Cooperativity and structural relaxations in PVDF/PMMA blends in presence of MWNTs: an assessment through SAXS and dielectric spectroscopy

Maya Sharma¹, Giridhar Madras¹, Suryasarathi Bose^{2*}

¹Center for Nano Science and Engineering, Indian Institute of Science, Bangalore-560012, India

² Department of Materials Engineering, Indian Institute of Science, Bangalore-560012, India.

Characterization

Fourier transform infrared (FTIR) spectroscopy was carried out using Perkin- Elmer GX in the range of 4000-400 cm⁻¹ using a resolution of 4 cm⁻¹.

Wide angle X-ray diffraction (WXRD) studies were analyzed using PANalytical Xpert pro to analyze the structure of PVDF/PMMA blends using a Cu K_{α} radiation (1.54 Å,40 k eV) and in the 2 θ range of 5-50° with a scan rate of 0.04°s⁻¹.

Results and Discussion

MWNTs induced β *phase in PVDF*

We systematically investigated the crystal structure of the blends in presence of different MWNTs by FTIR and WAXD. Interestingly, the control blends and blends with COOH-MWNTs exhibited only the α crystal form whereas, the blends with NH₂- and p-MWNTs revealed both the crystal forms (α and β). FTIR spectra is shown in Figure S1 and the magnified spectra in the region 400-1600 cm⁻¹ is shown in S2. The characteristic peaks at 512, 600, 840 and 1279 cm⁻¹ represent β -phase in the blends. The transmission peaks at 410, 530, 615, 764, 796, 851, 974, 1154, 1406 cm⁻¹ represent α -phase of 80/20 PVDF/PMMA blends. We can clearly see that only in the blend with NH₂-MWNTs and p-MWNTs, β -phase is present. Neat blend as well as blend with COOH-MWNTs show only α –phase of PVDF.

Further presence of β -phase in the blends is also supported by WAXD and is shown in Figure S3. Crystalline peaks at 2 θ values of 17.8°, 18.48°, 20.1°, and 26.62° corresponds to α (100), α (020), α (110) and α (021) respectively. In the blend with NH₂-MWNTs and p-MWNTs, one additional shoulder is obtained at 2 θ =20.6° and 20.7° corresponds to the β (200), β (110) respectively.

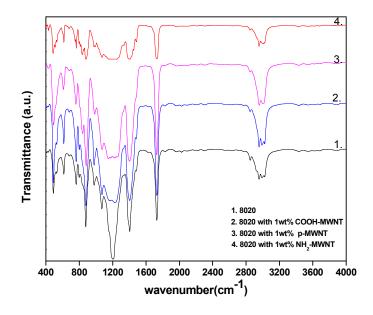


Figure S1: FTIR spectra for PVDF/PMMA blends and with different MWNTs

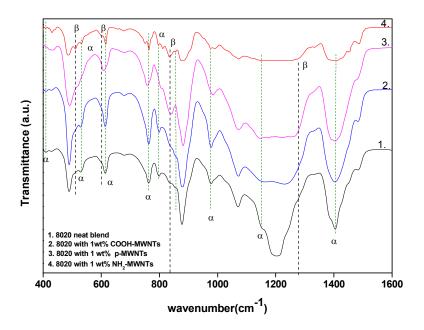


Figure S2: Magnified FTIR spectra in the region 400-1600 cm⁻¹

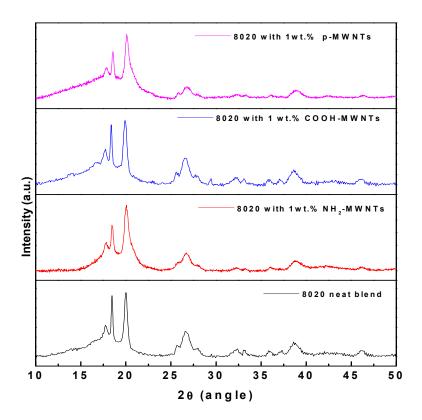


Figure S3: WAXD patterns for neat blends and blends with different functionalized MWNTs.