Supporting Information

Nanoparticles with Dual-Responses to Oxidative Stress and Reduced pH for Drug Release and Anti-Inflammatory Applications

Hsiao-Lan Pu,^{†,§} Wei-Lun Chiang,^{†,§} Barnali Maiti,[§] Zi-Xian Liao,[§] Yi-Cheng Ho,[‡] Min Suk Shim,[⊥] Er-Yuan Chuang,[§] Younan Xia,[⊥] and Hsing-Wen Sung^{§,}*

[§]Department of Chemical Engineering and Institute of Biomedical Engineering,

National Tsing Hua University, Hsinchu 30013, Taiwan (ROC),

[‡]Department of Biotechnology, Vanung University, Taoyuan 32061, Taiwan (ROC),

[⊥]The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of

Technology and Emory University, Atlanta, GA 30332, United States.

[†]These authors contributed equally to this work.

*Address correspondence to E-mail: hwsung@che.nthu.edu.tw

Figure S1.

Figure S1. In response to the oxidative stress and reduced pH, no significant changes in the Cy3 quantum yield for (a) Cy3 and (b) Cy3-NPCS (NPs with no curcumin) were observed throughout the study.

Figure S2.

Figure S2. The anti-inflammatory effects of free-form curcumin on the ankle inflammation induced by LPS in a mouse model; saline was used as a control.