Tris(5,6,7,8-tetrafluoronaphthalen-2-yl)borane, a Partially Fluorinated Boron Lewis Acid with Fluorination Distal to the Boron Atom

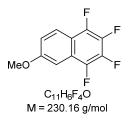
Jens Mohr, Mustafa Durmaz, Elisabeth Irran, and Martin Oestreich*

Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany martin.oestreich@tu-berlin.de

Supporting Information

Table of Contents

1	General Information	S3
2	Experimental Details for the Preparation of	S4
	Tris(5,6,7,8-tetrafluoronaphthalen-2-yl)borane (5)	
2.1	1,2,3,4-Tetrafluoro-6-methoxynaphthalene	S4
2.2	5,6,7,8-Tetrafluoronaphthalen-2-ol (11)	S5
2.3	5,6,7,8-Tetrafluoronaphthalen-2-yl Trifluoromethanesulfonate (12)	S5
2.4	4,4,5,5-Tetramethyl-2-(5,6,7,8-tetrafluoronaphthalen-2-yl)-1,3,2-dioxaborolane (13)	S6
2.5	6-Bromo-1,2,3,4-tetrafluoronaphthalene (6)	S7
2.6	Trimethyl(5,6,7,8-tetrafluoronaphthalen-2-yl)stannane (14)	S8
2.7	Tris(5,6,7,8-tetrafluoronaphthalen-2-yl)borane (5)	S9
3	General Procedure for the Preparation of	S10
	Triethylphosphine Oxide Adducts of Boranes	
3.1	Tris(5,6,7,8-tetrafluoronaphthalen-2-yl)borane Triethylphosphine Oxide Adduct	S10
	(5 ·Et₃PO)	
3.2	Tris(pentafluorophenyl)borane Triethylphosphine Oxide Adduct ($1 \cdot Et_3PO$)	S10
3.3	Tris(5,6,7,8-tetrafluoronaphthalen-2-yl)borane Triphenylphosphine Oxide Adduct	S11
	(5 ·Ph ₃ PO)	
4	Experimental Details for Reactions Catalyzed by	S11
	Tris(5,6,7,8-tetrafluoronaphthalen-2-yl)borane (5)	
4.1	Dimethyl(phenyl)(1-phenylethoxy)silane (17)	S11
4.2	N-(1-Phenylethyl)aniline (19)	S12


5	NMR Spectra	S13
6	Molecular Sructures and X-Ray Data	S43
6.1	Molecular Structure of 5·OH ₂ (THF) ₂	S44
6.2	Molecular Structure of 5·Ph ₃ PO	S45
7	References	S46

1 General Information

All reactions were performed in flame-dried glassware using an *MBraun* glove box ($O_2 < 0.5$ ppm, $H_2O < 0.5$ ppm) or conventional Schlenk techniques under a static pressure of nitrogen. Liquids and solutions were transferred with syringes. Solvents (1,2-F₂C₆H₄, *n*-hexane, *n*-pentane, diethyl ether, THF, CH₂Cl₂, 1,4-dioxane, toluene, and methanol) were dried and purified following standard procedures. Technical grade solvents for extraction or chromatography (diethyl ether, cyclohexane, ethyl acetate, n-pentane) were distilled prior to use. C₆F₅Br, nBuLi (solution in hexanes), 3-bromothiophene, C₆F₅Cl, 3-methoxythiophene, BBr₃ (1.0M in CH₂Cl₂), pyridine, Tf₂O, *N*-methylmorpholine, (dppf)PdCl₂, pinacolborane, CuBr₂, Me₃SnCl, BCl₃ (1.0M in heptane), Et₃PO, and Ph₃PO were purchased from commercial suppliers and used without further purification. Acetophenone (16) and 1-phenylethanol (20) were dried over CaSO₄ or molecular sieves and distilled prior to use. Me₂PhSiH (15) was dried over LiAlH₄ and distilled prior to use. (E)-N,1-Diphenylethan-1-imine (18),[S1] iPrMgCl·LiCl (solution in THF),[S2] and $B(C_6F_5)_3$ (1)^[S3] were prepared according to reported procedures. Analytical thin layer chromatography (TLC) was performed on silica gel 60 F254 glass plates by Merck. Flash column chromatography was performed on silica gel 60 (40-63 µm, 230-400 mesh, ASTM) by Merck using the indicated solvents. ¹H, ¹¹B, ¹³C, ¹⁹F, ²⁹Si, ¹¹⁹Sn, and 2D NMR spectra were recorded in CD₂Cl₂, CDCl₃, or C₆D₆ on Bruker AV400, AV 500, DRX500, and AV700 instruments (Technische Universität Berlin, Germany). Chemical shifts are reported in parts per million (ppm) and are referenced to the residual solvent resonance as the internal standard (CD₂Cl₂: δ = 5.32 ppm for ¹H and 53.8 ppm for ¹³C NMR; CDCl₃: δ = 7.26 ppm for ¹H and 77.2 ppm for ¹³C NMR; C_6D_6 : δ = 7.16 ppm for ¹H and 128.1 ppm for ¹³C NMR). Data are reported as follows: chemical shift, multiplicity (br s = broad singlet, s = singlet, d = doublet, t = triplet, m = multiplet, m_c = centrosymmetric multiplet), coupling constants (Hz), and integration. Gas liquid chromatography (GLC) was performed on an Agilent Technologies 7820A gas chromatograph equipped with a FS-SE-54 capillary column (30 m × 0.32 mm, 0.25 µm film thickness) by CS-Chromatographie Service using the following program: N₂ carrier gas, injection temperature 240 °C, detector temperature 300 °C, flow rate: 1.74 mL/min; temperature program: start temperature 40 °C, heating rate 10 °C/min, end temperature 280 °C for 10 min. Infrared (IR) spectra were recorded on an Agilent Technologies Cary 630 FT-IR spectrometer (Technische Universität Berlin, Germany) equipped with an ATR unit and the signals (w = weak, m = medium, s =strong) are reported in wavenumbers (cm⁻¹). Melting points (m.p.) were determined with a Stuart Scientific SMP20 melting point apparatus and are not corrected. Mass spectra (MS) were obtained from the Analytical Facility at the Institut für Chemie, Technische Universität Berlin.

