Supporting information

Application of ProTide Technology to Gemcitabine: A successful approach to overcome the key cancer resistance mechanisms leads to a new agent (NUC-1031) in clinical development.

Magdalena Slusarczyk,[†] Monica Huerta Lopez,[†] Jan Balzarini,[‡] Malcolm Mason,^{δ} Wen G. Jiang, Sarah Blagden,^{α} Emely Thompson,^{Δ} Essam Ghazaly^{Δ} and Christopher McGuigan.^{*,†}

[†] Cardiff School of Pharmacy & Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, U.K.

[‡] Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, Leuven B-3000, Belgium

⁸ Section of Oncology & Palliative Medicine, Cardiff University School of Medicine, Velindre Hospital, Cardiff CF14 2TL, UK.

Metastasis Research Group, University Department of Surgery, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK.

 $^{\alpha}$ Department of Oncology, Imperial College, Hammersmith Campus, Du Cane Road, London W12 0HS, UK

^Δ Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London. Charterhouse Square, London, EC1M 6BQ, UK.

Table of contents

Methods and Materials	S2
General procedures	S2
Chemical syntheses of gemcitabine ProTides (5b-5l) and (6b-6l)	S11

Methods and Materials: Anhydrous solvents were obtained from Aldrich and used without further purification. Amino acid esters were purchased from Carbosynth, Carboxypeptidase Y, human serum and buffers from Sigma-Aldrich. All reactions were carried out under an argon atmosphere. Reactions were monitored with analytical TLC on Silica Gel 60-F254 precoated aluminium plates and visualised under UV (254 nm) and/or with ³¹P NMR spectra. Column chromatography was performed on silica gel (35–70 μ M). Proton (¹H), carbon (¹³C), phosphorus (³¹P) and fluorine (¹⁹F) NMR spectra were recorded on a Bruker Avance 500 spectrometer at 25°C. Spectra were auto-calibrated to the deuterated solvent peak and all ¹³C NMR and ³¹P NMR were proton-decoupled. The purity of final compounds was verified to be >95% by HPLC analysis using Varian Polaris C18-A (10 μ M) as an analytic column with a gradient elution of H₂O/CH₃CN from 100/0 to 0/100 in 35 min. (method 1), and with a gradient elution of H₂O/CH₃CN from 100/0 to 0/100 in 35 min. (method 2). The HPLC analysis was conducted by Varian Prostar (LC Workstation-Varian prostar 335 LC detector).

General Method for the Preparation of phosphorochloridates (3b-l).

Anhydrous triethylamine (2.0 mol eq.) was added dropwise at -78°C to a stirred solution of the appropriate aryl dichlorophosphate (1.0 mol eq.) and an appropriate amino acid ester (1.0 mol eq.) in anhydrous DCM under argon atmosphere. Following the addition, the reaction mixture was allowed to slowly warm to RT and stirred for 1-2 h. A formation of desired compound was monitored by ³¹P NMR. After the reaction was completed, the solvent was evaporated under reduced pressure and the resulting residue was re-dissolved in anhydrous Et₂O and filtered. The filtrate was reduced to dryness to give a crude product as an oil, which was in some cases used without further purification in the next step. Most of aryl phosphorochloridates, in particular those obtained from the amino acid tosylate salt were purified by flash column chromatography using EtOAc/Hexane (7:3) as an eluent.

General procedure A: synthesis of 3'-O-(*tert***-butoxycarbonyloxy)**–gemcitabine **ProTides 5b-1.** To a stirring solution of 3'-O-(*tert*-butoxycarbonyl)-gemcitabine 4 (1.0 mol/eq.) dissolved in anhydrous THF, *tert*-BuMgCl (1.2 mol/eq. 1.0 M solution in THF) was added under an argon atmosphere, followed by immediate addition of an appropriate phosphorochloridate (2.0 mol/ eq.) dissolved in anhydrous THF. The resulting reaction mixture was stirred at room temperature overnight (16 - 18 h). The solvent was removed under reduced pressure and the residue was purified by column chromatography using gradient of eluent (DCM/MeOH 99:1 to 97:3 to 95:5).

General procedure B: synthesis of gemcitabine ProTides 6b-l. A mixture of 3'-*O*-(*tert*-butoxycarbonyloxy)-gemcitabine ProTides **5b-l** in TFA/DCM (1:1) was stirred at 0°C for 3 hours. The solvents were evaporated and the residues was treated with saturated NaHCO₃, and extracted with EtOAc. The organic layers were combined, dried (MgSO₄), filtered, reduced to dryness and purified on silica gel with gradient of eluent (DCM/MeOH 95:5 to 94:6 to 92:8).

Chemical syntheses:

2'-Deoxy-2',2'-difluoro-3'-O-(tert-butoxycarbonyloxy)-D-cytidine-5'-O-[phenyl

(pentoxy-L-alaninyl)]phosphate (5b) was prepared according to the general procedure A from 3'-O-(*tert*-butoxycarbonyl)-gemcitabine (0.68 mmol, 0.25 g), *tert*-BuMgCl (0.82 mmol, 0.82 mL) and phenyl(pentoxy-L-alaninyl) phosphorochloridate (1.37 mmol, 0.45 g). Purification by column chromatography with gradient of CH₂Cl₂/MeOH (100% to 95:5%) afforded the title compound as a white solid; yield, 84% (0.38 g). Mixture of diastereoisomers (49%, 51%). ³¹P NMR (202 MHz, MeOD): δ_P 3.68, 3.58. ¹⁹F NMR (470 MHz, MeOD): δ_F – 114.81, – 115.34 (2 x d, *J* = 247.8 Hz, *F*), – 119.41 (broad signal, *F*). ¹H NMR (500 MHz, MeOD): δ_H 7.60, 7.45 (2 x d, *J*_{H-H} = 7.57 Hz, 1H, *H*-6), 7.40 – 7.35 (m, 2H, Ar*H*), 7.29 – 7.19 (m, 3H, Ar*H*), 6.38 – 6.32 (m, 1H, *H*-1'), 5.96, 5.90 (2 x d, *J*_{H-H} = 7.57 Hz, *H*-5), 5.30 – 5.23 (m, 1H, *H*-3'), 4.56 – 4.38 (m, 3H, 2 x *H*-5', *H*-4'), 4.12 – 3.98 (m, 3H, OCH₂CH₂, CHCH₃), 1.64 – 1.58 (m, 2H, OCH₂CH₂), 1.51, 1.50 (2 x s, 9H, C(CH₃)₃), 1.41 – 1.28 (m, 7H, 2 x CH₂ ester, CHCH₃), 0.92 – 0.89 (m, 3H, CH₃ ester).

