Solid-State NMR Spectra of Lipid-Anchored Proteins under Magic Angle Spinning

Supporting Information

Kaoru Nomura*, Erisa Harada, Kenji Sugase, and Keiko Shimamoto

Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto-Cho, Mishima-Gun, Osaka 618-8503, Japan

*K. Nomura: e-mail, <u>nomura@sunbor.or.jp</u>.

1. Synthesis of Lipid-Anchor Mimic.

General methods. All chemicals were reagent grade and purchased from Nacalai Tesque_(Kyoto, Japan). All reactions were monitored using TLC on Silica Gel 60 F254 precoated glass slides (Merck) with examination under UV light (254 nm) and/or by charring with 5% 12 molybdo(VI)phosphoric acid in EtOH. Flash column chromatography was performed on silica gels (Silica Gel 60 mesh 230-400 or spherical, Nacalai Tesque). ¹H, ¹³C, and ³¹P NMR spectra were recorded at 25 °C on a Bruker DMX-500 spectrometer (Bruker Biospin) and analyzed with

solvent peaks as internal references for ¹H and ¹³C NMR or 5% H_3PO_4 for ³¹P NMR. The overall synthetic scheme is shown in Scheme 1.

N-(3-(maleimido)propionyl)-2-aminoethanol (1). To an ice-cold solution of ethanolamine (189 μ L, 3.14 mmol) in CH₂Cl₂ (10 mL), 3-(maleimido)propionic acid *N*-hydroxysuccimide ester (760 mg, 2.85 mmol) in CH₂Cl₂ (10 mL) was added drop-wise under an Ar atmosphere for 1 h. The reaction mixture was concentrated and purified by SiO₂-column chromatography (MeOH/CHCl₃1/50 \rightarrow 1/9) to give the desired product **1** (490 mg, 81%) as a colorless solid. ¹H NMR (500 MHz, CD₃OD) δ 2.45 (t, ³J_(H,H) = 7.0 Hz, 2 H; CH₂), 3.22 (dt, ³J_(H,H) = 5.8, 10.9 Hz, 2 H; CH₂), 3.53 (t, ³J_(H,H) = 5.8 Hz, 2 H; CH₂), 3.75 (t, ³J_(H,H) = 7.0 Hz, 2 H; CH₂), 6.79 (s, 2 H; CH=CH).

3-O-(2-cyanoethyl (N-(3-(maleimido)propionyl)-2-aminoethyl)phosphono)-1,2-O-

dimyristoyl-*sn*-glycerol(2). To a solution of 1,2-*O*-dimyristoyl-*sn*-glycerol (424 mg, 0.83 mmol)^{S1} and 1*H*-tetrazole (116 mg, 1.66 mmol) in CH₂Cl₂ (5 mL), a solution of 2-cyanoethyl *N*,*N*,*N*,*N*-tetraisopropylphosphorodiamidite (500 mg, 1.66 mmol) in CH₂Cl₂ (5 mL) was added.^{S2} The reaction mixture was stirred for 1 h at room temperature, concentrated *in vacuo*, and purified by SiO₂-column chromatography (hexane/AcOEt/Et₃N 6/1/0.1) to give the phosphoroamidite (524 mg, 88%) as a colorless oil. To a suspension of **1** (140 mg, 0.66 mmol) in CH₂Cl₂ (10 mL), a solution of the phosphoroamidite (426 mg, 0.60 mmol) in CH₂Cl₂ (10 mL) and 1*H*-tetrazole (210 mg, 3 mmol) was added under an Ar atmosphere. After the mixture was stirred for 1 h at room temperature, and extracted with AcOEt. The mixture was stirred for an additional 1 h at room temperature, and extracted with AcOEt. The organic phase was washed with aqueous NaHCO₃ and brine, dried over MgSO₄, and concentrated *in vacuo*. The obtained crude product was purified by SiO₂-column

