (t, C-3), 41.2 (t, C-2'), 37.6 (s, C-1'), 36.6 (t, C-4'), 28.5 (d, C-3'); MS: (EI, 70 eV) m/z 267 (21), 266 (${ }^{+}$, 100), 209 (24), 105 (PhCO, 48), 77 $\left(\mathrm{C}_{6} \mathrm{H}_{5}, 30\right)$; HRMS: (EI, 70 eV$)$ Calculated $\left(\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}\right) 266.1671\left(\mathrm{M}^{+}\right)$Found: 266.1669; Analysis: $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}$ (266.38) Calcd: C, 85.67; H, 8.32 Found: C, 85.77; H, 8.36

(3ia) Methyl 4-benzoyl-3-(4-methylphenyl)-4-pentenoate

The mixture of $\mathrm{InCl}_{3}(0.05 \mathrm{mmol}, 0.012 \mathrm{~g})$, methyl 3-chloro-3-(4-methylphenyl)-propionate (0.5 mmol, 0.105 g), and 3-phenyl-2-propynyl acetate ($2.0 \mathrm{mmol}, 0.353 \mathrm{~g}$), 1,2-dichloroethane (1 mL) was heated at $83{ }^{\circ} \mathrm{C}$ for 1 h and then quenched with water $(10 \mathrm{~mL})$. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} x 3)$. The collected organic layer was dried over MgSO_{4}, and the solvent was removed under reduced pressure to afford the crude product, which was analyzed by NMR spectroscopy. Purification was performed by flash column chromatography (hexane/EtOAc $=90: 10$, column length 10.5 cm , diagram 2.8 cm) to give the product ($0.071 \mathrm{~g}, 47 \%$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chart are listed below. IR: (neat) $1736(\mathrm{C}=\mathrm{O}), 1658(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.66(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}, o), 7.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, p), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, m), 7.18(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.83\left(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}^{\mathrm{A}}\right), 5.67\left(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}^{\mathrm{B}}\right), 4.63(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, 3-\mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}$, OMe), $3.01\left(\mathrm{dd}, J=15.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}^{\mathrm{A}}\right), 2.88\left(\mathrm{dd}, J=15.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}^{\mathrm{B}}\right), 2.28(\mathrm{~s}, 3 \mathrm{H}$, p-Me); ${ }^{13} \mathrm{C}$ NMR: (100 MHz, CDCl_{3}), 197.3 (s, COPh), 172.0 (s, C-1), 149.9 (s), 137.9 (s), 137.6 (s), $136.4(\mathrm{~s}), 132.3(\mathrm{t}), 129.6(\mathrm{t}), 129.3(\mathrm{t}), 128.1(\mathrm{t}), 127.7(\mathrm{t}), 124.4(\mathrm{~d}, \mathrm{C}-5), 51.7(\mathrm{q}, \mathrm{OMe}), 42.6(\mathrm{t}$, C-2), 39.1 (d, C-3), 21.0 (q, p-Me); MS: (EI, 70 eV) m/z 308 ($\mathrm{M}^{+}, 45$), 248 (22), 235 (40), 105 (100);

HRMS: (EI, 70 eV) Calculated $\left(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{3}\right) 308.1412\left(\mathrm{M}^{+}\right)$Found: 308.1413.