2'-Deoxy-2',2'-difluoro-D-cytidine-5'-O-[phenyl(pentoxy-L-alaninyl)]phosphate (6b) was obtained from the 2'-deoxy-2',2'-difluoro-3'-O-(tert-butoxycarbonyloxy)-Dcytidine-5'-O-[phenyl(pentoxy-L-alaninyl)]phosphate **5b** (0.53 mmol, 0.35 g) as a white solid. Yield, 84% (0.24 g). (ES+) m/z, found: (M + Na⁺) 583.17 $C_{23}H_{31}F_2N_4O_8NaP$ required: (M⁺), 560.18. Mixture of diastereoisomers (49%, 51%). ³¹P NMR (202 MHz, MeOD): δ_P 3.77, 3.69. ¹⁹F NMR (470 MHz, MeOD): δ_F – 117.92, -118.10 (2 x d, J = 237.4 Hz, F), -119.40 (d, J = 247.0 Hz, broad signal, F). ¹H NMR (500 MHz, MeOD): $\delta_{\rm H}$ 7.59, 7.53 (2 x d, J = 7.37 Hz, 1H, H-6), 7.40 – 7.36 (m, 2H, ArH), 7.28 – 7.19 (m, 3H, ArH), 6.30 – 6.25 (m, 1H, H-1'), 5.93 – 5.88 (2 x d, J = 7.37 Hz, H-5), 4.56 - 4.37 (m, 2H, H-5'), 4.28 - 4.22 (m, 1H, H-3'), 4.13 - 4.234.05 (m, 3H, H-4', OCH₂CH₂), 4.02 – 3.96 (m, 1H, CHCH₃), 1.65 – 1.61 (m, 2H, OCH_2CH_2), 1.39 – 1.32 (m, 7H, 2 x CH_2 ester, $CHCH_3$), 0.92 – 0.89 (2 x t, J = 6.07Hz, 3H, CH₃ ester). ¹³C NMR (125 MHz, MeOD): δ_C 175.18, 174.92 (2 x d, ³ J_{C-P} = 7.75 Hz, C=O ester), 167.64 (C-NH₂, base), 157.73 (C=O base), 152.15 (d, ² J_{C-P} = 10.7 Hz, CO-Ar), 142.40, 142.38 (CH-base), 130.2 (d, ${}^{3}J_{C-P} = 1.88$ Hz, CH-Ar), 126.34 (*C*H-Ar), 124.8 (d, ${}^{1}J_{C-F} = 257.9$ Hz, *C*F₂), 121.46, 121.42 (2 x d, ${}^{3}J_{C-P} = 1.91$ Hz, CH-Ar), 96.77, 96.75 (CH-base), 85.96 (broad signal, C-1'), 80.36 (C-4'), 71.40, 71.32 (2 x d, ${}^{2}J_{C-F}$ = 34.4 Hz, C-3'), 66.54, 66.50 (OCH₂ ester), 65.76, 65.65 (2 x d, $^{2}J_{C-P} = 5.90$ Hz, C-5'), 51.81 (d, $^{2}J_{CP} = 5.34$ Hz, CHCH₃), 29.40, 29.13, 23.36 (CH₂) ester), 20.60, 20.43 (2 x d, ${}^{3}J_{C-P} = 8.42$ Hz, CHCH₃), 14.35 (CH₃ ester). Reverse HPLC, eluting with H₂O/MeOH from 100/0 to 0/100 in 35 min, showed two peaks of diastereoisomers with $t_{\rm R} = 24.35$ min and $t_{\rm R} = 24.97$ min (47%, 52%).

2'-Deoxy-2',2'-difluoro-3'-O-(tert-butoxycarbonyloxy)-D-cytidine-5'-O-[phenyl

(hexoxy-L-alaninyl)]phosphate (5c) was prepared according to the general procedure A from 3'-O-(*tert*-butoxycarbonyl)-gemcitabine (0.55 mmol, 0.20 g), *tert*-BuMgCl (0.66 mmol, 0.66 mL) and phenyl(hexoxy-L-alaninyl) phosphorochloridate (1.10 mmol, 0.38 g). Purification by column chromatography with gradient of CH₂Cl₂/MeOH (100% to 95:5%) afforded the title compound as a white solid. Yield, 58% (0.21 g). Mixture of diastereoisomers (45%, 55%). ³¹P NMR (202 MHz, MeOD): δ_P 3.72, 3.64. ¹⁹F NMR (470 MHz, MeOD): δ_F –115.01, –115.54 (2 x d, J = 242.0 Hz, F), –119.40 (broad signal, J = 253.0 Hz, F). ¹H NMR (500 MHz, MeOD): δ_H 7.60, 7.47 (2 x d, J = 7.40 Hz, 1H, H-6), 7.41 – 7.36 (m, 2H, ArH), 7.29 – 7.19 (m,

3H, Ar*H*), 6.36 - 6.30 (m, 1H, *H*-1'), 5.96, 5.84 (2 x d, J = 7.40 Hz, H-5), 5.29 - 5.20 (m, 1H, *H*-3'), 4.56 - 4.37 (m, 3H, 2 x *H*-5', *H*-4'), 4.15 - 4.09 (m, 2H, OC*H*₂), 4.03 - 3.97 (m, 1H, C*H*CH₃), 1.66 - 1.60 (m, 2H, OCH₂C*H*₂), 1.52, 1.50 (2 x s, 9H, C(C*H*₃)₃), 1.41 - 1.30 (m, 9H, 3 x C*H*₂ ester, CHC*H*₃), 0.92 - 0.89 (m, 3H, C*H*₃ ester).

2'-Deoxy-2',2'-difluoro-D-cytidine-5'-O-[phenyl(hexoxy-L-alaninyl)]phosphate

(6c) was obtained from 2'-deoxy-2',2'-difluoro-3'-O-(tert-butoxycarbonyloxy)-Dcytidine-5'-O-[phenyl(hexoxy-L-alaninyl)]phosphate (5c) (0.31 mmol, 0.21 g) as a white solid. Yield, 37% (0.066 g). (ES+) m/z, found: (M + Na⁺) 597.2650. $C_{24}H_{33}F_2N_4O_8NaP$ required: (M⁺) 574.20. Mixture of diastereoisomers (45%, 55%). 31 P NMR (202 MHz, MeOD): δ_P 3.77, 3.68. 19 F NMR (470 MHz, MeOD): δ_F – 117.84, -118.35 (2 x d, J = 238.0 Hz, F), -119.96 (broad signal, F). ¹H NMR (500 MHz, MeOD): $\delta_{\rm H}$ 7.60, 7.54 (2 x d, J = 4.09 Hz, 1H, H-6), 7.41 – 7.37 (m, 2H, ArH), 7.29 - 7.20 (m, 3H, Ar*H*), 6.30 - 6.25 (m, 1H, *H*-1'), 5.93, 5.88 (2 x d, J = 4.09 Hz, H-5), 4.56 - 4.37 (m, 2H, 2 x H-5'), 4.28 - 4.21 (m, 1H, H-3'), 4.14 - 4.09 (m, 3H, H-4', OCH₂), 4.02 - 3.96 (m, 1H, CHCH₃), 1.65 - 1.60 (m, 2H, OCH₂CH₂), 1.40 -1.32 (m, 9H, 3 x CH₂ ester, CHCH₃), 0.92 - 0.90 (m, 3H, CH₃ ester). ¹³C NMR (125 MHz, MeOD): δ_{C} 175.16, 174.94 (2 x d, ${}^{3}J_{C-P}$ = 4.41 Hz, C=O ester), 167.63 (C-NH₂, base), 157.70 (C=O base), 152.16 (d, ²J_{C-P} = 6.93 Hz, CO-Ar), 142.41, 142.38 (CHbase), 130.88 (d, ${}^{3}J_{C-P}$ = 3.48 Hz, CH-Ar), 126.32 (CH-Ar), 124.50 (d, ${}^{1}J_{C-F}$ = 258.0 Hz, CF_2), 121.45, 121.41 (2 x d, ${}^{3}J_{C-P} = 2.31$ Hz, CH-Ar), 96.73, 96.70 (CH-base), 86.21, 85.98 (broad signal, C-1'), 80.37 (C-4'), 71.40, 70.97 (2 x d, ${}^{2}J_{C-F}$ = 22.40 Hz, C-3'), 66.53, 66.52 (OCH₂ ester), 65.75, 65.62 (2 x d, ${}^{2}J_{C-P} = 4.97$ Hz, C-5'), 51.80, 51.66 (2 x d, ${}^{2}J_{C-P}$ = 5.34 Hz, CHCH₃), 32.58 (OCH₂CH₂), 29.97, 29.66, 26.63, 23.36 (CH₂ ester), 20.56, 20.39 (2 x d, ${}^{3}J_{C-P}$ = 6.90 Hz, CHCH₃), 14.37 (CH₃ ester). Reverse HPLC, eluting with H₂O/MeOH from 100/0 to 0/100 in 35 min, showed two peaks of diastereoisomers with $t_{\rm R} = 26.27$ min and $t_{\rm R} = 26.85$ min (47%, 52%).

