Supplementary Information for:

On the Dynamics of Charging in Nanoporous Carbon-Based Supercapacitors

 Patrice Simon ${ }^{\ddagger, \pi}$
Sorbonne Universités, UPMC Univ Paris 06, UMR 8234, PHENIX, F-75005, Paris, France, CIRIMAT, UMR CNRS 5085, Université Paul Sabatier, Bat. 2R1, 118 route de Narbonne, 31062 Toulouse Cedex 9, France, Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, France, and Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK
E-mail: mathieu.salanne@upmc.fr

[^0]
Computational details

Table 1: Number of carbon atoms and lengths of the simulation cell in the z direction. The lengths in the x and y directions were the same (two dimensional periodic boundary conditions are used, i.e. there is no periodicity in the z direction).

Type of carbon	CDC-800	CDC-950	CDC-1200
Snapshots			
Number of carbon atoms	3821	3276	3649
$L_{x}=L_{y}(\mathrm{~nm})$	4.33	4.36	4.37
$L_{z}(\mathrm{~nm})$	18.55	18.64	18.64

Variation of temperature due to Joule effect

Upon application of a constant potential difference, the increase in temperature due to the Joule effect is associated with the creation of an electric current across the cell and follows Ohm's law. ${ }^{1}$ Figures 1, 2 and 3 show this increase of temperature.

Figure 1: Variation of temperature with time for CDC-800. Black: raw data, red: running average (over 10 points).

Figure 2: Variation of temperature with time for CDC-950. Black: raw data, red: running average (over 10 points).

Figure 3: Variation of temperature with time for CDC-1200. Black: raw data, red: running average (over 10 points).

Equivalent circuit

Here we present the analytical results for the charging of the equivalent circuit described in Figure 1 of the manuscript, which are used to analyze the molecular simulation data. From the impedance associated with each component, namely $R_{b u l k}, R_{l}, 1 / j C_{1} \omega$ and $1 / j C_{2} \omega$, and their combination in series and in parallel, the overall impedance of the simulation cell is easily derived as:

$$
\begin{equation*}
Z(\omega)=\frac{(j \omega)^{2} R_{l}\left(R_{b u l k}+2 R_{l}\right) C_{1} C_{2}+j \omega\left[\left(R_{\text {bulk }}+2 R_{l}\right) C_{1}+\left(R_{b u l k}+4 R_{l}\right) C_{2}\right]+2}{(j \omega)^{2} R_{l} C_{1} C_{2}+j \omega\left(C_{1}+C_{2}\right)} \tag{1}
\end{equation*}
$$

In Fourier space, the total charge Q of the electrodes is related to the voltage V as:

$$
\begin{equation*}
Q(\omega)=\frac{I(\omega)}{j \omega}=\frac{V(\omega)}{j \omega Z(\omega)}, \tag{2}
\end{equation*}
$$

where we have used the definition of the impedance and the fact that the intensity I is the time derivative of the charge. From equation 1, it then follows that:

$$
\begin{equation*}
\left[(j \omega)^{2}+j \omega a+b\right] Q(\omega)=[c+j \omega d] V(\omega), \tag{3}
\end{equation*}
$$

with

$$
\begin{aligned}
a & =\frac{\left(R_{b u l k}+2 R_{l}\right) C_{1}+\left(R_{b u l k}+4 R_{l}\right) C_{2}}{R_{l}\left(R_{b u l k}+2 R_{l}\right) C_{1} C_{2}} \\
b & =\frac{2}{R_{l}\left(R_{b u l k}+2 R_{l}\right) C_{1} C_{2}} \\
c & =\frac{C_{1}+C_{2}}{R_{l}\left(R_{b u l k}+2 R_{l}\right) C_{1} C_{2}} \\
d & =\frac{1}{R_{b u l k}+2 R_{l}} .
\end{aligned}
$$