(3ja) 2-(5-Chloro-1-phenylpentyl)-1-phenylpropen-1-one

According to an experimental procedure in section 2.1., $\operatorname{InCl}_{3}(0.075 \mathrm{mmol}, 0.018 \mathrm{~g})$, 1,5-dichloro-1-phenylpentane $(0.75 \mathrm{mmol}, 0.157 \mathrm{~g})$, and 3-phenyl-2-propynyl acetate $(1.5 \mathrm{mmol}$, $0.266 \mathrm{~g})$ gave the crude product. Purification was performed by flash column chromatography (hexane $/ E t O A c=96: 4$, column length 10.5 cm , diagram 2.8 cm) to give the product $(0.101 \mathrm{~g}, 45 \%$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chart are listed below. IR: (neat) $1658(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $7.56(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, o), 7.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, p), 7.28(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, m), 7.20-7.06(\mathrm{~m}, 5 \mathrm{H}$, o^{\prime}, m^{\prime}, and $\left.p^{\prime}\right), 5.69\left(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}^{\mathrm{A}}\right), 5.54\left(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}^{\mathrm{B}}\right), 4.02\left(\mathrm{dd}, J=9.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 3.38(\mathrm{t}, J$ $\left.=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 5^{\prime}-\mathrm{H}_{2}\right), 1.89-1.63\left(\mathrm{~m}, 4 \mathrm{H}, 2^{\prime}-\mathrm{H}_{2}\right.$ and $\left.4^{\prime}-\mathrm{H}_{2}\right), 1.42-1.22\left(\mathrm{~m}, 4 \mathrm{H}, 3^{\prime}-\mathrm{H}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR: ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 197.9 ($\mathrm{s}, \mathrm{C}-1$), 151.2 ($\mathrm{s}, \mathrm{C}-2$), 141.8 (s$), 137.7$ (s$), 132.2$ (d), 129.5 (d), 128.5 (d), 128.1 (d), $128.0(\mathrm{~d}), 126.5(\mathrm{~d}), 123.7(\mathrm{t}), 46.2(\mathrm{~d}, \mathrm{C}-1$ '), $44.7(\mathrm{t}, \mathrm{C}-5$ '), $33.0(\mathrm{t}), 32.4(\mathrm{t}), 24.9(\mathrm{t}$, C-3'); MS: (EI, 70 eV) m/z 314 ($\mathrm{M}+2,24$), 313 (29), 312 ($\mathrm{M}^{+}, 73$), 311 (45), 221 (99), 105 (100), 91 (22), 77 (39); HRMS: (EI, 70 eV) Calculated $\left(\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{ClO}\right) 312.1281\left(\mathrm{M}^{+}\right)$Found: 312.1280.
(3bb) 2-Benzhydryl-1-(4-chlorophenyl)-propen-1-one

According to a typical procedure, $\mathrm{InCl}_{3}(0.1 \mathrm{mmol}, 0.023 \mathrm{~g})$, benzhydryl chloride ($1 \mathrm{mmol}, 0.191 \mathrm{~g}$), and 3-(4-chlorophenyl)-2-propynyl acetate ($2 \mathrm{mmol}, 0.421 \mathrm{~g}$) gave the crude product. Purification was performed by flash column chromatography (hexane $/ \mathrm{EtOAc}=95: 5$, column length 10.5 cm , diagram 2.8 cm). Further purification was performed by recrystallization from hexane $/ \mathrm{Et}_{2} \mathrm{O}$ to give the product as a white solid ($0.276 \mathrm{~g}, 89 \%) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chart are listed below.; mp: 116-118 ${ }^{\circ} \mathrm{C}$; IR: (KBr) $1650(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, o), 7.40(\mathrm{~d}$, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{m}), 7.32-7.19(\mathrm{~m}, 10 \mathrm{H}), 5.87\left(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}^{\mathrm{A}}\right), 5.67(\mathrm{~s}, 1 \mathrm{H}, 1$ ' -H$), 5.52(\mathrm{~s}, 1 \mathrm{H}$, $3-\mathrm{H}^{\mathrm{B}}$); ${ }^{13} \mathrm{C}$ NMR: (100 MHz, CDCl_{3}) 195.6 ($\mathrm{s}, \mathrm{C}-1$), 150.8 (s, C-2), 141.2 (s, C-i’), 138.8 (s, C-i), 135.7 (d, C-p), 131.0 (d, C-o), 129.1 (d, C-o'), 128.6 (d, C-m), 128.5 (d, C-m’), 128.4 (t, C-3), 126.7 (d, C-p'), 52.2 (d, C-1'); MS: (EI, 70 eV) m/z $334\left(\mathrm{M}^{+}+2,34\right), 333$ (40), 332 ($\mathrm{M}^{+}, 100$), 331 (60), $297\left(\mathrm{M}^{+}-\mathrm{Cl}, 35\right), 193\left(\mathrm{M}^{+}-\mathrm{ArCO}, 35\right), 192(28), 167\left(\mathrm{Ph}_{2} \mathrm{CH}, 20\right), 165\left(\mathrm{M}^{+}-\mathrm{Ph}_{2} \mathrm{CH}, 33\right), 141$ (36),

139 ($\mathrm{ArCO}, 72$), 115 (34), $111\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}, 28\right)$; HRMS: (EI, 70 eV$)$ Calculated $\left(\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{ClO}\right) 332.0968$ $\left(\mathrm{M}^{+}\right)$Found: 332.0966

