Supporting Information

"Thermodynamics of Formation of the Insulin Hexamer: Metal-Stabilized Proton-Coupled Assembly of Quaternary Structure"

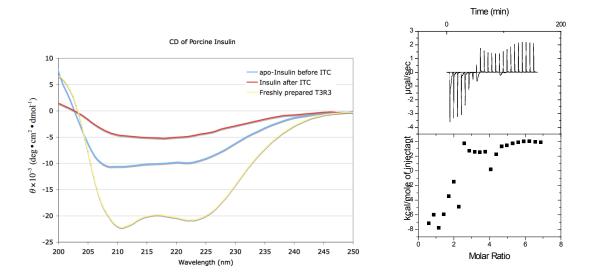

Margaret C. Carpenter and Dean E. Wilcox

Table of Contents

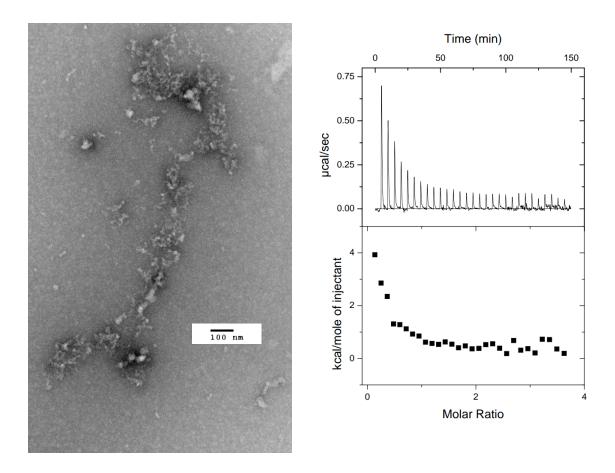
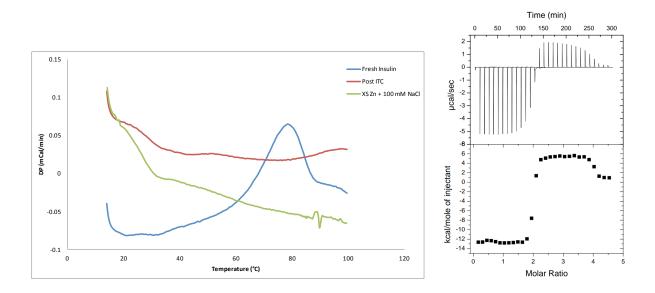
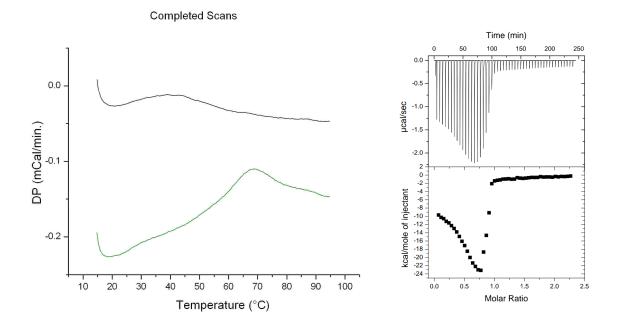
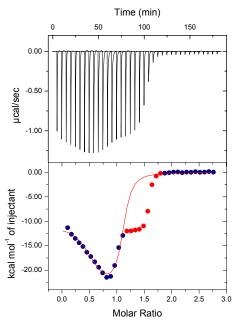
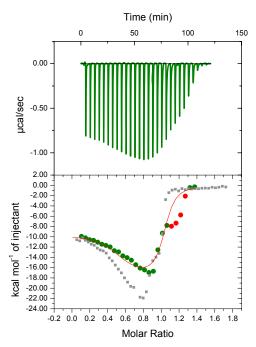

- **Page 2** Figure S1. UV-CD spectra of a fresh insulin sample prior to ITC measurement and the T_3R_3 ' sample prepared by addition of Zn^{2+} , Ca^{2+} and Cl^- to this insulin in an ITC measurement, as well as a spectrum of a freshly prepared T_3R_3 ' insulin sample; the thermogram of the ITC measurement.
- **Page 3** Figure S2. TEM picture of a T_3R_3 ' sample prepared by addition of Zn^{2+} , Ca^{2+} and Cl^- to insulin in an ITC measurement; the thermogram of the ITC measurement.
- **Page 4** Figure S3. DSC thermogram of a freshly prepared T_3R_3 ' insulin sample and a T_3R_3 ' sample prepared by addition of Zn^{2+} , Ca^{2+} and Cl^- to insulin in an ITC measurement, as well as a DSC thermogram of a fibrillated insulin sample; the thermogram of the ITC measurement.
- **Page 5** Figure S4. DSC thermogram of the resulting insulin sample after an ITC measurement of EDTA chelation of Zn^{2+} from a T_3R_3 sample; the thermogram of the ITC measurement.
- **Page 6** Figure S5. Best fit of T_3R_3 ' chelation thermogram to a two-sites binding model.