2 Experimental Details for the Preparation of Tris(5,6,7,8-tetrafluoronaphthalen-2-yl)borane (5)


2.1 1,2,3,4-Tetrafluoro-6-methoxynaphthalene

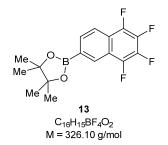
To a solution of chloropentafluorobenzene (2.58 mL, 4.05 g, 20.0 mmol, 2.50 equiv) and 3-methoxythiophene (0.80 mL, 0.91 g, 8.0 mmol, 1.0 equiv) in *n*-hexane (40 mL) at –20 °C, *n*BuLi (1.5M in *n*-hexane, 10.7 mL, 16.0 mmol, 2.00 equiv) was added dropwise. The reaction mixture was allowed to warm to room temperature, diluted with diethyl ether (50 mL), and washed with aqueous HCI (2M, 20 mL), aqueous NaOCI (11–14%, 20 mL), aqueous NaOH (1M, 20 mL), and brine (40 mL). The organic phase was dried over Na₂SO₄ and concentrated under reduced pressure. Flash column chromatography on silica gel using cyclohexane as eluent and subsequent sublimation at room temperature under full vacuum afforded the title compound (1.07 g, 58%) as a white solid.

m.p. = 69–70 °C (cyclohexane). *R*_f = 0.23 (cyclohexane). **GLC** (SE-54): t_R = 13.3 min. **IR** (ATR): \tilde{v} = 3109 (w), 3063 (w), 3016 (w), 2979 (w), 1934 (w), 1793 (w), 1670 (m), 1621 (s), 1516 (s), 1495 (m), 1463 (m), 1444 (m), 1421 (s), 1364 (s), 1292 (m), 1259 (m), 1234 (s), 1182 (m), 1117 (m), 1023 (s), 980 (s), 912 (s), 830 (s), 781 (s), 677 (s) cm⁻¹. **HRMS** (EI) calculated for C₁₁H₆F₄O [M]⁺: 230.0349; found: 230.0349. ¹**H NMR** (400 MHz, CDCl₃): δ = 3.94 (s, 3H), 7.15–7.22 (m, 2H), 7.81–7.90 (m, 1H) ppm. ¹³**C NMR** (101 MHz, CDCl₃): δ = 55.7, 98.0 (m_c), 114.7 (m, *J* = 14.9 Hz), 120.7, 121.1 (m, *J* = 14.3 Hz), 121.9 (m_c), 136.2 (m, *J* = 248.6 Hz), 138.5 (m, *J* = 251.4 Hz), 141.5 (m, *J* = 248.2 Hz), 142.4 (m, *J* = 248.2 Hz), 159.0 ppm. ¹⁹**F NMR** (659 MHz, CDCl₃): δ = –163.6 (m_c), –159.1 (m_c), –152.1 (m_c), –150.7 (m_c) ppm. The analytical and spectroscopic data are in accordance with those reported.^[S4]