(3bc) 2-Benzhydryl-1-(4-methoxyphenyl)-propen-1-one

According to an experimental procedure in section 2.5., $\mathrm{InCl}_{3}(0.06 \mathrm{mmol}, 0.012 \mathrm{~g})$, benzhydryl chloride $(0.44 \mathrm{mmol}, 0.090 \mathrm{~g})$, and 3-(4-methoxyphenyl)-2-propynyl acetate ($1.00 \mathrm{mmol}, 0.204 \mathrm{~g}$) gave the crude product. Purification was performed by flash column chromatography (hexane $/ E t O A c=90: 10$, column length 10.5 cm , diagram 2.8 cm). Further purification was performed by distillation under reduced pressure to give the product $(0.083 \mathrm{~g}, 57 \%) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chart are listed below.; IR: (KBr) $1639(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.85(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 2 \mathrm{H}, o), 7.31-7.18(\mathrm{~m}, \mathrm{Ph} x 2), 6.91(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}, m), 5.84\left(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}^{\mathrm{A}}\right), 5.70(\mathrm{~s}, 1 \mathrm{H}$, $\left.1^{\prime}-\mathrm{H}\right), 5.43\left(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}^{\mathrm{B}}\right), 3.84(\mathrm{~s}, \mathrm{OMe}) ;{ }^{13} \mathrm{C}$ NMR: ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 195.5 ($\mathrm{s}, \mathrm{C}-1$), 163.1 (s , C-p), 151.0 ($\mathrm{s}, \mathrm{C}-2$), 141.5 ($\mathrm{s}, \mathrm{C}-\mathrm{i}$ '), 132.0 (d, C-o), 129.9 (d, C-i), 129.2 (d, C-o’), 128.4 (d, C-m'), 126.7 (t, C-3), 126.5 (d, C-1'), 113.4 (d, C-m), 55.4 (q, OMe), 52.5 (d, C-1'); MS: (EI, 70 eV) m/z $328\left(\mathrm{M}^{+}, 100\right), 297\left(\mathrm{M}^{+}-\mathrm{OMe}, 64\right), 165$ (24), 135 (ArCO, 94); HRMS: (EI, 70 eV) Calculated $\left(\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{2}\right) 328.1463\left(\mathrm{M}^{+}\right)$Found: 328.1465; Analysis: $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{2}$ (328.40) Calcd: C, 84.12; H, 6.14 Found: C, 83.90; H, 6.05

(3bd) 2-Benzhydryl-1-(2-thienyl)-propen-1-one

According to a typical procedure, $\mathrm{InCl}_{3}(0.05 \mathrm{mmol}, 0.011 \mathrm{~g})$, benzhydryl chloride $(0.46 \mathrm{mmol}$, 0.094 g), and 3-(2-thienyl)-2-propynyl acetate ($1.02 \mathrm{mmol}, 0.184 \mathrm{~g}$) gave the crude product. Purification was performed by flash column chromatography (hexane/EtOAc $=95: 5$, column length 10.5 cm , diagram 2.8 cm). Further purification was performed by recrystallization from hexane $/ \mathrm{Et}_{2} \mathrm{O}$ to give the product as a white solid $(0.061 \mathrm{~g}, 43 \%) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chart are listed below.; mp: 130-132 ${ }^{\circ} \mathrm{C}$; IR: (KBr) $1635(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.76-7.74 (m, 1H, $3^{\prime}-\mathrm{H}$), $7.64-7.63\left(\mathrm{~m}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.31-7.19\left(\mathrm{~m}, 10 \mathrm{H}\right.$, Ph rings), 7.13-7.11(m,1H, 4'), $6.11\left(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}^{\mathrm{A}}\right)$, $5.67\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}_{2} \mathrm{CH}\right), 5.39\left(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}^{\mathrm{B}}\right) ;{ }^{13} \mathrm{C}$ NMR: (100 MHz, $\left.\mathrm{CDCl}_{3}\right) 188.5(\mathrm{~s}, \mathrm{C}-1), 151.3$ (s, C-2), 143.5 ($\mathrm{s}, \mathrm{C}-2$ '), 141.2 (C-i), 134.0 (d, C-5'), 133.7 (d, C-3'), 129.2 (d, C-o), 128.5 (d, C-m), 127.8 (d,

C-4'), 126.6 (d, C-p), 126.1 (t, C-3), 52.6 (d, Ph ${ }_{2} \mathrm{CH}$); MS: ($\mathrm{EI}, 70 \mathrm{eV}$) m/z 305 (23), 304 ($\mathrm{M}^{+}, 100$), 192 (22), $111\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{SCO}, 40\right)$; HRMS: (EI, 70 eV) Calculated $\left(\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{OS}\right) 304.0922\left(\mathrm{M}^{+}\right)$Found: 304.0921