Figure S6. Best fit of T_6 chelation thermogram to a two-sites binding model.


- **Page 7** Figure S7. Analysis of the enthalpy of ITC measurements of EDTA chelation of Zn^{2+} from T_3R_3 insulin in three different buffers, which allows determination of coupled (de)protonation upon Zn^{2+} binding, as indicated in the figure caption.
- **Page 8** Figure S8. The best fit of the second event in the ITC thermogram of an ETDA chelation of Zn^{2+} from T_3R_3 insulin using a competition binding model.


Figure S1. (left) UV CD spectra of insulin; blue spectrum: fresh insulin sample prior to ITC measurement; yellow spectrum: T_3R_3 ' sample prepared by direct addition of the appropriate stoichiometric amounts of Zn^{2+} , Ca^{2+} and Cl^- to insulin; red spectrum: T_3R_3 ' sample prepared by addition of Zn^{2+} , Ca^{2+} and Cl^- to insulin through an ITC experiment; (right) ITC thermogram of the insulin sample used for the red CD spectrum: 1.6 mM $ZnCl_2 + 1.6$ mM $CaCl_2 \rightarrow 0.05$ mM porcine insulin monomer, 7 mM phosphate buffer, pH 7.4, 25 ± 0.2 °C.


Figure S2. (left) Transmission electron microscopy (TEM) image of a T_3R_3 ' insulin sample prepared by addition of Zn^{2+} , Ca^{2+} and Cl^- to insulin through an ITC experiment; (right) ITC thermogram of T_3R_3 ' insulin sample used for the TEM image: 0.8 mM $ZnCl_2 + 0.8$ mM $CaCl_2 \rightarrow 0.05$ mM porcine insulin monomer, 50 mM ACES buffer, pH 7.4, 25 ± 0.2 °C.


Figure S3. (left) DSC thermograms of insulin; blue: fresh T_3R_3 ' sample prepared by direct addition of the appropriate stoichiometric amounts of Zn^{2+} , Ca^{2+} and Cl^- to insulin; green: insulin sample with excess Zn^{2+} and NaCl added to concentrations known to induce aggregation (fibrillation); red: T_6 ' sample prepared by addition of Zn^{2+} and Ca^{2+} to insulin through an ITC experiment; (right) ITC thermogram of insulin sample used for the red DSC thermogram: 1 mM $ZnSO_4 + 1$ mM $CaSO_4 \rightarrow 0.05$ mM porcine insulin monomer, 50 mM ACES buffer, pH 7.4, 25 ± 0.2 °C.

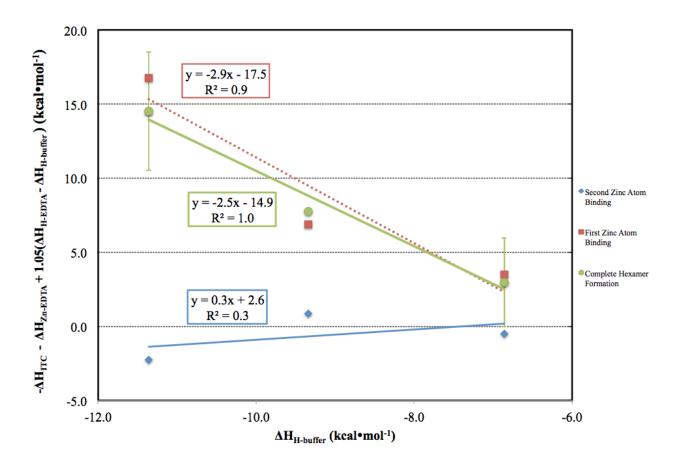
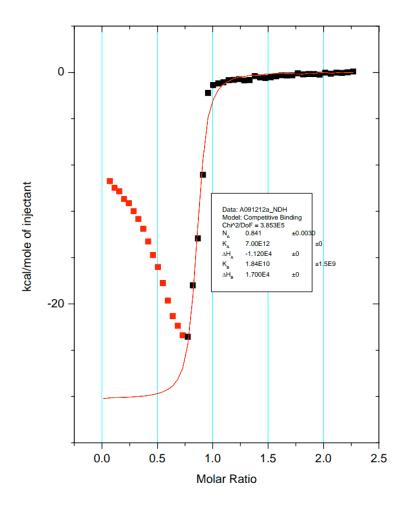