2.2 5,6,7,8-Tetrafluoronaphthalen-2-ol (11)

BBr₃ (1M in CH₂Cl₂, 17.4 mL, 17.4 mmol, 4.00 equiv) was added dropwise to a solution of 1,2,3,4-tetrafluoro-6-methoxynaphthalene (1.00 g, 4.35 mmol, 1.00 equiv) in CH₂Cl₂ (60 mL) at 0 °C. The reaction mixture was allowed to warm to room temperature and stirred overnight. The reaction mixture was diluted with diethyl ether (100 mL) and washed with water. The organic phase was dried over Na_2SO_4 and concentrated under reduced pressure. Flash column chromatography on silica gel using cyclohexane/ethyl acetate (5:1) as eluent afforded the title compound **11** (0.86 g, 91%) as a white solid.

m.p. = 84–85 °C (cyclohexane/ethyl acetate). *R*_f = 0.24 (cyclohexane/ethyl acetate = 5:1). **GLC** (SE-54): t_R = 15.0 min. **IR** (ATR): \tilde{v} = 3279 (s), 1669 (m), 1622 (m), 1521 (s), 1495 (m), 1426 (s), 1389 (s), 1303 (m), 1248 (w), 1198 (s), 1124 (m), 1029 (s), 992 (m), 919 (s), 866 (m), 839 (s), 820 (s), 799 (s), 751 (w), 699 (w), 677 (m) cm⁻¹. **HRMS** (EI) calculated for C₁₀H₄F₄O [M]⁺: 216.0193; found: 216.0195. ¹**H NMR** (500 MHz, CDCl₃): δ = 5.65 (s, 1H), 7.20 (dd, *J* = 9.2 Hz, *J* = 2.3 Hz, 1H), 7.28 (m_c, 1H), 7.91 (d, *J* = 9.2, 1H) ppm. ¹³**C NMR** (126 MHz, CDCl₃): δ = 102.4 (m_c), 115.0 (m, *J* = 15.1 Hz), 119.5, 121.1 (m, *J* = 14.3 Hz), 122.7 (m), 136.3 (m, *J* = 249.6 Hz), 138.6 (m, *J* = 251.8 Hz), 141.2 (m, *J* = 248.4 Hz), 142.5 (m, *J* = 251.0 Hz), 154.7 ppm. ¹⁹**F NMR** (659 MHz, CDCl₃): δ = -163.2 (m_c), -158.5 (m_c), -151.9 (m_c), -150.4 (m_c) ppm. The analytical and spectroscopic data are in accordance with those reported.^[S4]


2.3 5,6,7,8-Tetrafluoronaphthalen-2-yl Trifluoromethanesulfonate (12)

Tf₂O (0.81 mL, 1.4 g, 4.8 mmol, 1.3 equiv) was added dropwise to a solution of alcohol **11** (0.80 g, 3.7 mmol, 1.0 equiv) and pyridine (0.45 mL, 0.44 g, 5.6 mmol, 1.5 equiv) in CH₂Cl₂ (60 mL) at 0 °C. The reaction mixture was allowed to warm to room temperature and stirred for 2 h. After addition of saturated aqueous NaHCO₃, the phases were separated, the aqueous phase was extracted with dichloromethane, and the combined organic phases were dried over Na₂SO₄. After evaporation of the solvent under reduced pressure, the resulting residue was purified by flash column chromatography on silica gel using cyclohexane as eluent to afford the title compound **12** (1.08 g, 84%) as a colorless oil.

*R*_f = 0.16 (cyclohexane). **GLC** (SE-54): t_R = 13.1 min. **IR** (ATR): $\tilde{\nu}$ = 1670 (m), 1622 (m), 1520 (s), 1494 (s), 1468 (s), 1417 (s), 1371 (s), 1245 (w), 1208 (s), 1137 (s), 1037 (s), 995 (w), 918 (s), 881 (m), 854 (s), 820 (m), 778 (m), 747 (s), 664 (m) cm⁻¹. **HRMS** (EI) calculated for C₁₁H₃F₇O₃S [M]⁺: 347.9686; found: 347.9686. ¹H **NMR** (500 MHz, CDCl₃): δ = 7.53 (dd, *J* = 9.3 Hz, *J* = 2.2 Hz, 1H), 7.97 (m_c, 1H), 8.19 (d, *J* = 9.3 Hz, 1H) ppm. ¹³C **NMR** (126 MHz, CDCl₃): δ = 112.8 (m), 117.7, 118.9 (m), 120.2 (m), 120.3, 121.8, 123.8 (m), 138.9 (m, *J* = 255.1 Hz), 139.4 (m, *J* = 255.9 Hz), 142.4 (m, *J* = 255.1 Hz), 148.5 (s) ppm. ¹⁹F **NMR** (471 MHz, CDCl₃): δ = -156.1 (m_c), -155.1 (m_c), -148.3 (m_c), -72.8 ppm.