(3be) 2-Benzhydryl-1-hexen-3-one

According to an experimental procedure in section 2.6 ., $\mathrm{InCl}_{3}(0.05 \mathrm{mmol}, 0.011 \mathrm{~g})$, benzhydryl chloride ($0.58 \mathrm{mmol}, 0.117 \mathrm{~g}$), and 1-acetoxy-2-hexyne ($1.12 \mathrm{mmol}, 0.157 \mathrm{~g}$) gave the crude product. Purification was performed by flash column chromatography (hexane/EtOAc $=95: 5$, column length 10.5 cm , diagram 2.8 cm) to give the product $(0.033 \mathrm{~g}, 24 \%) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chart are listed below.; IR: (neat) $1681(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.28(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 4 \mathrm{H}, m), 7.20(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, p), 7.11(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}, o), 6.28\left(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{H}^{\mathrm{A}}\right), 5.54\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}_{2} \mathrm{CH}\right), 5.39(\mathrm{~s}, 1 \mathrm{H}$, $1-\mathrm{H}^{\mathrm{B}}$), $2.68\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}_{2}\right), 1.59\left(\mathrm{sext}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{H}_{2}\right), 0.86(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, $6-\mathrm{H}_{3}$); ${ }^{13} \mathrm{C}$ NMR: ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 201.1 ($\mathrm{s}, \mathrm{C}-3$), 151.9 ($\mathrm{s}, \mathrm{C}-2$), 142.0 ($\left.\mathrm{s}, \mathrm{C}-\mathrm{i}\right), 129.0$ (d, C-o), 128.4 (d, C-m), 126.5 (t, C-1), 126.4 (d, C-p), 51.0 (d, Ph ${ }_{2} \mathrm{CH}$), 40.2 (t, C-4), 17.8 (t, C-5), 13.7 (q, C-6); MS: (EI, 70 eV) m/z $264\left(\mathrm{M}^{+}, 100\right), 263(64), 221\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}, 76\right), 193\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CO}, 21\right)$, 192 (27), 167 ($\mathrm{Ph}_{2} \mathrm{CH}, 23$), 165 (27), 115 (35); HRMS: (EI, 70 eV) Calculated ($\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}$) 264.1514 (M^{+}) Found: 264.1515

(3bf) 2-Benzhydryl-1-cyclopropylpropen-1-one

According to a typical procedure, $\mathrm{InCl}_{3}(0.05 \mathrm{mmol}, 0.010 \mathrm{~g})$, benzhydryl chloride $(0.41 \mathrm{mmol}$, 0.082 g), and 3 -cyclopropyl-2-propynyl acetate $(0.93 \mathrm{mmol}, 0.129 \mathrm{~g})$ gave the crude product. Purification was performed by flash column chromatography (hexane $/ \mathrm{EtOAc}=95: 5$, column length 10.5 cm , diagram 2.8 cm). Further purification was performed by distillation under reduced pressure to give the product as a white solid $(0.085 \mathrm{~g}, 80 \%) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chart are listed below.; mp: 75-77 ${ }^{\circ} \mathrm{C}$; IR: (KBr) $1654(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.30-7.25 (m, 4H, m), $7.22-7.18(\mathrm{~m}, 2 \mathrm{H}, \mathrm{p}), 7.14-7.12(\mathrm{~m}, 4 \mathrm{H}, o), 6.41\left(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}^{\mathrm{A}}\right), 5.54\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}_{2} \mathrm{CH}\right), 2.41(\mathrm{tt}, J=8.0$, $\left.4.8 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 0.99\left(\mathrm{ddd}, J=8.0,4.8,3.2 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}^{\mathrm{A}}\right), 0.86\left(\mathrm{dt}, J=8.0,3.2 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}^{\mathrm{B}}\right)$; ${ }^{13} \mathrm{C}$ NMR: ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 201.1 ($\mathrm{s}, \mathrm{C}-1$), 152.6 (s, C-2), 142.0 ($\mathrm{s}, \mathrm{C}-i$), 129.0 (d, C-m), 128.3 (d,

C-o), 126.4 ($\mathrm{s}, \mathrm{C}-\mathrm{p}$), 126.2 (t, C-3), 51.4 (d, $\mathrm{Ph}_{2} \mathrm{CH}$), 17.2 (d, C-1'), 11.2 (t, C-2’); MS: (EI, 70 eV) m/z $262\left(\mathrm{M}^{+}, 100\right), 261$ (59), 219 (22), 192 (31), 191 (24), 167 ($\mathrm{Ph}_{2} \mathrm{CH}, 32$), 165 (46), 152 (20), 115 (48), 91 (32), 69 (c-PrCO, 31); HRMS: (EI, 70 eV) Calculated $\left(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}\right) 262.1358\left(\mathrm{M}^{+}\right)$Found: 262.1357
(3bh) 2-Benzhydryl-1-phenyl-2-buten-1-one (E/Z mixture)