Figure S4. (left) DSC thermogram of insulin sample after ITC chelation measurement of T_3R_3 (green), with buffer baseline scan (black); (right) ITC thermogram of EDTA chelation of T_3R_3 insulin sample used for the DSC thermogram: 0.5 mM EDTA \rightarrow 0.05 mM ZnCl₂ + 0.150 mM human insulin monomer, 50 mM Tris buffer, pH 7.4, 25 ± 0.2 °C.

Figure S5. ITC thermogram of EDTA chelation of T_3R_3 '; 0.28 mM EDTA \rightarrow 0.027 mM ZnCl₂ + 0.013 mM CaCl₂ + 0.08 mM human insulin monomer in 50 mM Tris buffer, pH 7.4, 25 ± 0.2 °C; data attributed to Ca²⁺ chelation masked (red circles) for fit; best fit parameters using a twosites binding model: $n_1 = 0.50 \pm 0.01$, $K_1 = 5.0 (\pm 0.6) \times 10^7$, $\Delta H_1 = -10.6 \pm 0.3$ kcal·mol⁻¹; values for second site fixed at: $n_2 = 0.58$, $K_2 = 4.3 \times 10^6$, $\Delta H_2 = -25$ kcal·mol⁻¹.

Figure S6. ITC thermogram of EDTA chelation of T_6 ; 0.28 mM EDTA \rightarrow 0.027 mM ZnSO₄ + 0.08 mM human insulin monomer, 50 mM Tris buffer, pH 7.4, 25 ± 0.2 °C; data attributed to chelation of trace (<3 μ M) Ca²⁺ masked (red circles) for fit; best fit parameters using a two-sites binding model: values for first site fixed at n_1 = 0.513, K_1 = 7 x 10⁷, ΔH_1 = -9.5 kcal·mol⁻¹; n_2 = 0.51 ± 0.01, K_2 = 5 (± 1) x 10⁶, ΔH_2 = -18.6 ± 0.3 kcal·mol⁻¹.


Figure S7. Plot of experimental ITC chelation enthalpies measured in Tris, Bis-Tris and ACES buffers to determine protonation/deprotonation contributions to the enthalpy at pH 7.4; red: first Zn^{2+} binding event; blue: second Zn^{2+} binding event; green: overall formation of the hexamer (sum of the two Zn^{2+} binding events). Plots are based on the sum of the contributions to the experimental enthalpy,

$$\Delta H_{ITC} = \Delta H_{EDTA-Zn} + 1.05 \left(\Delta H_{Hbuffer} - \Delta H_{HEDTA} \right) + \Delta H_{Ins-Zn} + n \left(\Delta H_{Hbuffer} \right)$$

which can be rearranged to give a linear relationship between the experimental enthalpy (ΔH_{ITC}) and the buffer protonation enthalpy ($\Delta H_{\text{Hbuffer}}$).

$$\Delta H_{ITC} - \Delta H_{EDTA-Zn} + 1.05 (\Delta H_{HEDTA} - \Delta H_{Hbuffer}) = n (\Delta H_{Hbuffer}) + \Delta H_{Ins-Zn}$$

A plot of the experimental enthalpy, corrected for enthalpy contributions from Zn^{2+} binding to EDTA ($-\Delta H_{EDTA-Zn} + 1.05(\Delta H_{HEDTA} - \Delta H_{Hbuffer})$), versus the buffer protonation enthalpy has a slope indicating the number of protons (n) binding to or released from insulin upon Zn^{2+} binding to the protein.

Figure S8. Best fit (red line) of the second event in the ITC thermogram of a representative EDTA chelation of T_3R_3 insulin using a competition binding model to determine the insulin-Zn²⁺ equilibrium constant; data due to the first event are masked (red squares) for the fit; input values for the fit are a) the stability constant of the EDTA-Zn²⁺ complex (7.0 x 10¹²), determined from literature values and the experimental conditions, b) the enthalpy of formation of the EDTA-Zn²⁺ complex (-11.2 kcal/mol), determined independently for the experimental conditions, and c) the enthalpy of formation of the insulin-Zn²⁺ complex (17.0 kcal/mol), determined from the best fit of the entire thermogram to a two-sites binding model; experimental conditions are 50 mM Tris buffer, pH 7.4, 25 ± 0.2 °C.