2'-Deoxy-2',2'-difluoro-3'-O-(tert-butoxycarbonyloxy)-D-cytidine-5'-O-[phenyl-

(2,2-dimethylpropoxy-L-alaninyl)]-phosphate (5d) was prepared according to the general procedure A from 3'-O-(*tert*-butoxycarbonyl)-gemcitabine (0.23 g, 0.63 mmol), *tert*-BuMgCl (0.75 mL, 0.75 mmol) and phenyl(2,2-dimethylpropoxy-L-alaninyl) phosphorochloridate (0.42 g, 1.26 mmol). Purification by column chromatography with gradient of CH₂Cl₂/MeOH (100% to 95:5%) afforded the title compound as a white solid. Yield, 34% (0.28 g). Mixture of diastereoisomers (48%, 52%). ³¹P NMR (202 MHz, MeOD): δ_P 3.76, 3.72. ¹⁹F NMR (470 MHz, MeOD): δ_F - 114.9 (d, *J* = 252 Hz), - 115.0 (d, *J* = 252 Hz, *F*), - 119.2, (- 120.5) (broad signal, *F*). ¹H NMR (MeOD, 500 MHz) δ_H 7.87, 7.73 (2 x d, 1H, *J* = 7.20 Hz, *H*-6), 7.39 - 7.19 (m, 5H, ArH), 6.33 - 6.27 (m, 1H H-1²), 6.12, 6.02 (2 x d, 1H, *J* = 7.20 Hz, *H*-5), 5.30 - 5.23 (m, 1H, *H*-3²), 4.56 - 4.42 (m, 1H, *H*-4²), 4.05 - 3.98 (m, 2H, CHCH₃, *H*-5²), 3.88 - 3.67 (m, 3H, OCH₂C(CH₃)₃, *H*-5²), 1.50, 1.49 (2 x s, 9H, C(CH₃)₃), 1.43 - 1.38 (m, 3H, CHCH₃), 0.98, 0.95 (2 x s, 9H, OCH₂C(CH₃)₃).

2'-Deoxy-2',2'-difluoro-D-cytidine-5'-O-[phenyl-(2,2-dimethylpropoxy-L-

alaninyl)]-phosphate (6d) was prepared according to the standard procedure **B** from 2'-deoxy-2',2'-difluoro-3'-O-(*tert*-butoxycarbonyloxy)-D-cytidine-5'-O-[phenyl(2,2-dimethylpropoxy-L-alaninyl)]phosphate (**5d**) (0.28 g, 0.42 mmol), DCM (5 mL), TFA (5 mL). Purification of the crude compound gave the target product **6d** as a white solid. Yield, 35% (0.083 g). (ES+) m/z, found: (M + Na⁺) 583.1786.

 $C_{23}H_{31}F_2N_4O_8NaP$ required: (M⁺), 560.48. Mixture of diastereoisomers (48%, 52%). ³¹P NMR (202 MHz, MeOD): δ_P 3.81, 3.69. ¹⁹F NMR (470 MHz, MeOD): δ_F – 117.8, -118.0 (2 x d, J = 239 Hz, F), -119.5 (-120.05) (broad signal, F). ¹H NMR (500 MHz, MeOD): $\delta_{\rm H}$ 7.58, 7.53 (2 x d, J = 7.54 Hz, 1H, H-6), 7.35 – 7.24 (m, 2H, ArH), 7.28 - 7.19 (m, 3H, ArH), 6.28 (apparent quartet, J = 7.90 Hz, 1H, H-1'), 5.92, 5.88 (2 x d, J = 7.54 Hz, 1H, H-5), 4.56 - 4.36 (m, 2H, H-5'), 4.27 - 4.21 (m, 1H, H-5'), 4.27 + 4.27 (m3'), 4.13 - 4.09 (m, 1H, H-4'), 4.06 - 3.99 (m, 1H, CHCH₃), 3.88 - 3.75 (m, 2H, OCH₂C(CH₃)₃), 1.42 - 1.38 (m, 3H, CHCH₃), 0.95, 0.94 (2 x s, 9H, OCH₂C(CH₃)₃). ¹³C NMR (125 MHz, MeOD): $δ_C$ 175.13, 174.92 (2 x d, ${}^3J_{C-P}$ = 4.93 Hz, C=O, ester), 167.66 (C-NH₂), 157.76, 157.72 (C=O, base), 152.17, 152.12 (CO-Ar), 142.48, 142.35 (CH-base), 130.93, 130.90, 126.35 (CH-Ar), 124.59, 124.53 (2 x d, ${}^{1}J_{C-F}$ = 259 Hz, CF_2), 121.47, 121.44 (CH-Ar), 96.78, 96.75 (CH-base), 85.99 (broad t, ${}^2J_{C-F}$ = 27.0 Hz, C-1'), 80.36 (apparent t, ${}^3J_{C-F}$ = 8.0 Hz, C-4'), 75.51, 75.49 $(OCH_2C(CH_3)_3)$, 71.44, 71.06 (2 x d, ${}^2J_{C-F} = 23.0$ Hz, C-3'), 65.85, 65.72 (2 x d, ${}^2J_{C-F}$ $_{\rm P} = 5.07$ Hz, C-5'), 51.93, 51.7 (CHCH₃), 32.37, 32.35 (OCH₂C(CH₃)₃), 26.80 $(OCH_2C(CH_3)_3)$, 20.75, 20.55 (2 x d, ${}^{3}J_{C-P} = 6.44$ Hz, CHCH₃). Reverse HPLC, eluting with H₂O/CH₃CN from 100/0 to 0/100 in 35 min, showed one peak of diastereoisomers with $t_{\rm R} = 19.55 \text{ min } (99\%)$.

2'-Deoxy-2',2'-difluoro-3'-O-(*tert***-butoxycarbonyloxy)-D-cytidine-5'-O-[phenyl** - (**cyclohexoxy-L-alaninyl)]-phosphate (5e)** was prepared according to the standard procedure **A**, from 3'-O-(*tert*-butoxycarbonyl)-gemcitabine (0.13 g, 0.36 mmol), phenyl(cyclohexoxy-L-alaninyl) phosphorochloridate (0.24 g, 0.72 mmol), *t*BuMgCl (0.43 mmol, 0.43 mL), and anhydrous THF (8 mL). Column purification furnished the compound **5e** as a white solid. Yield, 83% (0.20 g). Mixture of diastereoisomers. ³¹P NMR (202 MHz, MeOD): δ_P 3.86, 3.78. ¹⁹F NMR (470 MHz, MeOD): δ_F – 114.9, – 115.0 (2 x d, *J* = 248 Hz, *F*), – 119.10, (– 119.03) (broad signal, *F*). ¹H NMR (500 MHz, MeOD): δ_H 7.98, 7.84 (2 x d, *J* = 7.50 Hz, *H*-6), 7.38 – 7.13 (m, 5H, Ar*H*), 6.32 – 6.14 (m, 2H, *H*-1', *H*-5), 5.36 – 5.29 (m, 1H, *H*-3'), 4.81 – 4.76 (m, 1H, OC*H*-ester), 4.54 – 4.49 (m, 3H, 2 x *H*-5', *H*-4'), 3.98 – 3.96 (m, 1H, C*H*CH₃), 1.84 – 1.72 (m, 4H, 2 x *CH*₂-ester), 1.76 – 1.73 (m, 2H, *CH*₂-ester), 1.53 – 1.35 (m, 18H, 3 x *CH*₂-ester, C(*CH*₃)₃, CH*CH*₃).