According to an experimental procedure in section 2.7., $\mathrm{InCl}_{3}(0.1 \mathrm{mmol}, 0.023 \mathrm{~g})$, benzhydryl chloride ($1 \mathrm{mmol}, 0.201 \mathrm{~g}$), and 1-methyl-3-phenyl-2-propynyl acetate ($2 \mathrm{mmol}, 0.376 \mathrm{~g}$) gave the crude product. Purification was performed by flash column chromatography (hexane/EtOAc $=95: 5$, column length 10.5 cm , diagram 2.8 cm) and GPC to give the product $(0.124 \mathrm{~g}, 40 \%, E / Z=78: 22)$. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chart are listed below.; IR: (neat) $1650(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Z-isomer: $7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, o), 7.53-7.36(\mathrm{~m}, 3 \mathrm{H}, m$ and $p), 7.31-7.17\left(\mathrm{~m}, 10 \mathrm{H}, o^{\prime}, m^{\prime}\right.$, and $\left.p^{\prime}\right), 5.57(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 5.26\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}_{2} \mathrm{CH}\right), 1.57\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{H}_{3}\right) ; E$-isomer: $7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, o), 7.53-7.36(\mathrm{~m}, 3 \mathrm{H}, m$ and $p), 7.31-7.17\left(\mathrm{~m}, 10 \mathrm{H}, o^{\prime}, m^{\prime}\right.$, and $\left.p^{\prime}\right), 6.48(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 5.74\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}_{2} \mathrm{CH}\right), 1.67\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{H}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR: (100 MHz , CDCl_{3}) 199.2 (s$), 198.0$ (s , 143.8 (s), 143.4 (s$), 142.0$ (s$), 141.9$ (s), 141.4 (d), 138.9 (s$), 137.4$ (s$)$, 132.9 (d), 131.6 (d), 130.9 (d), 129.5 (d), 129.4 (d), 129.2 (d), 129.1 (d), 128.5 (d), 128.3 (d), 128.2 (d), 128.0 (d), 126.6 (d), 126.2 (d), 55.2 (d), 49.7 (d), 15.9 (q), 15.2 (q); E-isomer MS: (EI, 70 eV) m/z 313 (24), $312\left(\mathrm{M}^{+}, 100\right), 311$ (44), $206(27), 165(21), 105(\mathrm{PhCO}, 49), 77\left(\mathrm{C}_{6} \mathrm{H}_{5}, 49\right)$; HRMS: (EI, 70 eV) Calculated $\left(\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}\right) 312.1514\left(\mathrm{M}^{+}\right)$Found: 312.1502; Z-isomer MS: (EI, 70 eV) m/z 313 (26), $312\left(\mathrm{M}^{+}, 100\right), 311$ (47), 206 (26), 105 (PhCO, 55), $77\left(\mathrm{C}_{6} \mathrm{H}_{5}, 26\right)$; HRMS: (EI, 70 eV) Calculated $\left(\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}\right) 312.1514\left(\mathrm{M}^{+}\right)$Found: 312.1513
(3bi) 2-Benzhydryl-1-phenyl-2-penten-1-one (E/Z mixture)