2.4 4,4,5,5-Tetramethyl-2-(5,6,7,8-tetrafluoronaphthalen-2-yl)-1,3,2-dioxaborolane (13)

To a solution of (dppf)PdCl₂ (64 mg, 88 µmol, 3.0 mol %) in 1,4-dioxane (20 mL) was added a solution of triflate **12** (1.02 g, 2.93 mmol, 1.00 equiv) and *N*-methylmorpholine (0.97 mL, 0.89 g, 8.8 mmol, 3.0 equiv) in 1,4-dioxane (10 mL). After addition of pinacolborane (1.28 mL, 1.13 g, 8.79 mmol, 3.00 equiv) the reaction mixture was heated to reflux for 24 h. Water (30 mL) was added, the phases were separated, the aqueous phase was extracted with CH_2Cl_2 (3 × 30 mL), and the combined organic phases were dried over Na_2SO_4 . After evaporation of the solvent under reduced pressure, the resulting residue was purified by flash column chromatography on

silica gel using cyclohexane/ethyl acetate (50:1) as eluent to afford the title compound **13** (0.56 g, 59%) as a white solid.

m.p. = 144–145 °C (cyclohexane/ethyl acetate). $R_{\rm f}$ = 0.61 (cyclohexane/ethyl acetate = 10:1). **GLC** (SE-54): t_R = 18.8 min. **IR** (ATR): \tilde{V} = 2987 (m), 1665 (m), 1619 (m), 1594 (m), 1514 (m), 1494 (s), 1456 (m), 1363 (s), 1343 (s), 1327 (s), 1267 (w), 1248 (w), 1211 (m), 1167 (w), 1143 (m), 1124 (s), 1090 (s), 1035 (s), 958 (s), 907 (s), 852 (s), 823 (s), 695 (s), 663 (s) cm⁻¹. **HRMS** (EI) calculated for C₁₆H₁₅BF₄O₂ [M]⁺: 326.1096; found: 326.1097. ¹H NMR (500 MHz, CDCl₃): δ = 1.40 (s, 12H), 7.97 (m_c, 2H), 8.53 (s, 1H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ = 25.1, 84.6, 119.1 (m), 119.2 (m), 121.1 (m), 127.9 (m_c), 132.2, 137.8 (m, *J* = 251.3 Hz), 138.7 (m, *J* = 253.2 Hz), 142.2 (m, *J* = 251.7 Hz), 142.6 (m, *J* = 253.2 Hz) ppm. ¹⁹F NMR (471 MHz, CDCl₃): δ = 31.2 ppm.

2.5 6-Bromo-1,2,3,4-tetrafluoronaphthalene (6)

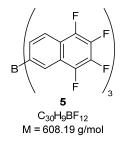
Approach A (Scheme 2): To a solution of boronate ester **13** (0.56 g, 1.7 mmol, 1.0 equiv) in MeOH/THF (3:1, 20 mL) was added dropwise a solution of CuBr₂ (1.2 g, 5.4 mmol, 3.1 equiv) in water (15 mL). The reaction mixture was heated to reflux for 20 h. The mixture was diluted with water (15 mL), the phases were separated, the aqueous phase was extracted with diethyl ether (3 × 30 mL), and the combined organic phases were dried over Na₂SO₄. After evaporation of the solvent under reduced pressure, the resulting residue was purified by flash column chromatography on silica gel using *n*-pentane as eluent to afford the title compound **6** (0.36 g, 75%) as a white solid.