2'-Deoxy-2',2'-difluoro-D-cytidine-5'-O-[phenyl-(cyclohexoxy-L-alaninyl)]-

phosphate (6e) was prepared according to the standard procedure **B**, from the 2'deoxy-2',2'-difluoro-3'-O-(tert-butoxycarbonyloxy)-D-cytidine-5'-O-[phenyl-(cyclohexoxy)-L-alaninyl)]phosphate 5e (0.20 g, 0.29 mmol), DCM (3 mL), TFA (3 mL). Column purification gave the target product 6e as a white solid. Yield, 18% (0.030 g). (ES+) m/z, found: (M + Na⁺) 595.2650. C₂₄H₃₁F₂N₄O₈NaP required: (M⁺), 572.50. Mixture of diastereoisomers (48%, 52%). ³¹P NMR (202 MHz, MeOD): δ_P 3.79, 3.71. ¹⁹F NMR (470 MHz, MeOD): $\delta_{\rm F}$ – 118.09, – 118.24 (2 x d, J = 241 Hz, 1F), -119.8 (-119.7) (broad signal, 1F). ¹H NMR (500 MHz, MeOD): $\delta_{\rm H}$ 7.59, 7.54 (2 x d, J = 7.26 Hz, H-6, 7.41 – 7.36 (m, 2H, ArH), 7.29 – 7.20 (m, 3H, ArH), 6.29 – 6.24 (m, 1H, H-1'), 5.91, 5.87 (2 x d, J = 7.26 Hz, H-5), 4.78 – 4.73 (m, 1H, OCHester), 4.56 - 4.36 (m, 2H, H-5'), 4.26 - 4.20 (m, 1H, H-3'), 4.13 - 4.07 (m, 1H, H-4'), 3.98 - 3.92 (m, 1H, CHCH₃), 1.84 - 1.81 (2H, CH₂-ester), 1.76 - 1.73 (m, 2H, CH2-ester), 1.57 - 1.29 (m, 9H, 3 x CH2-ester, CHCH3). ¹³C NMR (125 MHz, MeOD): $\delta_{\rm C}$ 174.55, 174.34 (2 x d, ${}^{3}J_{\rm C-P}$ = 3.77 Hz, C=O, ester), 167.67 (C-NH₂), 157.78, 157.75 (C=O base), 152.18, 152.13 (2 x d, ${}^{3}J_{C-P} = 6.88$ Hz, CO-Ar), 142.47, 142.35 (CH-base), 130.89, 130.85 126.30 (CH-Ar), 124.53, 122.46 (2 x d, ${}^{1}J_{C-F}$ = 258 Hz, *C*F₂), 121.42, 121.39 (2 x d, ${}^{4}J_{C-P}$ = 1.1 Hz, *C*H-Ar), 96.68, 96.65 (*C*H-base), 86.12, 85.84 (2 x d, ${}^{2}J_{C-F}$ = 27.0 Hz *C*-1'), 80.34 (d, ${}^{3}J_{C-F}$ = 7.5 Hz, *C*-4'), 74.98, 74.76 (*CH*-ester), 71.43, 71.05 (2 x d, ${}^{2}J_{C-F}$ = 23.0 Hz, *C*-3'), 65.80, 65.65 (2 x d, ${}^{2}J_{C-P}$ = 4.40 Hz, *C*-5'), 51.80 (*C*HCH₃), 32.48, 32.40 (2 x *C*H₂-ester), 26.40, 24.61 (*C*H₂-ester), 20.57, 20.42 (2 x d, ${}^{3}J_{C-P}$ = 7.33 Hz, *C*H*C*H₃). Reverse HPLC, eluting with H₂O/MeOH from 100/0 to 0/100 in 35 min, showed two peaks of diastereoisomers with t_{R} = 24.11 min and t_{R} = 24.79 min (40%, 56%).

2'-Deoxy-2',2'-difluoro-3'-O-(tert-butoxycarbonyloxy)-D-cytidine-5'-O-[phenyl

(benzoxy-L-alaninyl)] phosphate (5f) was prepared according to the standard procedure A, from 3'-O-(*tert*-butoxycarbonyl)-gemcitabine (0.40 g, 1.10 mmol), phenyl(benzoxy-L-alaninyl) phosphorochloridate (0.78 g, 2.20 mmol), *t*BuMgCl (1.32 mmol, 1.32 mL) and anhydrous THF (30 mL). Column purification gave the compound 5f as a white solid. Yield, 85% (0.64 g). Mixture of diastereoisomers. ³¹P NMR (202 MHz, MeOD): δ_P 3.74, 3.55. ¹⁹F NMR (470 MHz, MeOD): δ_F – 118.07, – 118.29 (2 x d, *J* = 239 Hz, 1*F*), – 119.52 (–120.57) (broad signal, 1*F*). ¹H NMR (500 MHz, MeOD): δ_H 7.74, 7.61 (2 x d, *J* = 7.34 Hz, *H*-6), 7.37 – 7.18 (m, 10H, Ar*H*), 6.32 – 6.25 (m, 1H, *H*-1'), 6.04, 5.95 (2 x d, *J* = 7.34 Hz, *H*-5), 5.32 – 5.28 (m, 1H, *H*-3'), 5.13 – 5.07 (m, 2H, OCH₂Ph), 4.50 – 4.37 (m, 3H, 2 x *H*-5', *H*-4'), 4.01 – 3.96 (m, 1H, *CH*CH₃), 1.51, 1.50 (2 x s, 9H, C(CH₃)₃), 1.38 (d, *J* = 7.23 Hz, 3H, CHCH₃).

2'-Deoxy-2',2'-difluoro-D-cytidine-5'-O-[phenyl(benzoxy-L-alaninyl)] phosphate (6f) was prepared according to the standard procedure B, from 2'-deoxy-2',2'difluoro-3'-O-(*tert*-butoxycarbonyloxy)-D-cytidine-5'-O-[phenyl(benzoxy-L-

alaninyl)] phosphate 5f (0.60 g, 0.89 mmol), DCM (10 mL), TFA (10 mL). Purification on silica gel afforded the target product as a white solid. Yield, 70% (0.36 g). (ES+) m/z, found: (M + Na⁺) 603.14. C₂₅H₂₇F₂N₄O₈NaP required: (M⁺) 580.47. Mixture of diastereoisomers (48%, 52%). ³¹P NMR (202 MHz, MeOD): δ_P 3.81, 3.64. ¹⁹F NMR (470 MHz, MeOD): $\delta_F - 118.07, -118.29$ (2 x d, J = 239 Hz, 1F), -119.52 (-120.57) (broad signal, 1F). ¹H NMR (500 MHz, MeOD): $\delta_{\rm H}$ 7.56, 7.52 (2 x d, J = 7.5 Hz, 1H, H-6), 7.38 - 7.33 (m, 7H, ArH), 7.26 - 7.19 (m, 3H, ArH), 6.25(apparent q, J = 7.5 Hz, 1H, H-1'), 5.88, 5.84 (2 x d, J = 7.5 Hz, 1H, H-5), 5.18 – 5.12 (m, 2H, OCH₂Ph), 4.49 – 4.42 (m, 1H, H-5'), 4.38 – 4.31 (m, 1H, H-5'), 4.25 – 4.18 (m, 1H, H-3'), 4.07 - 4.01 (m, 2H, H-4', CHCH₃), 1.38 (apparent t, J = 8.5 Hz, 3H, CHCH₃). ¹³C NMR (125 MHz, MeOD): δ_{C} 174.86, 174.62 (2 x d, ³ J_{C-P} = 4.6 Hz, C=O, ester), 167.53 (C-NH₂), 158.03 (C=O, base), 152.10, 152.05 (C-O, Ph), 142.37, 142.28 (CH-base), 137.19, 136.88 (C-Ar), 130.95, 130.92, 130.23, 130.15, 129.78, 129.70, 129.67, 129.59, 129.55, 129.46, 129.36, 129.31, 129.22, 126.39 (CH-Ar), 123.56 (apparent t, ${}^{1}J_{C-F} = 259$ Hz, CF₂), 124.21, 124.14, 121.55, 121.46, 121.43 (CH-Ar), 97.27, 97.25 (CH-base), 86.04, 85.67 (broad signal, C-1'), 80.43 (apparent t, ${}^{3}J_{C-F} = 8.0$ Hz, C-4'), 71.33, 70.94 (2 x d, ${}^{2}J_{C-F} = 23.0$ Hz, C-3'), 68.76, 68.08 (OCH_2Ph) , 65.69, 65.63 (2 x d, ${}^2J_{C-P}$ = 5.30 Hz, C-5'), 53.73, 53.19 (CHCH₃), 20.48, 20.33 (2 x d, ${}^{3}J_{C-P} = 6.44$ Hz, CHCH₃). Reverse HPLC, eluting with H₂O/MeOH from 100/0 to 0/100 in 35 min, showed two peaks of diastereoisomers with $t_{\rm R} = 24.19$ min and $t_{\rm R} = 24.88 \text{ min } (47\%, 52\%)$.