According to an experimental procedure in section 2.8., $\mathrm{InCl}_{3}(0.05 \mathrm{mmol}, 0.011 \mathrm{~g})$, benzhydryl chloride $(0.43 \mathrm{mmol}, 0.0873 \mathrm{~g})$, and 1-ethyl-3-phenyl-2-propynyl acetate $(2.36 \mathrm{mmol}, 0.4733 \mathrm{~g})$
gave the crude product. Purification was performed by flash column chromatography (hexane $/ \mathrm{EtOAc}=95: 5$, column length 10.5 cm , diagram 2.8 cm). Further purification was performed by distillation under reduced pressure to give the product $(0.059 \mathrm{~g}, 43 \%, E / Z=89: 11) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chart are listed below.; IR: (neat) $1650(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Z-isomer: $7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, o), 7.52-7.46(\mathrm{~m}, 1 \mathrm{H}, p), 7.43-7.36(\mathrm{~m}, 2 \mathrm{H}, m), 7.30-7.17\left(\mathrm{~m}, 10 \mathrm{H}, o{ }^{\prime}, m^{\prime}\right.$, and $\left.p^{\prime}\right), 5.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 5.23\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}_{2} \mathrm{CH}\right), 1.93$ (quint, $\left.J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}_{2}\right), 0.87(\mathrm{t}$, $\left.J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, 5-\mathrm{H}_{3}\right)$; E-isomer: $7.68(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, o), 6.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 5.73(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{Ph}_{2} \mathrm{CH}$), 2.10 (quint, $\left.J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}_{2}\right), 0.83\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, 5-\mathrm{H}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR: $(100 \mathrm{MHz}$, CDCl_{3}) 199.2 (s), 198.2 (s$), 148.6$ (s$), 142.1$ (s$), 141.9$ (s$), 138.9$ (s$), 137.8$ (d), 137.5 (s$), 132.9$ (d), 131.7 (d), 129.6 (d), 129.5 (d), 129.4 (d), 129.13 (d), 129.07 (d), 128.5 (d), 128.3 (d), 128.2 (d), 128.0 (d), 126.6 (d), 126.2 (d), 55.0 (d), 49.9 (d), 23.4 (t), 22.8 (t), 13.4 (q), 12.8 (q); E-isomer MS: (EI, 70 eV) m/z 327 (24), 326 ($\mathrm{M}^{+}, 100$), 325 (36), 297 ($\mathrm{M}^{+}-\mathrm{Et}, 52$), 219 (18), 167 ($\mathrm{Ph}_{2} \mathrm{CH}, 29$), 105 ($\mathrm{PhCO}, 58$), $77\left(\mathrm{C}_{6} \mathrm{H}_{5}, 20\right)$; HRMS: (EI, 70 eV) Calculated $\left(\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}\right) 326.1671\left(\mathrm{M}^{+}\right)$Found: 326.1670; Z-isomer MS: (EI, 70 eV) m/z 327 (25), 326 ($\mathrm{M}^{+}, 100$), 297 (53), 219 (21), 167 ($\mathrm{Ph}{ }_{2} \mathrm{CH}$, 21), $105(\mathrm{PhCO}, 60), 77\left(\mathrm{C}_{6} \mathrm{H}_{5}, 22\right)$; HRMS: (EI, 70 eV$)$ Calculated $\left(\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}\right) 326.1671\left(\mathrm{M}^{+}\right)$ Found: 326.1676

(3bj) 2-Benzhydryl-4-methyl-1-phenyl-2-penten-1-one (E/Z mixture)

According to an experimental procedure in section 2.8., $\mathrm{InCl}_{3}(0.05 \mathrm{mmol}, 0.012 \mathrm{~g})$, benzhydryl chloride ($0.47 \mathrm{mmol}, 0.0953 \mathrm{~g}$), and 1-isopropyl-3-phenyl-2-propynyl acetate ($2.50 \mathrm{mmol}, 0.5402 \mathrm{~g}$) gave the crude product. Purification was performed by flash column chromatography (hexane/EtOAc $=95: 5$, column length 10.5 cm , diagram 2.8 cm). Further purification was performed by distillation under reduced pressure to give the product $(0.019 \mathrm{~g}, 12 \%, E / \mathrm{Z}=74: 26) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chart are listed below.; IR: (neat) $1654(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Z-isomer: $7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, o), 7.55-7.38(\mathrm{~m}, 3 \mathrm{H}, m$ and $p), 7.30-7.10\left(\mathrm{~m}, 10 \mathrm{H}, o^{\prime}, m^{\prime}\right.$, and $\left.p^{\prime}\right), 5.28(\mathrm{~d}$, $J=10.4 \mathrm{~Hz}, 3-\mathrm{H}), 5.19\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}_{2} \mathrm{CH}\right), 2.37-2.28(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 0.88\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, 5-\mathrm{H}_{3}\right.$ and 4-Me); E-isomer: 7.79 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, o$), $7.55-7.38(\mathrm{~m}, 3 \mathrm{H}, m$ and $p), 7.30-7.10\left(\mathrm{~m}, 10 \mathrm{H}, o^{\prime}, m^{\prime}\right.$, and $\left.p^{\prime}\right), 6.10(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 3-\mathrm{H}), 5.74\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}_{2} \mathrm{CH}\right), 2.73-2.64(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 0.84(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $6 \mathrm{H}, 5-\mathrm{H}_{3}$ and $4-\mathrm{Me}$); ${ }^{13} \mathrm{C}$ NMR: ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 199.3 (s), 198.3 (s), 153.2 (d), 142.7 (d), 142.3 (s), 141.3 (s$), 140.1$ (s$), 139.5$ (s), 138.8 (s$), 137.4$ (s), 132.9 (d), 131.7 (d), 129.7 (d), 129.4 (d), 129.1 (d), 128.6 (d), 128.4 (d), 128.3 (d), 128.2 (d), 128.0 (d), 126.5 (d), 126.2 (d), 54.9 (d), 50.1 (d),
29.0 (d), 28.4 (d), 22.6 (q), 21.6 (q); Z-isomer MS: (EI, 70 eV) m/z 341 (28), 340 ($\mathrm{M}^{+}, 100$), 298 (21), $297\left(\mathrm{M}^{+}\right.$- i-Pr, 70), $167\left(\mathrm{Ph}_{2} \mathrm{CH}, 51\right), 165$ (23), 105 ($\mathrm{PhCO}, 78$), $77\left(\mathrm{C}_{6} \mathrm{H}_{5}, 24\right)$; HRMS: (EI, 70 eV) Calculated $\left(\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}\right) 340.1827\left(\mathrm{M}^{+}\right)$Found: 340.1819; E-isomer MS: (EI, 70 eV) m/z 341 (28), 340 $\left(\mathrm{M}^{+}, 100\right), 297\left(\mathrm{M}^{+}-i-\mathrm{Pr}, 75\right), 167\left(\mathrm{Ph}_{2} \mathrm{CH}, 28\right), 105(\mathrm{PhCO}, 82), 77\left(\mathrm{C}_{6} \mathrm{H}_{5}, 24\right)$; HRMS: (EI, 70 eV$)$ Calculated $\left(\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}\right) 340.1827\left(\mathrm{M}^{+}\right)$Found: 340.1827