chromatography (MeOH/CHCl₃ 1/50 \rightarrow 1/20) to give the desired product **2** (398 mg, 80%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 0.87 (t, ³*J*_(H,H) = 6.7 Hz, 6 H; CH₃ x2), 1.16-1.32 (m, 40 H), 1.59 (m, 4 H; CH₂ x2), 2.31 (t, ³*J*_(H,H) = 7.5 Hz, 2 H; CH₂), 2.34 (t, ³*J*_(H,H) = 7.5 Hz, 2 H; CH₂), 2.54 (m, 2 H; CH₂), 2.78 (m, 2 H; CH₂), 3.52 (m, 2 H; CH₂), 3.84 (m, 2 H; CH₂), 4.10-4.36 (m, 8 H; CH₂ x4), 5.26 (m, 1 H; CH), 6.56 (m, 1 H; NH), 6.69 (s, 2 H; CH=CH). ¹³C NMR (125 MHz, CDCl₃) δ 14.0, 19.6, 19.7, 22.6, 24.7, 28.98, 29,02, 29.2, 29.3, 29.4, 29.5-29.6, 31.8, 33.9, 34.1, 34.11, 34.4, 61.5, 62.2, 65.9, 67.4, 69.2, 116.5, 134.1, 170.1, 170.4, 172.9, 173.3. ³¹P NMR (202 MHz, CDCl₃) δ -1.11.

3-O-(N-(3-(maleimido)propionyl)-2-aminoethyl phosphono)-1,2-O-dimyristoyl-sn-

glycerol triethylamine salt (3). To a solution of 2 (35 mg, 0.042 mmol) in CH₂Cl₂ (2 mL), a solution of DBU (37 µL, 0.25 mmol) in CH₂Cl₂ (2 mL) was added at 0 °C under an Ar atmosphere.^[S3] After being stirred for 5 min at 0 °C, the mixture was quenched with ice-cold 0.1 M HCl, and was extracted with CHCl₃. The organic phase was washed with brine, dried over MgSO₄, and concentrated *in vacuo*. The obtained crude product was purified by SiO₂-column chromatography (MeOH/CHCl₃5/95 \rightarrow MeOH/CHCl₃/Et₃N10/90/1 \rightarrow 20/80/1) to give the desired product 3 (28 mg, 85%) as a pale yellow oil. ¹H NMR (500 MHz, 50% CD₃OD/CDCl₃) δ 0.85 (t, ³*J*_(H,H) = 6.7 Hz, 6 H; CH₃x2), 1.18-1.29 (m, 40 H), 1.31 (t, ³*J*_(H,H) = 7.3 Hz, 9 H; CH₃ x3), 1.57 (m, 4 H; CH₂x2), 2.26 (m, 4 H; CH₂x2), 2.48 (t, ³*J*_(H,H) = 7.4 Hz, 2 H; CH₂), 3.03 (q, ³*J*_(H,H) = 7.3 Hz, 6 H; CH₂x3), 3.41 (m, 2 H; CH₂), 3.81 (t, ³*J*_(H,H) = 7.4 Hz, 2 H; CH₂), 3.92-3.99 (m, 4 H; CH₂x2), 4.14 (dd, ³*J*_(H,H) = 6.6, 12.0 Hz, 1 H; CH₂), 4.36 (dd, ³*J*_(H,H) = 3.2, 12.0 Hz, 1 H; CH₂), 5.21 (m, 1 H; CH), 6.65 (s, 2 H; CH=CH). ¹³C NMR (125 MHz, 50% CD₃OD/CDCl₃) δ 8.5, 14.0, 22.6, 24.76, 24.80, 29.01, 29.03, 29.19, 29.20, 29.4, 29.5-29.6, 31.8, 34.0, 34.18,

34.23, 34.3, 40.91, 40.94, 45.5, 62.5, 63.50, 63.54, 63.89, 63.94, 70.23, 70.29, 134.1, 169.8, 170.4, 173.0, 173.4. ³¹P NMR (202 MHz, 50% CD₃OD/CDCl₃) δ 1.11.