2'-Deoxy-2',2'-difluoro-3'-(*tert*-butoxycarbonyloxy)-D-cytidine-5'-O-[1-naphthyl -(pentoxy-dimethylglycinyl)]-phosphate (5g) was prepared according to the standard Procedure A, from 3'-O-(*tert*-butoxycarbonyl)-gemcitabine (0.3 g, 0.83

mmol), 1-naphthyl(pentoxy-dimethylglycinyl) phosphorochloridate (0.66 g, 1.65 mmol), *t*BuMgCl (0.99 mmol, 0.99 mL) and anhydrous THF (25 mL). Column purification gave the compound **5g** as a white solid. Yield 82% (0.49 g). Mixture of diastereoisomers (48%, 52%). ³¹P NMR (202 MHz, MeOD): δ_P 2.58, 2.10. ¹⁹F NMR (470 MHz, MeOD): δ_F –114.71 (d, J = 237.4 Hz), –115.23 (d, J = 237.4 Hz) (1F), – 118.81 (–119.29) (broad signal, 1F). ¹H NMR (500 MHz, MeOD): δ_H 8.25 – 8.22 (m, 1H, Ar*H*), 7.92 – 7.90 (m, 1H, Ar*H*), 7.75 – 7.70 (m, 1H, Ar*H*), 7.57 – 7.53 (m, 3H, 2 x Ar*H*, *H*-6), 7.47 – 7.24 (m, 2H, Ar*H*), 6.26 – 6.23 (m, 1H, *H*-1'), 5.74, 5.70 (2 x d, J = 7.5 Hz, 1H, *H*-5), 5.26 – 5.17 (m, 1H, *H*-3'), 4.58 – 4.46 (m, 2H, *H*-5'), 4.38 – 4.32 (m, 1H, *H*-4'), 4.24 – 4.14 (m, 2H, OCH₂CH₂), 1.66 – 1.61 (m, 2H, OCH₂CH₂), 1.55 – 1.54 (m, 6H, C(CH₃)₂), 1.51, 1.49 (2 x s, C(CH₃)₃), 1.35 – 1.30 (m, 4H, 2 x CH₂ ester), 0.87 (t, 3H, J = 3.38 Hz, CH₃ ester).

2'-Deoxy-2',2'-difluoro-D-cytidine-5'-O-[1-naphthyl-(pentoxy-dimethylglycinyl)] -phosphate (6g) was prepared according to the Standard Procedure B, from the compound 5g (0.49 g, 0.67 mmol), DCM (10 mL), TFA (10 mL). Purification on silica gel afforded the target product as a white solid. Yield 48% (0.20 g). (ES+) m/z, found: $(M + Na^{+})$ 647.19. C₂₈H₃₅F₂N₄O₈Na P required: (M^{+}) , 624.57. Mixture of diastereoisomers (48%, 52%). ³¹P NMR (202 MHz, MeOD): δ_P 2.70, 2.54. ¹⁹F NMR (470 MHz, MeOD): $\delta_{\rm F}$ -117.57 (d, J = 237.0 Hz), -117.85 (d, J = 237.0 Hz) (1F), -119.47 (-119.97) (broad signal, 1F). ¹H NMR (500 MHz, MeOD): $\delta_{\rm H}$ 8.25 – 8.23 (m, 1H, ArH), 7.92 – 7.88 (m, 1H, ArH), 7.74 – 7.71 (m, 1H, ArH), 7.57 – 7.54 (m, 3H, ArH), 7.47 – 7.39 (m, 2H, 1 x ArH, H-6), 6.25 – 6.18 (m, 1H, H-1'), 5.72, 5.69 (2 x d, J = 7.5 Hz, 1H, H-5), 4.58 - 4.54 (m, 1H, H-5'), 4.49 - 4.45 (m, 1H, H-5'), 4.29 - 4.544.14 (m, 1H, H-3'), 4.12 - 4.08 (m, 3H, H-4', OCH₂CH₂), 1.63 - 1.60 (m, 2H, OCH_2CH_2 , 1.55 – 1.54 (m, 6H, C(CH₃)₂), 1.34 – 1.30 (m, 4H, 2 x CH₂ ester), 0.87 (t, 3H, J = 3.38 Hz, CH_3 ester). ¹³C NMR (125 MHz, MeOD): δ_C 176.81 (d, ³ $J_{C-P} = 3.73$ Hz, C=O, ester), 167.53 (C-NH₂ base), 157.63 (C=O, base), 148.13, 148.15 (2 x d, ${}^{2}J_{C-P} = 8.80$ Hz, CO-Ar), 142.43, 142.37 (CH-base), 136.34 (C-Ar), 128.92, 127.94, 127.86, 127.84, 127.50, 127.44, 126.54, 126.51, 126.04, 125.97, 125.52 (CH-Ar), 123.46 (apparent t, ${}^{1}J_{C-F}$ = 261.0 Hz, CF₂), 122.93, 121.40 (CH-Ar), 116.52, 116.33 (2 x d, ${}^{3}J_{C-P} = 4.20$ Hz, CH-Ar), 96.58 (CH-base), 85.71 (broad signal, C-1'), 80.28 (C-4'), 71.30, 71.07 (2 x d, ${}^{2}J_{C-F} = 22.5$ Hz, C-3'), 66.77 (OCH₂ ester), 65.82, 65.74 (2 x d, ${}^{2}J_{C-P} = 5.2$ Hz, C-5'), 58.29 (C(CH₃)₂), 29.34, 29.18 (CH₂ ester), 27.93, 27.78, 27.68 (3 x d, ${}^{3}J_{C-P} = 5.5$ Hz, (C(CH₃)₂), 23.33 (CH₂ ester), 14.32 (CH₃ ester). Reverse HPLC, eluting with H₂O/MeOH from 100/0 to 0/100 in 35 min, showed one peaks of diastereoisomers with $t_{\rm R} = 28.04 \text{ min } (99\%)$.

2'-Deoxy-2',2'-difluoro-3'-O-(tert-butoxycarbonyloxy)-D-cytidine-5'-O-[1-

naphthyl(hexoxy-L-alaninyl)]phosphate (5h) was prepared according to the general procedure **A** using 3'-O-(*tert*-butoxycarbonyl)-gemcitabine (0.20 g, 0.55 mmol), 1-naphthyl(hexoxy-L-alaninyl) phosphorochloridate (0.44 g, 1.10 mmol) and *t*BuMgCl (0.66 mmol, 0.66 mL). Purification by column chromatography with gradient of CH₂Cl₂/MeOH (100% to 95:5%) afforded the title compound **5h** as a white solid. Yield, 45% (0.18 g). Mixture of diastereoisomers (49%, 51%). ³¹P NMR (202 MHz, MeOD): $\delta_{\rm P}$ 4.13, 4.06. ¹⁹F NMR (470 MHz, MeOD): $\delta_{\rm F}$ – 114.81, –115.33 (2 x d, *J* = 251 Hz, *F*), – 119.21 (broad signal, *F*). ¹H NMR (500 MHz, MeOD): $\delta_{\rm H}$ 8.22 – 8.19 (m, 1H, Ar*H*), 7.91 – 7.88 (m, 1H, Ar*H*), 7.75 – 7.70 (m, 1H, Ar*H*), 7.58 – 7.53 (m, 3H, Ar*H*), 7.46 – 7.24 (m, 2H, 1 x Ar*H*, *H*-6), 6.34 – 6.23 (m, 1H, *H*-1'), 5.83, 5.70 (2)

x d, J = 7.40 Hz, H-5), 5.26 - 5.19 (m, 1H, H-3'), 4.61 - 4.35 (m, 3H, 2 x H-5', H-4'), 4.11 - 4.01 (m, 3H, OCH₂CH₂, CHCH₃), 1.59 - 1.47 (m, 11H, OCH₂CH₂, C(CH₃)₃), 1.39 (d, J = 3.51 Hz, 3H, CHCH₃), 1.33 - 1.21 (m, 6H, 3 x CH₂ ester), 0.89 - 0.84 (m, 3H, CH₃ ester).