Approach B (Scheme 1): *n*BuLi (1.50M in hexanes, 37.2 mL, 55.8 mmol, 1.00 equiv) was added dropwise to a solution of bromopentafluorobenzene (7.10 mL, 13.8 g, 55.8 mmol, 1.00 equiv) in *n*-hexane (80 mL) at -78 °C. After stirring for 1 h, 3-bromothiophene (6.79 mL, 11.8 g, 72.5 mmol, 1.30 equiv) was added dropwise and the reaction mixture was allowed to warm to

room temperature over the course of 15 h. The reaction mixture was filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel using *n*-pentane as eluent and subsequent crystallization from methanol to afford the title compound **6** (2.30 g, 15%) as a white solid.

m.p. = 65–66 °C (*n*-pentane). **R**_f = 0.57 (cyclohexane). **GLC** (SE-54): t_R = 13.2 min. **IR** (ATR): \tilde{v} = 3108 (w), 2124 (w), 1921 (w), 1753 (w), 1666 (m), 1635 (w), 1601 (s), 1509 (m), 1482 (m), 1452 (s), 1408 (s), 1362 (s), 1283 (w), 1248 (m), 1200 (w), 1125 (m), 1067 (m), 1029 (s), 962 (s), 879 (s), 815 (s), 751 (w), 716 (s), 669 (s) cm⁻¹. **HRMS** (EI) calculated for C₁₀H₃BrF₄ [M]⁺: 277.9348; found: 277.9349. ¹H NMR (500 MHz, CDCl₃): δ = 7.63 (d, *J* = 9.0 Hz, 1H), 7.86 (d, *J* = 9.0 Hz, 1H), 8.12 (s, 1H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ = 118.2 (m_c, *J* = 14.9 Hz), 120.7 (m_c, *J* = 14.4 Hz), 121.9 (m_c), 122.2, 122.4 (m), 131.2, 138.2 (m_c, *J* = 253.9 Hz), 138.7 (m_c, *J* = 254.2 Hz), 141.4 (m, *J* = 251.7 Hz), 142.4 (m, *J* = 251.3 Hz) ppm. ¹⁹F NMR (471 MHz, CDCl₃): δ = -157.8 (m_c), -156.6 (m_c), -150.0 (m_c), -149.4 (m_c) ppm.

2.6 Trimethyl(5,6,7,8-tetrafluoronaphthalen-2-yl)stannane (14)


Metalation A: *n*BuLi (1.21M in hexanes, 3.35 mL, 4.05 mmol, 1.00 equiv) was added dropwise to a solution of bromide **6** (1.13 g, 4.05 mmol, 1.00 equiv) in *n*-pentane/diethyl ether (1:1, 40 mL) at -80 °C. After stirring at this temperature for 3 h, a solution of Me₃SnCl (1.06 g, 5.32 mmol, 1.31 equiv) in diethyl ether (5 mL) was added, and the reaction mixture was allowed to warm to room temperature overnight. The solvents were evaporated under reduced pressure, and the resulting residue was purified by flash column chromatography on silica gel using cyclohexane as eluent to afford the title compound **14** (1.25 g, 85%) as a white solid.

Metalation B: To a solution of bromide **6** (1.98 g, 7.10 mmol, 1.00 equiv) in THF was added *i*PrMgCl·LiCl (0.380M in THF, 20.5 mL, 7.79 mmol, 1.10 equiv) at 0 °C. The mixture was stirred at room temperature for 3 h and cooled again to 0 °C before Me₃SnCl (1.84 g, 9.23 mmol, 1.30 equiv) in THF (5 mL) was added. The reaction mixture was allowed to warm to room tempera-

ture and stirred overnight. After addition of water (20 mL), the phases were separated, the aqueous phase was extracted with diethyl ether (2 × 20 mL), and the combined organic phases were dried over Na_2SO_4 . After evaporation of the solvents under reduced pressure, the resulting residue was purified by flash column chromatography on silica gel using cyclohexane as eluent to afford the title compound **14** (1.97 g, 76%) as a white solid.