(3bk) Ethyl 2-(1,1-diphenylethyl)-2-propenate ${ }^{18}$

According to a typical procedure, $\mathrm{InCl}_{3}(0.05 \mathrm{mmol}, 0.011 \mathrm{~g})$, benzhydryl chloride $(0.5 \mathrm{mmol}, 0.100$ g), and 3-acetoxy-1-ethoxy-1-propyne ($1 \mathrm{mmol}, 0.142 \mathrm{~g}$) gave the crude product. Purification was performed by flash column chromatography (hexane $/ \mathrm{EtOAc}=95: 5$, column length 10.5 cm , diagram 2.8 cm). Further purification was performed by distillation under reduced pressure to give the product $(0.068 \mathrm{~g}, 51 \%) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chart are listed below.

(7) 2-\{1-(5-Bromo-2-thienyl)ethyl\}-1-phenylpropen-1-one

According to an experimental procedure in section 2.9., $\operatorname{InCl}_{3}(0.06 \mathrm{mmol}, 0.013 \mathrm{~g})$, 1 -acetoxyethyl-5-bromothiophene ($0.50 \mathrm{mmol}, 0.124 \mathrm{~g}$), and 3-phenyl-2-propynyl acetate (1.02 mmol, 0.177 g) gave the crude product. Purification was performed by flash column chromatography (hexane/EtOAc $=95: 5$, column length 10.5 cm , diagram 2.8 cm). Further purification was performed by distillation under reduced pressure to give the product as a white solid $(0.045 \mathrm{~g}, 28 \%) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chart are listed below.; mp: 130-132 ${ }^{\circ} \mathrm{C}$; IR: $(\mathrm{KBr}) 1658(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: (400 MHz , $\left.\mathrm{CDCl}_{3}\right) 7.73(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, o), 7.54(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, p), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, m), 6.85(\mathrm{~d}, J$ $=3.6 \mathrm{~Hz}, 1 \mathrm{H}, 4 "-\mathrm{H}), 6.61\left(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, 3{ }^{\prime}-\mathrm{H}\right), 5.86\left(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}^{\mathrm{A}}\right), 5.70\left(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}^{\mathrm{B}}\right), 4.51(\mathrm{q}$, $\left.J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 1.54\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, 2^{\prime}-\mathrm{H}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR: $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 197.2(\mathrm{~s}, \mathrm{C}-1)$, 151.0 ($\mathrm{s}, \mathrm{C}-2$), 149.5 ($\mathrm{s}, \mathrm{C}-5 "$), 137.5 ($\mathrm{s}, \mathrm{C}-i$), 132.3 (d, C-p), 129.6 (d, C-o), 129.5 (d, C-4"), 128.2 (d, C-m), 124.8 (t, C-3), 124.7 (d, C-3"), 109.8 ($\mathrm{s}, \mathrm{C}-2 "$), 36.3 (d, C-1'), 20.9 (q, C-2'); MS: (EI, 70 eV) m/z $322(21), 321\left(\mathrm{M}^{+}, 13\right), 320(20), 241(100), 105(\mathrm{PhCO}, 77), 77\left(\mathrm{C}_{6} \mathrm{H}_{5}, 53\right)$; HRMS: (EI, 70 eV) Calculated ($\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrOS}$) $319.9870\left(\mathrm{M}^{+}\right)$Found: 319.9861; Analysis: $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrOS}$ (321.23) Calcd: C, 56.08; H, 4.08; Br, 24.87 Found: C, 56.28; H, 4.10; Br, 24.67.