2'-Deoxy-2',2'-difluoro-D-cytidine-5'-O-[1-naphthyl(hexoxy-L-alaninyl)]

phosphate (6h) was prepared according to the standard procedure **B** from **5h** (0.16 g, 0.22 mmol), DCM (2 mL), TFA (2 mL). Purification on silica gel afforded the target product as a white solid. Yield, 22% (0.030 g). (ES+) m/z, found: (M + Na⁺) 647.19. $C_{28}H_{35}F_2N_4O_8NaP$ required: (M⁺) 624.22. Mixture of diastereoisomers (49%, 51%). ³¹P NMR (202 MHz, MeOD): $δ_P$ 4.16, 4.12. ¹⁹F NMR (470 MHz, MeOD): $δ_F$ – 117.58, -118.08 (2 x d, J = 245 Hz, F), -119.92 (broad signal, F). ¹H NMR (500 MHz, MeOD): δ_H 8.22 – 8.19 (m, 1H, ArH), 7.93 – 7.90 (m, 1H, ArH), 7.76 – 7.72 (m, 1H, ArH), 7.58 – 7.39 (m, 5H, 4 x ArH, H-6), 6.26 – 6.22 (m, 1H, H-1'), 5.78, 5.72 (2 x d, J = 7.20 Hz, H-5), 4.60 - 4.41 (m, 2H, H-5'), 4.26 - 4.17 (m, 1H, H-3'),4.12 - 4.01 (m, 4H, 1 x H-4', OCH₂CH₂, CHCH₃), 1.60 - 1.57 (m, 2H, OCH₂CH₂), 1.37 - 1.34 (m, 4H, 2 x CH₂ ester), 1.32 - 1.29 (m, 5H, 1 x CH₂ ester, CHCH₃), 0.89 -0.84 (m, 3H, CH₃ ester). ¹³C NMR (125 MHz, MeOD): $\delta_{\rm C}$ 175.15 (C=O, ester), 167.54 (C-NH₂), 157.63 (C=O, base), 147.97 (C-OAr), 142.38, 142.28 (CH-base), 136.35 (C-Ar), 128.97, 128.95, 127.92, 127.88, 127.62, 127.54, 126.56 (CH-Ar), 123.50 (broad signal, CF₂), 116.34, 116.32, 116.26, 116.24 (CH-Ar), 96.63, 96.58 (CH-base), 86.24 (broad signal, C-1'), 80.33 (broad d, ${}^{3}J_{C-F} = 8.0$ Hz, C-4'), 71.15, 71.03 (2 x d, ${}^{2}J_{C-F}$ = 23.0 Hz, C-3'), 66.53, 66.49 (OCH₂), 65.85, 65.81 (2 x d, ${}^{2}J_{C-P}$ = 5.20 Hz, C-5'), 51.89, 51.80 (CHCH₃), 32.55, 32.53, 29.62, 26.60, 23.56 (CH₂ ester), 20.50, 20.37 (2 x d, ${}^{3}J_{C-P} = 7.50$ Hz, CHCH₃), 14.38 (CH₃ ester). Reverse HPLC, eluting with H₂O/MeOH from 100/0 to 0/100 in 35 min, showed two peaks of diastereoisomers with $t_{\rm R} = 29.08$ min and $t_{\rm R} = 29.17$ min (44%, 52%).

2'-Deoxy-2',2'-difluoro-3'-O-(tert-butoxycarbonyloxy)-D-cytidine-5'-O-[1-

naphthyl(cyclopentoxy-L-alaninyl)]phosphate (5i) was prepared according to the general procedure **A** using 3'-O-(*tert*-butoxycarbonyl)-gemcitabine (0.25 g, 0.68 mmol), *tert*-BuMgCl (0.82 mL, 0.82 mmol) and 1-naphthyl(cyclopentoxy-L-alaninyl) phosphorochloridate (0.52 g, 1.37 mmol). Purification by column chromatography with gradient of CH₂Cl₂/MeOH (100% to 95:5%) afforded the title compound as a white solid. Yield 60% (0.29 g). Mixture of diastereoisomers (52%, 48%). ³¹P NMR (202 MHz, MeOD): δ_P 4.16, 4.08. ¹⁹F NMR (470 MHz, MeOD): δ_F -114.75 (d, *J* = 245.0 Hz), -115.42 (d, *J* = 245.0 Hz, 1F), -119.22 (-120.57, broad signal, 1F). ¹H NMR (500 MHz, MeOD): δ_H 8.30 – 8.16 (m, 1H, Ar*H*), 7.91 – 7.87 (m, 1H, Ar*H*), 7.80 – 7.70 (m, 1H, Ar*H*), 7.58 – 7.50 (m, 2H, Ar*H*), 7.46 – 7.31 (m, 3H, 2 x Ar*H*, 1 x *H*-6), 6.33 – 6.26 (m, 1H, *H*-1'), 5.83, 5.75 (2 x d, *J* = 7.34 Hz, *H*-5), 5.25 – 5.08 (m, 1H, *H*-3'), 4.60 – 4.43 (m, 2H, *H*-5'), 4.39 – 4.32 (m, 1H, *H*-4'), 4.06 – 3.94 (m, 1H, OC*H* ester), 3.93 – 3.89 (m, 1H, C*H*CH₃), 1.87 – 1.53 (m, 8H, 4 x C*H*₂ ester), 1.50 – 1.47 (m, 9H, C(C*H*₃)₃), 1.37 – 1.32 (m, 3H, CHC*H*₃).

2'-Deoxy-2',2'-difluoro-D-cytidine-5'-O-[1-naphthyl(cyclopentoxy-L-alaninyl)]

phosphate (6i) was prepared according to the Standard Procedure **B**, from the compound **5i** (0.29 g, 0.41 mmol), DCM (10 mL), TFA (10 mL). Purification on silica gel afforded the target product as a white solid. Yield (0.12 g, 50%). (ES+) m/z, found: (M + Na⁺) 631.18 C₂₇H₃₁F₂N₄O₈NaP required: (M⁺) 608.53. Mixture of diastereoisomers (52%, 48%). ³¹P NMR (202 MHz, MeOD): δ_P 4.21, 4.15. ¹⁹F NMR

(470 MHz, MeOD): δ_F -117.55 (d, J = 242.4 Hz), -118.09 (d, J = 242.0 Hz, 1F), -119.90 (broad signal, 1F). ¹H NMR (500 MHz, MeOD): $\delta_{\rm H}$ 8.21 – 8.18 (m, 1H, ArH), 7.93 – 7.90 (m, 1H, ArH), 7.77 – 7.72 (m, 1H, ArH), 7.58 – 7.50 (m, 3H, ArH), 7.47 – 7.38 (m, 2H, 1 x Ar*H*, 1 x *H*-6), 6.25 – 6.22 (m, 1H, *H*-1'), 5.77, 5.71 (2 x d, *J* = 7.20 Hz, H-5), 5.17 – 5.07 (m, 1H, OCH ester), 4.60 – 4.41 (m, 2H, H-5'), 4.25 – 4.17 (m, 1H, H-3'), 4.12 – 4.07 (m, 1H, H-4'), 4.03 – 3.97 (m, 1H, $CHCH_3$), 1.85 – 1.81 (m, 2H, CH_2 ester), 1.69 – 1.57 (m, 6H, 3 x CH_2 ester), 1.34 (d, J = 4.57 Hz, 3H, CHCH₃). ¹³C NMR (125 MHz, MeOD): δ_{C} 174.93, 174.66 (2 x d, ³J_{C-P} = 4.6 Hz, C=O ester), 167.61 (C-NH₂), 157.70 (C=O base), 147.94 (d, ${}^{2}J_{C-P} = 8.8$ Hz, CO-Ar), 142.39, 142.27 (CH-base), 136.35 (C-Ar), 128.98, 127.93, 127.90 (CH-Ar), 127.86, 127.81 (C-Ar), 127.63, 127.54, 126.57, 126.54, 126.17, 126.13 (CH-Ar), 123.56 (apparent t, ${}^{1}J_{C-F} = 259$ Hz, CF_{2}), 116.35, 116.33, 116.28, 116.25 (CH-Ar), 96.63, 96.59 (CH-base), 86.50 (broad signal, C-1'), 80.43 (broad signal, C-4'), 79.60, 79.57 (OCH ester), 71.43, 71.23 (2 x d, ${}^{2}J_{C-F} = 16.5$ Hz, C-3'), 65.86, 65.65 (2 x d, ${}^{2}J_{C-P} =$ 5.30 Hz, C-5'), 51.91 (d, ${}^{2}J_{C-P} = 10.43$ Hz, CHCH₃), 33.57, 33.49, 33.47 (CH₂ ester), 24.63, 24.62 (CH₂ ester), 20.46, 20.32 (2 x d, ${}^{3}J_{C-P} = 7.5$ Hz, CHCH₃). Reverse HPLC, eluting with H₂O/MeOH from 100/0 to 0/100 in 35 min, showed two peaks of diastereoisomers with $t_{\rm R} = 24.21$ min and $t_{\rm R} = 24.76$ min (45%, 52%).