m.p. = 80–82 °C (*n*-pentane). *R*_f = 0.59 (cyclohexane). **GLC** (SE-54): t_{*R*} = 16.5 min. **IR** (ATR): \tilde{v} = 2984 (w), 2914 (w), 2365 (w), 1930 (w), 1777 (w), 1663 (m), 1587 (s), 1503 (m), 1481 (m), 1434 (s), 1411 (m), 1353 (s), 1290 (w), 1246 (m), 1193 (m), 1118 (m), 1076 (m), 1029 (s), 957 (s), 889 (s), 766 (s), 712 (w), 668 (s) cm⁻¹. **HRMS** (EI) calculated for C₁₃H₁₂F₄Sn [M]⁺: 363.9892; found: 363.9897. ¹**H NMR** (500 MHz, CDCl₃): δ = 0.42 (s, 9H), 7.71 (d, *J* = 8.2 Hz, 1H), 7.93 (d, *J* = 8.2 Hz, 1H), 8.13 (s, 1H) ppm. ¹³**C NMR** (126 MHz, CDCl₃): δ = -9.3, 118.7 (m), 119.2 (m, *J* = 14.6 Hz), 119.6 (m, *J* = 14.6), 127.3 (m), 134.0, 137.7 (m, *J* = 253.5), 142 (m, *J* = 251.1), 143.0 ppm. ¹⁹**F NMR** (471 MHz, CDCl₃): δ = -159.6 (m_c), -159.5 (m_c), -151.6 (m_c), -151.4 (m_c) ppm. ¹¹⁹**Sn NMR** (187 MHz, CDCl₃): -19.9 ppm.

2.7 Tris(5,6,7,8-tetrafluoronaphthalen-2-yl)borane (5)

A Schlenk tube was charged with stannane **14** (1.26 g, 3.47 mmol, 3.16 equiv) in *n*-hexane (5 mL). BCl₃ (1.00M in heptane, 1.10 mL, 1.10 mmol, 1.00 equiv.) was added, the tube was sealed, and the reaction mixture was heated to 100 °C for 14 h. Heating to 50 °C under full vacuum removed most of the solvent and volatile by-products. The resulting light yellow raw product was dissolved in 1,2-F₂C₆H₄. Precipitation at -35 °C and drying for several hours under full vacuum afforded the title compound **5** (457 mg, 68%) as a white solid.

Crystals of the water adduct suitable for X-ray diffraction were obtained by dissolving **5** in a mixture of THF and *n*-hexane and slow evaporation of the solvents at room temperature and ambient atmosphere.

HRMS (ESI) calculated for $C_{30}H_9BF_{12}$ [M]⁺: 608.0600; found: 608.0570. ¹H NMR (500 MHz, CD_2CI_2): δ = 7.87 (d, *J* = 8.5 Hz, 3H), 8.21 (d, *J* = 8.5 Hz, 3H), 8.37 (s, 3H) ppm. ¹³C DEPT (126 MHz, CD_2CI_2): 119.4, 132.0, 135.2 ppm. ¹⁹F/¹³C HMQC (659 MHz/176 MHz, CD_2CI_2): δ = -159.6/138.1, -156.5/138.9, -150.9/142.2, -149.7/142.9 ppm. ¹⁹F NMR (471 MHz, CD_2CI_2): δ = -159.3 (m_c), -156.4 (m_c), -150.9 (m_c), -149.6 (m_c) ppm. ¹¹B NMR (161 MHz, CD_2CI_2): δ = 71.0 ppm.

3 General Procedure for the Preparation of

Triethylphosphine Oxide Adducts of Boranes

In a glove box, the indicated borane (20–25 μ mol) in CD₂Cl₂ or C₆D₆ (0.5 mL), respectively was mixed with triethylphosphine oxide (1.0 equiv) in CD₂Cl₂ or C₆D₆ (0.5 mL), respectively. The sample was transferred to an NMR tube and directly subjected to NMR spectroscopic analysis.

3.1 Tris(5,6,7,8-tetrafluoronaphthalen-2-yl)borane Triethylphosphine Oxide Adduct (5-Et₃PO)

In C₆D₆: Prepared from borane **5** (15 mg, 25 μ mol, 1.0 equiv) and triethylphosphine oxide (3.3 mg, 25 μ mol, 1.0 equiv) according to the general procedure.

¹**H NMR** (500 MHz, C₆D₆): δ = 0.47 (m_c, 9H), 0.86 (m_c, 6H), 7.73 (d, *J* = 8.5 Hz, 3H), 7.88 (d, *J* = 8.5 Hz, 3H), 8.37 (s, 3H) ppm. ¹⁹**F NMR** (471 MHz, C₆D₆): δ = -161.8, -161.1, -153.4, -151.8 ppm. ¹¹**B NMR** (161 MHz, C₆D₆): δ = 6.3 ppm. ³¹**P NMR** (203 MHz, C₆D₆): δ = 74.7 ppm.

In CD₂Cl₂: Prepared from borane **5** (13 mg, 21 μ mol, 1.0 equiv) and triethylphosphine oxide (2.9 mg, 22 μ mol, 1.0 equiv) according to the general procedure.