2. Expression and Purification of Cysteine-Tagged GB1.

The DNA sequence corresponding to the GB1-GSMNGSSGS-C (GB1-linker) construct was subcloned from a full-length GB1 construct. The DNA sequences were PCR amplified using corresponding primers and pET21a-GB1 as the template DNA. The amplified genes were ligated back into the pET21a vector (Novagen) using the *Nde*I and *Bam*HI restriction sites (New England Biolabs). Bacterial expression of the uniformly ¹³C- and ¹⁵N-labeled GB1-linker constructs in *Escherichia coli* BL21(DE3) was performed in M9 minimal media in the presence of carbenicilin at 37°C. Protein expression was induced by the addition of 1 mM isopropyl β -D-1-thiogalacto-pyranoside (IPTG) overnight at 25°C. The cell pellet was lysed by sonication in buffer A (50 mM Tris-HCl, 10 mM DTT, pH 8) at 4°C. To precipitate nucleic acids and unwanted proteins, the lysate was acidified by 0.1% trifluoroacetic acid (TFA). Following centrifugation, the supernatant was purified using a C4 HPLC packed column (200×150 mm, Waters) with a water/acetonitrile gradient in the presence of 0.1% (v/v) TFA at 40 °C.

References

(21) Vogel, A.; Reuther, G.; Weise, K.; Triola, G.; Nikolaus, J.; Tan, K. T.; Nowak, C.; Herrmann, A.; Waldmann, H.; Winter, R.; Huster, D. The Lipid Modifications of Ras That Sense Membrane Environments and Induce Local Enrichment. *Angew Chem Int Ed Engl* **2009**, *48*, 8784-8787.

(22) Lyukmanova, E. N.; Shenkarev, Z. O.; Shulepko, M. A.; Mineev, K. S.; D'Hoedt, D.; Kasheverov, I. E.; Filkin, S. Y.; Krivolapova, A. P.; Janickova, H.; Dolezal, V.; Dolgikh, D. A.; Arseniev, A. S.; Bertrand, D.; Tsetlin, V. I.; Kirpichnikov, M. P. NMR Structure and Action on Nicotinic Acetylcholine Receptors of Water-Soluble Domain of Human LYNX1. *J Biol Chem* **2011**, *286*, 10618-10627.

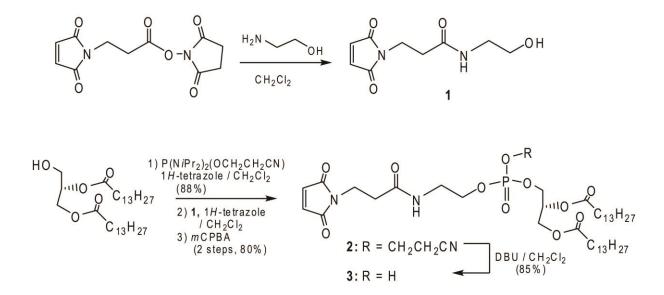
(62) Yang, Y.; Ramelot, T. A.; McCarrick, R. M.; Ni, S.; Feldmann, E. A.; Cort, J. R.; Wang, H.; Ciccosanti, C.; Jiang, M.; Janjua, H.; Acton, T. B.; Xiao, R.; Everett, J. K.; Montelione, G. T.; Kennedy, M. A. Combining NMR and EPR Methods for Homodimer Protein Structure Determination. *J Am Chem Soc* **2010**, *132*, 11910-11913.

(S1) Baeschlin, D. K.; Chaperon, A. R.; Charbonneau, V.; Green, L. G.; Ley, S. V.; Lucking, U.; Walther, E. Rapid Assembly of Oligosaccharides: Total Synthesis of a Glycosylphosphatidylinositol Anchor of Trypanosoma Brucei *Angew. Chem. Int. Ed.* **1998**, *37*, 3423-3428.

(S2) Q.-M. Gu,; Prestwich, G. D. Synthesis of Phosphotriester Analogues of the Phosphoinositides PtdIns(4,5)P₂ and PtdIns(3,4,5)P₃. J. Org. Chem., **1996**, 61, 8642-8647.

(S3) Paulick, M. G.; Wise, A. R.; Forstner, M. B.; Groves, J. T.; Bertozzi, C. R. Synthetic Analogues of Glycosylphosphatidylinositol-Anchored Proteins and Their Behavior in Supported Lipid Bilayers. *J. Am. Chem. Soc.* **2007**, *129*, 11543-11550.

