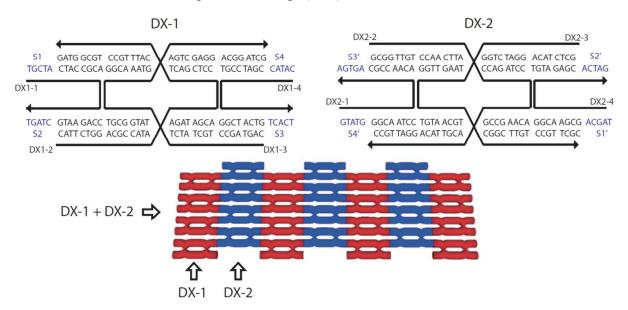
Supporting Information

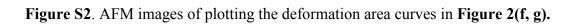

A 2D DNA Lattice as an Ultra-Sensitive Detector for Beta Radiations

Sreekantha Reddy Dugasani^{†,§}, Jang Ah Kim^{§,#}, Byeonghoon Kim^{†,§}, Pranav Joshirao[⊥], Bramaramba Gnapareddy^{†,§}, Chirag Vyas[⊥], Taesung Kim^{§,#}*, Sung Ha Park^{†,§}*, Vijay Manchanda^{⊥,‡}*

 [†]Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea
 [§]Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea
 [#]School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746, Korea
 [⊥]Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Korea
 [‡]School of Electronics and Electrical Engineering, Sungkyunkwan University, Suwon 440-746, Korea

Supporting Figures and Tables:

Figure S1. A schematic diagram of the double-crossover (DX) [DX = (DX-1) + (DX-2)] tiles. Each tile consisted of four strands: DX1-1, DX1-2, DX1-3, and DX1-4 for the (DX-1) tile, and DX2-1, DX2-2, DX2-3, and DX2-4 for the (DX-2). The complementary sticky end pairs are shown as Sn and Sn' in the sequence drawings (blue).



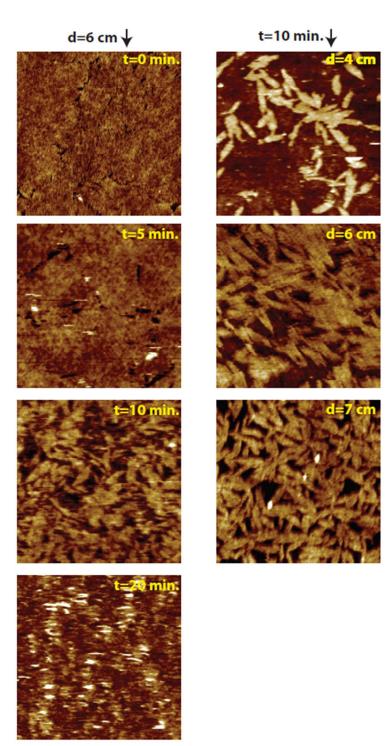
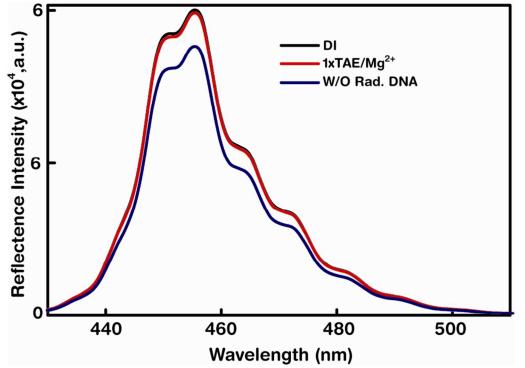