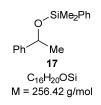
¹**H NMR** (500 MHz, CD₂Cl₂): δ = 1.14 (m_c, 9H), 1.73 (m_c, 6H), 7.72 (d, *J* = 8.5 Hz, 3H), 7.90 (d, *J* = 8.6 Hz, 3H), 8.16 (s, 3H) ppm. ¹⁹**F NMR** (471 MHz, CD₂Cl₂): δ = -163.1, -162.4, -153.1, -152.8 ppm. ¹¹**B NMR** (161 MHz, CD₂Cl₂): δ = 5.9 ppm. ³¹**P NMR** (203 MHz, CD₂Cl₂): δ = 76.6 ppm.

3.2 Tris(pentafluorophenyl)borane Triethylphosphine Oxide Adduct (1.Et₃PO)

In C₆D₆: Prepared from borane **1** (12 mg, 23 μ mol, 1.0 equiv) and triethylphosphine oxide (3.1 mg, 23 μ mol, 1.0 equiv) according to the general procedure.

¹**H NMR** (500 MHz, C₆D₆): δ = 0.27 (dt, *J* = 18.6 Hz, *J* = 7.7 Hz, 9H), 0.94 (dq, *J* = 12.3 Hz, *J* = 7.7 Hz, 6H). ¹⁹**F NMR** (471 MHz, C₆D₆): δ = -164.0, -157.4, -133.9 ppm. ¹¹**B NMR** (161 MHz, C₆D₆): δ = -2.1 ppm. ³¹**P NMR** (203 MHz, C₆D₆): δ = 75.3 ppm.

In CD₂Cl₂: Prepared from borane **1** (10 mg, 20 μ mol, 1.0 equiv) and triethylphosphine oxide (2.7 mg, 20 μ mol, 1.0 equiv) according to the general procedure.


¹**H NMR** (500 MHz, CD₂Cl₂): δ = 1.07 (dt, *J* = 18.6 Hz, *J* = 7.7 Hz, 9H), 1.92 (dq, *J* = 12.2 Hz, *J* = 7.7 Hz, 6H. ¹⁹**F NMR** (471 MHz, CD₂Cl₂): δ = -165.0, -159.1, -134.4 ppm. ¹¹**B NMR** (161 MHz, CD₂Cl₂): δ = -2.4 ppm. ³¹**P NMR** (203 MHz, CD₂Cl₂): δ = 76.9 ppm.

3.3 Tris(5,6,7,8-tetrafluoronaphthalen-2-yl)borane Triphenylphosphine Oxide Adduct (5.Ph₃PO)

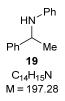
Prepared from equimolar amounts of borane **5** and triphenylphosphine oxide in a mixture of C_6D_6 and 1,2- $F_2C_6H_4$ in a glove box. Crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvents at room temperature in the glove box.

4 Experimental Details for Reactions Catalyzed by Tris(5,6,7,8-tetrafluoronaphthalen-2-yl)borane (5)

4.1 Dimethyl(phenyl)(1-phenylethoxy)silane (17)

from hydrosilylation

In a glove box, a 2-mL vial was charged with acetophenone (**16**, 77.9 mg, 0.648 mmol, 0.97 equiv), dimethylphenylsilane (**15**, 90.7 mg, 0.666 mmol, 1.0 equiv), and borane **5** (1.9 mg, 3.1 μ mol, 0.48 mol % based on **16**) in toluene (0.5 mL). The reaction mixture was stirred at room temperature for 2 h and then subjected directly to flash column chromatography on silica gel using cyclohexane/ethyl acetate (30:1) as eluent, yielding the title compound **17** (150 mg, 90%) as a colorless oil.