Scheme


Scheme 1. Synthetic scheme of the GPI anchor mimic.

Figures

Figure S1. Gel filtration profiles of the reaction mixture and each eluted fraction from gravityflow column filtration of the reaction mixture between GB1 and the bicelle-containing anchor. Fraction numbers are shown at the top left in each profile. Beginning at fraction 7, the uncoupled GB1 signal gradually appeared.

Figure S2. Schematics of NMR pulse sequences used for measurements of backbone amide ¹⁵N longitudinal relaxation rate constant R_1^N . Narrow and wide black rectangles correspond to 90° and 180° pulses, respectively. Phases of RF pulses in the sequences are as follows: $\phi_1 = x, x, -x, -x; \phi_2 = y, -y; \phi_3 = x, x, -x, -x; \phi_4 = x, x, x, x, y, y, y, y, -x, -x, -x, -y, -y, -y, -y; \phi_5 = x, x, -x, -x, y, y, -y, -y; \phi_6 = -y, y, -y, y, x, -x, x, -x; \phi_7 = y, -y, y, -y, -x, x, -x, x; receiver = x, -x, x, -x, y, -y, y, -y, -y, y.$

Figure S3. Comparison of the backbone amide ¹⁵N longitudinal relaxation rate constant R_1^N of GB1. The R_1^N values of the anchored GB1 in the bicelles prepared in this study are shown in red, and those reported by the solution NMR experiment at 30°C, pH 7.2 performed by Idiyatullin *et al.* in blue.⁵³ The R_1^N values of the residues whose quantitative measurement could not be made were set to zero.

Scheme S1

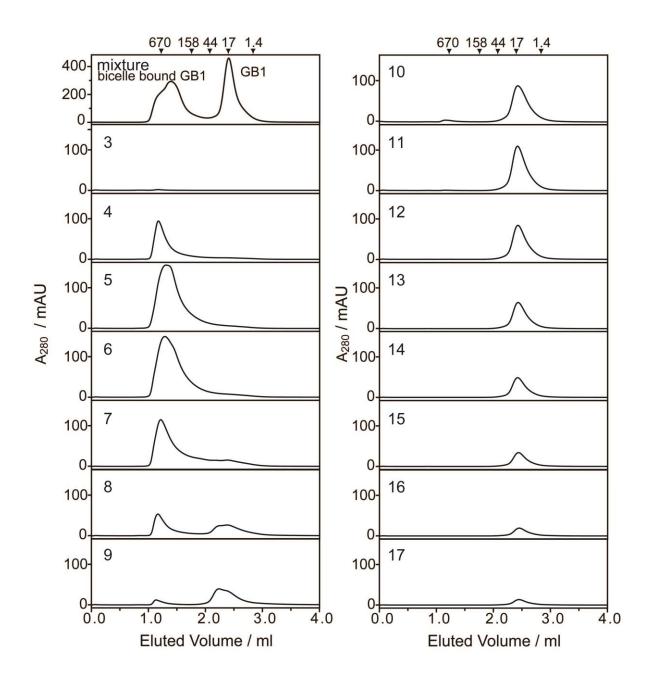


Figure S1

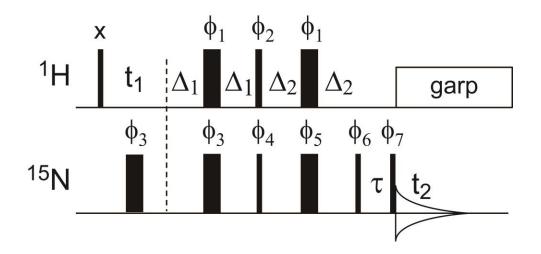


Figure S2

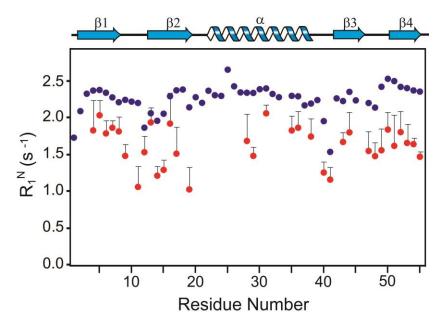


Figure S3.