Consequently, the total charge $Q(t)$ satisfies the following differential equation:

$$
\begin{equation*}
Q^{\prime \prime}(t)+a Q^{\prime}(t)+b Q(t)=c V(t)+d V^{\prime}(t), \tag{4}
\end{equation*}
$$

with the same coefficients a, b, c and d. This linear differential equation is then solved for the choice of potential corresponding to a jump from 0 to $V_{0}=1 \mathrm{~V}$ at $t=0$, i.e. $V(t)=V_{0} \Theta(t)$, with Θ the Heaviside function - hence $V^{\prime}(t)=V_{0} \delta(t)$, with δ the Dirac distribution. In particular, at $t=0^{-}$the charge Q and intensity Q^{\prime} both vanish. The solution reads, for $t>0$:

$$
\begin{equation*}
Q(t)=Q_{\max }\left[1-A_{1} \exp \left(-\frac{t}{\tau_{1}}\right)-A_{2} \exp \left(-\frac{t}{\tau_{2}}\right)\right] \tag{5}
\end{equation*}
$$

as indicated in the manuscript, with the following expressions for the constants:

$$
\begin{aligned}
Q_{\max } & =\frac{c}{b} V_{0}=\frac{C_{1}+C_{2}}{2} V_{0} \\
\tau_{1} & =\frac{2}{a+\sqrt{a^{2}-4 b}} \\
\tau_{2} & =\frac{2}{a-\sqrt{a^{2}-4 b}} \\
A_{1} & =\frac{1}{2}\left[1+\frac{2 b d-a c}{2 c \sqrt{a^{2}-4 b}}\right] \\
A_{2} & =\frac{1}{2}\left[1-\frac{2 b d-a c}{2 c \sqrt{a^{2}-4 b}}\right] .
\end{aligned}
$$

The charges Q_{1} and Q_{2} of both slices of the electrode can also be determined from the impedance of each branch of the circuit. One finds for example that Q_{1} satisfies the same equation 4 as the total charge, with the same values of the coefficients a and b, but with c and d replaced by $c_{1}=1 / R_{l}\left(R_{\text {bulk }}+2 R_{l}\right) C_{1}$ and d_{1}. The solution for $Q_{1}(t)$ is then obtained by replacing these coefficients in the solution for $Q(t)$. The charge of the second slice then immediately follows as $Q_{2}(t)=Q(t)-Q_{1}(t)$.

Among all the parameters introduced in this model, only R_{l} is unknown. Indeed, $R_{\text {bulk }}$ can be deduced from the electrical conductivity σ. For the latter, we have to take into account the temperature increase observed during the first nanoseconds of simulation. Values of 4.5, 5.0 and $5.3 \mathrm{~S} \mathrm{~m}^{-1}$ were respectively taken for CDC-800, CDC-950 and CDC-1200 following the simulation data of Roy and Maroncelli ${ }^{2}$ (note that taking the average value, i.e. $5.0 \mathrm{~S} \mathrm{~m}^{-1}$ for all the CDCs would only change the final R_{l} very slightly). C_{1} and C_{2} are given by the final total charge in the two slices of the electrodes. We have fitted R_{l} on $Q(t)$ using a least-square method; and the corresponding results are provided in the Table 1 of the manuscript.

Charging dynamics for an applied potential of 2 V

Figure 4: Total charge of the electrodes as a function of time for an applied potential of 2 V . The simulation results are compared with those obtained using equation 5 , with the R_{l} parameter extracted from the simulations at 1 V (marroon: CDC-1200, orange: CDC-950, cyan: CDC-800).

In order to illustrate the transferability of the R_{l} parameter fitted from our simulations with an applied potential of 1 V to other conditions, we compare on figure 4 the total charge predicted using this parameter (with no further fitting) with the simulation results for an applied potential of 2 V . A good agreement is obtained.

References

(1) Merlet, C.; Péan, C.; Rotenberg, B.; Madden, P. A.; Simon, P.; Salanne, M. Simulating Supercapacitors: Can We Model Electrodes As Constant Charge Surfaces? J. Phys. Chem. Lett. 2013, 4, 264-268.
(2) Roy, D.; Maroncelli, M. An Improved Four-Site Ionic Liquid Model. J. Phys. Chem. B 2010, 114, 12629-12631.

[^0]: *To whom correspondence should be addressed
 ${ }^{\dagger}$ UPMC
 ${ }^{\ddagger}$ Université Paul Sabatier
 ${ }^{4}$ RS2E
 ${ }^{\S}$ University of Oxford