2'-Deoxy-2',2'-difluoro-3'-(*tert***-butoxycarbonyloxy)-D-cytidine-5'-O-[1-naphthyl** -(cyclohexoxy-L-alaninyl)]-phosphate (5j) was prepared according to the Standard Procedure A, from 3'-O-(*tert*-butoxycarbonyl)-gemcitabine (0.25 g, 0.68 mmol), 1-naphthyl(cyclohexoxy-L-alaninyl) phosphorochloridate (0.54 g, 1.37 mmol), *t*BuMgCl (0.83 mmol, 0.83 mL), and anhydrous THF (20 mL). Column purification furnished the compound **5j** as a white solid. Yield 94% (0.46 g). Mixture of diastereoisomers (52%, 48%). ³¹P NMR (202 MHz, MeOD): δ_P 4.24, 4.13. ¹⁹F NMR (470 MHz, MeOD): δ_F -115.23 (d, *J* = 245.0 Hz), -115.65 (d, *J* = 242.0 Hz), (1F), -119.52 (-119.48, broad signal), (1F). ¹H NMR (500 MHz, MeOD): δ_H 8.28 – 8.18 (m, 2H, Ar*H*), 7.94 – 7.89 (m, 1H, Ar*H*), 7.83 – 7.80 (m, 1H, Ar*H*), 7.76, 7.74 (2 x d, *J* = 7.63 Hz, *H*-6), 7.59 – 7.51 (m, 3H, Ar*H*), 6.25 (apparent quartet, *J* = 9.22 Hz, *H*-1'), 5.87, 5.73 (2 x d, *J* = 7.63 Hz, *H*-5), 5.23 – 5.19 (m, 1H, H-3'), 4.77 – 4.69 (m, 1H, OC*H*), 4.61 – 4.38 (m, 3H, 2 x *H*-5', *H*-4'), 4.08 – 3.94 (m, 1H, C*H*CH₃), 1.80 – 1.63 (m, 4H, 2 x C*H*₂-ester), 1.51, 1.50 (2 x s, 9H, C(C*H*₃)₃), 1.39 – 1.25 (m, 9H, 3 x C*H*₂ ester, 3H, CHC*H*₃).

2'-Deoxy-2',2'-difluoro-D-cytidine-5'-O-[1-naphthyl-(cyclohexoxy-L-alaninyl)]-

phosphate (6j) was prepared according to the Standard Procedure **B**, from **5j** (0.46 g, 0.64 mmol), DCM (4 mL), TFA (4 mL). Column purification gave the target product as a white solid. Yield 17% (0.068 g). (ES+) *m/z*, found: (M + Na⁺) 645.20 C₂₈H₃₃F₂N₄O₈NaP required: 622.55 (M⁺). Mixture of diastereoisomers (52%, 48%). ³¹P NMR (202 MHz, MeOD): δ_P 4.17, 4.15. ¹⁹F NMR (470 MHz, MeOD): δ_F –117.70 (d, *J* = 237 Hz), -117.97 (d, *J* = 237 Hz), (1F), -119.47 (-119.46, broad signal), (1F). ¹H NMR (500 MHz, MeOD): δ_H 8.21 – 8.19 (m, 1H, ArH), 7.92 – 7.90 (m, 1H, ArH), 7.76 – 7.72 (m, 1H, ArH), 7.58 – 7.51 (m, 3H, ArH), 7.47 – 7.39 (m, 2H, H-6, ArH), 6.25 (apparent t, *J* = 7.80 Hz, *H*-1[']), 5.75, 5.73 (2 x d, *J* = 7.60 Hz, *H*-5), 4.74 – 4.69 (m, 1H, OCH-ester), 4.60 – 4.41 (m, 2H, *H*-5[']), 4.25 – 4.16 (m, 1H, *H*-3[']), 4.11 – 4.08 (m, 1H, *H*-4[']), 4.04 – 3.99 (m, 1H, CHCH₃), 1.81 – 1.69 (m, 4H, 2 x CH₂-ester), 1.55 – 1.50 (m, 1H, CH₂-ester), 1.42 – 1.26 (m, 8H, 5 x CH₂-ester, 3 x H, CHCH₃). ¹³C NMR (125 MHz, MeOD): δ_C 174.50, 174.30 (2 x d, ³*J*_{C-P} = 3.80 Hz, *C*=O, ester), 167.59 (*C*=O, base), 157.70, 157.68 (*C*-NH₂, base), 152.18, 152.14 (*C*-Ar), 142.37,

142.25 (CH-base), 136.34, 135.91 (C-Ar), 128.95, 127.89, 127.62, 127.51, 126.56, 126.14, 122.71, 122.63 (CH-Ar), 123.30, 123.21 (broad signal, 2 x d, ${}^{1}J_{C-F} = 256$ Hz, CF₂), 121.27, 121.16 (broad signal, 2 x d, ${}^{1}J_{C-F} = 256.0$ Hz, CF₂), 116.32, 116.24 (CH-Ar), 96.60, (CH-base), 86.10 (broad signal C-1'), 80.26 (d, ${}^{3}J_{C-F} = 8.75$ Hz, C-4'), 75.01 (CH-ester), 71.40, 71.30 (broad signal, C-3'), 65.85 (C-5'), 51.97 (d, ${}^{2}J_{C-P} = 10.94$ Hz, CHCH₃), 32.42, 32.36 (CH₂-ester), 26.38, 26.37 (CH₂-ester), 24.60 (CH₂-ester), 20.58, 20.40 (2 x d, ${}^{3}J_{C-P} = 7.66$ Hz, CHCH₃). Reverse HPLC, eluting with H₂O/CH₃CN from 100/0 to 0/100 in 35 min, showed one peak of diastereoisomers with $t_{\rm R} = 18.04$ min (99.9%).

2'-Deoxy-2',2'-difluoro-3'-(*tert***-butoxycarbonyloxy)-D-cytidine-5'-O-[1-naphthyl** (benzoxy-L-alaninyl)] phosphate (5k) was prepared according to the standard Procedure A, from 3'-O-(*tert*-butoxycarbonyl)-gemcitabine (0.3 g, 0.82 mmol), 1-naphthyl(benzoxy-L-alaninyl) phosphorochloridate (0.67 g, 1.65 mmol), *t*BuMgCl (0.99 mL, 0.99 mmol) and anhydrous THF (25 mL). Column purification gave the compound 5k as a white solid. Yield 81% (0.49 g). Mixture of diastereoisomers (52%, 48%). ³¹P NMR (202 MHz, MeOD): δ_P 4.18. ¹H NMR (500 MHz, MeOD): δ_H 7.72 – 7.56 (m, 13H, ArH, H-6), 6.23 – 6.19 (m, 1H, H-1'), 5.94, 5.80 (2 x d, *J* = 7.20 Hz, 1H, *H*-5), 5.23 – 5.10 (m, 3H, *H*-3', CH₂Ph), 4.51 – 4.48 (m, 3H, *H*-5', *H*-4'), 4.15 – 4.06 (m, 1H, CHCH₃), 1.51, 1.50 (2 x s, 9H, C(CH₃)₃), 1.38 (d, *J* = 7.0 Hz, CHCH₃).