4. References.

(1) Kiyokawa, K.; Yasuda, M.; Baba, A. Org. Lett. 2010, 12, 1520-1523.
(2) Someya, H.; Yorimitsu, H.; Oshima, K. Tetrahedron 2010, 66, 5993-5999.
(3) Zyk, N. V.; Gavrilova, A. Y.; Bondarenko, O. B.; Mukhina, O. A.; Tikhanushkina, V. N. Russ. J. Org. Chem. 2011, 47, 340-354.
(4) Nishimoto, Y.; Okita, A.; Yasuda, M.; Baba, A. Org. Lett. 2012, 14, 1846-1849.
(5) Alonso, D. A.; Nájera, C.; Pacheco, M. C. Adv. Synth. Catal. 2003, 345, 1146-1158.
(6) D'Auria, M.; Ferri, T. J. Org. Chem. 1995, 60, 8360-8364.
(7) Yu, M.; Zhang, G.; Zhang, L. Tetrahedron 2009, 65, 1846-1855.
(8) Chen, Z.-S.; Duan, X.-H.; Wu, L.-Y.; Ali, S.; Ji, K.-G.; Zhou, P.-X.; Liu, X.-Y.; Liang, Y.-M. Chem. Eur. J. 2011, 17, 6918-6921.
(9) Cheng, Y. Xu, G.; Wu, J.; Zhang, C.; Yang, L. Tetrahedron Lett. 2010, 51, 2366-2369.
(10) Hill, E. A.; Gross, M. L.; Stasiewicz, M.; Manion, M. J. Am. Chem. Soc. 1969, 91, 7381-7392.
(11) (a) Labrouillère, M.; Le Roux, C.; Gaspard-Iloughmane, H.; Dubac, J. Synlett 1994, 723-724.
(b) Calzada, J. G.; Hooz, J. Org. Synth. 1988, 6, 634-639.
(12) Wang, D.; Ye, X.; Shi, X. Org. Lett. 2010, 12, 2088-2091.
(13) (a) Lian, J.-J.; Chen, P.-O.; Lin, Y.-P.; Ting, H.-C.; Liu, R.-S. J. Am. Chem. Soc. 2006, 128, 11372-11373. (b) Kippo, T.; Fukuyama, T.; Ryu, I. Org. Lett. 2011, 13, 3864-3867.
(14) Sonogashira, K. J. Organomet. Chem. 2002, 635, 46-49.
(15) Greene, T. W.; Wuts, P. G. M. In Protective Groups in Organic Synthesis, Wiley, New York, 2007, Vol. 4, Chap. 2, pp. 223-239.
(16) Tamura, R.; Watabe, K.; Ono, N.; Yamamoto, Y. J. Org. Chem. 1992, 57, 4895-4903.
(17) Rodrigues, J. A. R.; Siqueira-Filho, E. P.; de Mancilha, M.; Moran, P. J. S. Synth. Commun. 2003, 33, 331-340.
(18) Phan, T. H.; Dahn, H. Helv. Chim. Acta 1976, 59, 335-348.

5. NMR Spectra.

1c

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1d

${ }^{1} \mathrm{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR: ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1h
X_{Cl}
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
 Ni N

PPM

${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3})

1j

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1k

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$2 a$

$\underbrace{\text { OAc }}_{\text {Ph }}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

PPM

2b

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2 c

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13}$ C NMR (100 MHz, CDCl_{3})

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2 e

$\stackrel{O A}{ }^{\mathrm{Ac}}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

PPM
 $22021020019018017016015014013012011010090807060 \begin{array}{lllllll} & 50 & 40 & 30 & 20 & 10\end{array}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2h

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

PPM

2j

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

PPM

2k

OAc
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$$
606 \cdot \downarrow 6
$$

PPM

5

${ }_{\mathrm{Pr}}{ }^{\mathcal{O}_{\mathrm{OAC}}}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

PPM

6

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

\qquad
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$3 a 2$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ba

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ca

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$+$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3da

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3fa

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

PPM
 $22021020019018017016015014013012011010090 \quad 80$

3ga

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ha

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ia

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ja

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3bb

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
N゙

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3bc

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3bd

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

9	8	7	6	5	4	3	2	1	0

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

PPM

3be

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3bf

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

PPM

TIT1T1T1T1T							T		T
9	8	7	6	5	4	3	2	1	0

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3bh

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3})

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3bi

(mixture of E - and Z-isomer, $E / Z=89: 11$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

PPM

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3bj

(mixture of E - and Z-isomer, $E / Z=74: 26$)

${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3})

3bk

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

7

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