Strand name	Total # of NTs	Base Sequences (5' to 3')		
DX1-1	26	TGCTA CTACCGCA CCAGAATG CTAGT		
DX1-2	48	CATTCTGG ACGCCATA AGATAGCA CCTCGACT CATTTGCC TGCGGTAG		
DX1-3	48	CAGTAGCC TGCTATCT TATGGCGT GGCAAATG AGTCGAGG ACGGATCG		
DX1-4	26	CATAC CGATCCGT GGCTACTG TCACT		
DX2-1	26	GTATG GGCAATCC ACAACCGC AGTGA		
DX2-2	48	GCGGTTGT CCAACTTA CCAGATCC ACAAGCCG ACGTTACA GGATTGCC		
DX2-3	48	GCTCTACA GGATCTGG TAAGTTGG TGTAACGT CGGCTTGT CCGTTCGC		
DX2-4	26	TAGCA GCGAACGG TGTAGAGC ACTAG		

Table S1. Sequence pool for the double-crossover (DX) tiles.


 Table S2. Sticky-ends for the double-crossover (DX) tiles shown in Figure S1.

	5' to 3'	3' to 5'	
S1	TGCTA	ACGAT	S1'
S2	CTAGT	GATCA	S2'
S3	TCACT	AGTGA	S3'
S4	CATAC	GTATG	S4'

Figure S3. The reflectance intensities of DI water, $1 \times TAE/Mg^{2+}$ buffer, and DNA lattices on glass without radiation exposure.

Quantitative description of a DXL (Double-Crossover Lattice) M1. Definition

- DXL structure consists of two repeating tiles, DX-1 and DX-2.
- Each DX-1 and DX-2 tile is made up of four DNA strands.
- A pair of DX-1 and DX-2 tiles is referred to as single DXL unit.

M2. Total number of DXL units on the surface

- The size of the substrate is $5 \text{ mm} \times 5 \text{ mm}$.
- The total DNA polycrystalline lattice area = $25 \text{ mm}^2 = A_{\text{tot}}$
- The occupied size of single DX tile is $5 \text{ nm} \times 12 \text{ nm}$.
- Total number of tiles on the surface is $\frac{5 \text{ mm} \times 5 \text{ mm}}{5 \text{ nm} \times 12 \text{ nm}} = 42 \times 10^{10}$ tiles.
- Total number of DXL units on the surface is 21×10^{10} units.

M3.DNA base pair concentration on given substrate.

- 1 mole = 6.022×10^{23} units.
- 1 unit = $(1/(6.022 \times 10^{23}))$ mol = 1.661×10^{-24} mol
- Total DXL concentration = $(21 \times 10^{10} \text{ DXL units}) \times (1.661 \times 10^{-24} \text{ mol/DXL unit}) = 3.488 \times 10^{-13} \text{ mol}$
- 1 unit has 69 base pairs of AT and 79 base pairs of CG.
- The total AT & CG concentration on glass is,
- AT : $(69 \text{ bp/unit}) \times (3.488 \times 10^{-13} \text{ mol}) = 24.07 \times 10^{-12} \text{ mol}$

●	CG : (79 bp/unit)	×	$(3.488 \times 10^{-13} \text{mol})$	$) = 27.56 \times 10^{-12} \mathrm{mol}$
---	-------------------	---	--------------------------------------	--

	Adenine	Thymine	Guanine	Cytosine
M.W of Nucleotide (g)	331.22	322.21	347.22	307.20
M.W of Base Pair (g)	653.43		654.42	

M4. DNA molecules' weight on glass

- AT: $(653.43 \text{ g/mol}) \times (24.07 \times 10^{-12} \text{ mol}) = 15.72 \text{ ng}$
- CG: $(654.42 \text{ g/mol}) \times (27.56 \times 10^{-12} \text{ mol}) = 18.03 \text{ ng}$
- Total DNA weight: 33.75 ng

M5. Hydrogen bond energy of AT and CG

- AT = 21 kJ/mol or 3.4×10^{-20} J/AT
- $CG = 29 \text{ kJ/mol or } 4.8 \times 10^{-20} \text{ J/CG}$

M6. Hydrogen bond energy per unit DXL

• $(3.4 \times 10^{-20} \text{ J} \times 69) + (4.8 \times 10^{-20} \text{ J} \times 79) = 6.13 \times 10^{-18} \text{ J}$