2'-Deoxy-2',2'-difluoro-D-cytidine-5'-O-[1-naphthyl(benzoxy-L-alaninyl)]

phosphate (6k) was prepared according to the Standard Procedure B, from the compound 5k (0.49 g, 0.67 mmol), DCM (10 mL), TFA (10 mL). Purification on silica gel afforded the target product as a white solid. Yield 47% (0.20 g). (ES+) m/z, found: $(M + Na^{+})$ 653.17 C₂₉H₂₉F₂N₄O₈NaP required: 630.53 (M⁺). Mixture of diastereoisomers (49%, 51%). ³¹P NMR (202 MHz, MeOD): δ_P 4.20, 4.10. ¹⁹F NMR (470 MHz, MeOD): $\delta_{\rm F}$ –117.7 (d, J = 240 Hz), –117.9 (d, J = 240 Hz) (1F), –119.3 (– 120.5) (broad signal, 1F). ¹H NMR (500 MHz, MeOD): $\delta_{\rm H}$ 8.20 – 8.17 (m, 1H, ArH), 7.93 - 7.90 (m, 1H, Ar*H*), 7.73 (t, J = 8.0 Hz, 1H, Ar*H*), 7.58 - 7.48 (m, 3H, 2 x Ar*H*, *H*-6), 7.44 – 7.29 (m, 7H, Ar*H*), 6.22 (apparent t, J = 7.5 Hz, 1H, *H*-1'), 5.79, 5.73 (2) x d, J = 7.5 Hz, 1H, H-5), 5.15 - 5.10 (m, 2H, CH₂Ph), 4.53 - 4.49 (m, 1H, H-5'), 4.44 - 4.36 (m, 1H, H-5'), 4.24 - 4.04 (m, 3H, H-4', H-3', CHCH₃), 1.37 (d, 3H, J =7.0 Hz, CH*CH*₃). ¹³C NMR (125 MHz, MeOD): δ_{C} 174.88 (d, ³*J*_{C-P} = 3.6 Hz, *C*=O, ester), 174.58 (d, ³*J*_{C-P} = 4.5 Hz, *C*=O, ester), 167.57 (*C*-NH₂), 157.73, 157.71 (*C*=O, base), 147.96 (2 x d, ${}^{2}J_{C-P}$ = 7.3 Hz, CO-Ar), 142.32, 142.21 (CH-base), 137.17 (C-Ar), 136.33 (C-Ar), 129.60, 129.37, 129.33, 129.30, 128.98, 128.96, 127.92, 127.90 (CH-Ar), 127.85, 127.80 (C-Ar), 127.66, 127.58, 126.59, 126.54, 126.17 (CH-Ar), 123.45 (apparent t, ${}^{1}J_{C-F} = 259$ Hz, CF₂), 122.72, 122.63, 116.40, 116.33 (2 x d, ${}^{3}J_{C-P}$ = 3.6 Hz, CH-Ar), 96.65, 96.61 (CH-base), 85.94 (broad signal, C-1'), 80.26 (C-4'), 71.33 (C-3'), 68.04 (OCH₂Ph), 65.82, 65.75 (2 x d, ${}^{2}J_{C-P} = 5.0$ Hz, C-5'), 51.94, 51.82 (CHCH₃), 20.40, 20.26 (2 x d, ${}^{3}J_{C-P} = 7.3$ Hz, CHCH₃). Reverse HPLC, eluting with H₂O/MeOH from 100/0 to 0/100 in 35 min, showed two peaks of diastereoisomers with $t_{\rm R} = 27.35$ min and $t_{\rm R} = 27.85$ min (42%, 57%).

2'-Deoxy-2',2'-difluoro-3'-O-(*tert*-butoxycarbonyloxy)-D-cytidine-5'-O-[1naphthyl(pentoxy-L-alaninyl)]phosphate (5l) was prepared according to the general procedure A using 3'-O-(*tert*-butoxycarbonyl)-gemcitabine (0.18 g, 0.49 mmol), 1-

naphthyl(pentoxy-L-alaninyl) phosphorochloridate (0.38 g, 0.99 mmol) and *t*BuMgCl (0.59 mL, 0.59 mmol). Purification by column chromatography with gradient of CH₂Cl₂/MeOH (100% to 95:5%) afforded the title compound **51** as a white solid. Yield, 43% (0.15 g). Mixture of diastereoisomers (49%, 51%). ³¹P NMR (202 MHz, MeOD): δ_P 4.13, 4.07. ¹⁹F NMR (470 MHz, MeOD): δ_F – 114.92, –115.43 (2 x d, J = 251.1 Hz, *F*), – 118.73 (broad signal, *F*). ¹H NMR (500 MHz, MeOD): δ_H 8.22 – 8.19 (m, 1H, Ar*H*), 7.93 – 7.89 (m, 1H, Ar*H*), 7.76 – 7.71 (m, 1H, Ar*H*), 7.58 – 7.52 (m, 3H, Ar*H*), 7.47 – 7.26 (m, 2H, Ar*H*, *H*-6), 6.31 – 6.25 (m, 1H, *H*-1'), 5.82, 5.78 (2 x d, J = 7.50 Hz, *H*-5), 5.25 – 5.18 (m, 1H, *H*-3'), 4.61 – 4.34 (m, 3H, 2 x *H*-5', *H*-4'), 4.09 – 4.02 (m, 3H, OCH₂CH₂, C*H*CH₃), 1.61 – 1.55 (m, 2H, OCH₂CH₂), 1.51, 1.49 (2 x s, 9H, C(CH₃)₃), 1.40 – 1.36 (m, 3H, CHCH₃), 1.32 – 1.28 (m, 4H, 2 x CH₂ ester), 0.89 – 0.84 (m, 3H, CH₃ ester).

2'-Deoxy-2',2'-difluoro-D-cytidine-5'-O-[1-naphthyl(pentoxy-L-alaninyl)]

phosphate (61) was prepared according to the standard procedure **B** from **51** (0.15 g, 0.21 mmol), DCM (2 mL), TFA (2 mL). Purification on silica gel afforded the target product as a white solid. Yield, 25% (0.032 g). (ES+) m/z, found: (M + Na⁺) 633.20 $C_{27}H_{33}F_2N_4O_8NaP$ required: (M⁺) 610.54. Mixture of diastereoisomers (49%, 51%). ³¹P NMR (202 MHz, MeOD): δ_P 4.16, 4.12. ¹⁹F NMR (470 MHz, MeOD): δ_F – 117.58, -118.08 (2 x d, J = 245 Hz, F), -119.92 (broad signal, F). ¹H NMR (500 MHz, MeOD): δ_H 8.22 – 8.19 (m, 1H, ArH), 7.93 – 7.90 (m, 1H, ArH), 7.76 – 7.72 (m, 1H, ArH), 7.58 – 7.39 (m, 5H, 4 x ArH, H-6), 6.26 – 6.22 (m, 1H, H-1'), 5.78, 5.72 (2 x d, J = 7.20 Hz, H-5), 4.60 - 4.41 (m, 2H, H-5'), 4.26 - 4.17 (m, 1H, H-3'),4.12 – 4.01 (m, 4H, H-4', OCH₂CH₂, CHCH₃), 1.60 – 1.57 (m, 2H, OCH₂CH₂), 1.37 -1.34 (m, 4H, 2 x CH₂ ester), 1.32 - 1.29 (m, 3H CHCH₃), 0.89 - 0.84 (m, 3H, CH₃) ester). ¹³C NMR (125 MHz, MeOD): δ_{C} 175.15 (C=O, ester), 167.54 (C-NH₂), 157.63 (C=O, base), 147.97 (C-OAr), 142.38, 142.28 (CH-base), 136.35 (C-Ar), 128.97, 128.95, 127.92, 127.88, 127.62, 127.54, 126.56 (CH-Ar), 123.50 (broad signal, CF₂), 116.34, 116.32, 116.26, 116.24 (CH-Ar), 96.63, 96.58 (CH-base), 86.24 (broad signal, C-1'), 80.33 (broad d, ${}^{3}J_{C-F}$ = 8.0 Hz, C-4'), 71.15, 71.03 (2 x d, ${}^{2}J_{C-F}$ = 23.0 Hz, C-3'), 66.53, 66.49 (OCH₂), 65.85, 65.81 (2 x d, ${}^{2}J_{C-P} = 5.20$ Hz, C-5'), 51.89, 51.80 (CHCH₃), 29.35, 29.10 (CH₂ ester), 23.33 (CH₂ ester), 20.50, 20.37 (2 x d, ${}^{3}J_{C-}$ $_{\rm P}$ = 7.50 Hz, CHCH₃), 14.25 (CH₃ ester). Reverse HPLC, eluting with H₂O/MeOH from 100/0 to 0/100 in 35 min, showed two peaks of diastereoisomers with $t_{\rm R} = 26.28$ min and $t_{\rm R} = 26.76 \text{ min} (45\%, 52\%)$.