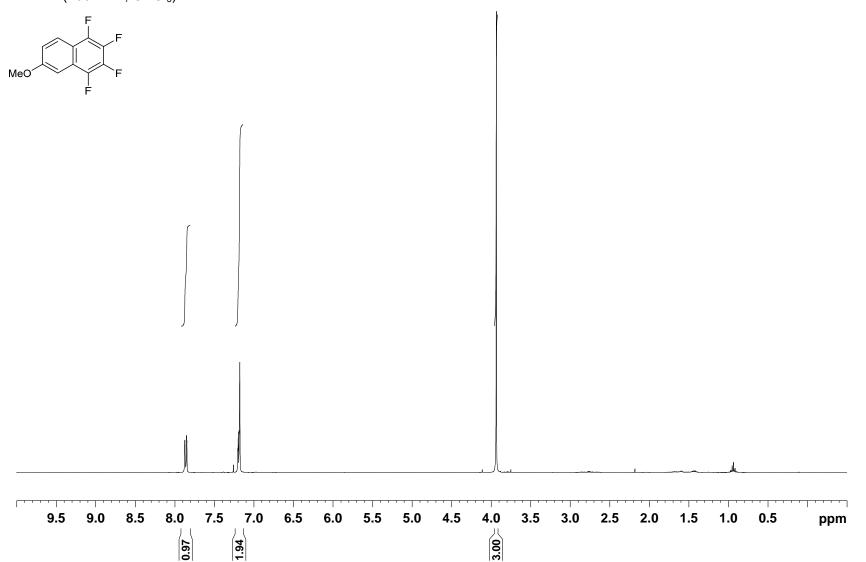

from dehydrogenative Si-O coupling

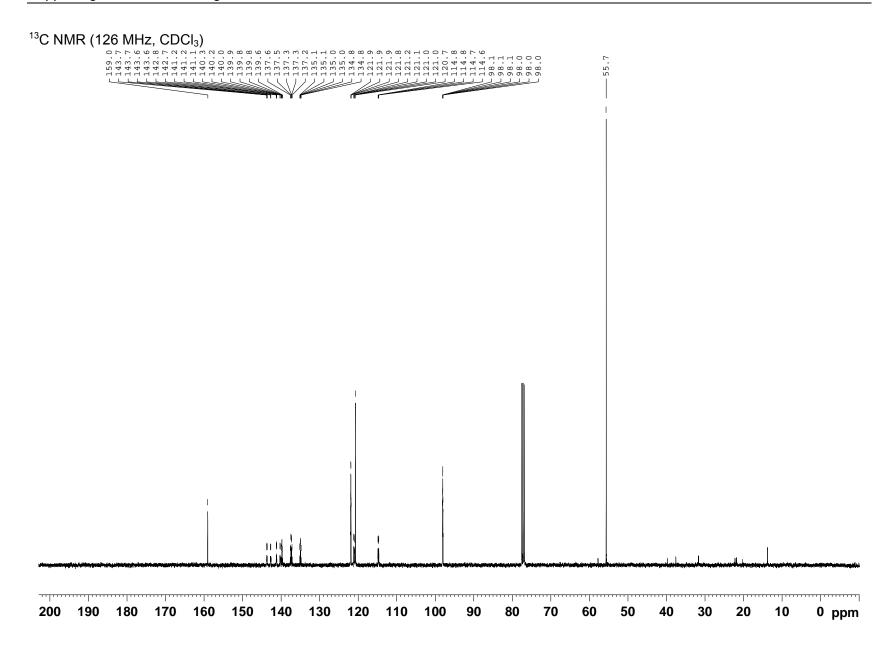
In a glove box, a 2-mL vial was charged with 1-phenylethanol (**20**, 77.9 mg, 0.504 mmol, 1.0 equiv), dimethylphenylsilane (**15**, 67.0 mg, 0.492 mmol, 1.0 equiv), and borane **5** (1.4 mg, 2.3 μ mol, 0.47 mol %) in toluene (0.5 mL). The reaction mixture was stirred at room temperature for 2 h and then subjected directly to flash column chromatography on silica gel using cyclo-

hexane/ethyl acetate (30:1) as eluent, yielding the title compound **17** (101 mg, 80%) as a colorless oil.

*R*_f = 0.68 (cyclohexane/ethyl acetate = 20:1). **GLC** (SE-54): t_R = 16.8 min. **IR** (ATR): \tilde{v} = 2969 (w), 1491 (w), 1447 (w), 1367 (w), 1251 (m), 1085 (m), 1029 (m), 957 (m), 823 (s), 784 (s), 738 (m), 696 (s). **HRMS** (EI) calculated for C₁₆H₂₀OSi [M]⁺: 256.1278; found: 256.1269. ¹H **NMR** (500 MHz, CDCl₃): δ = 0.33 (s, 3H), 0.37 (s, 3H), 1.44–1.48 (m, 3H), 4.89 (m_c, 1H), 7.21–7.44 (m, 8H), 7.57–7.61 (m, 2H). ¹³C **NMR** (126 MHz, CDCl₃): δ = -1.2, -0.7, 27.0, 71.2, 125.5, 127.0, 127.9, 128.3, 129.6, 133.7, 138.3, 146.4 ppm. ²⁹Si **NMR** (99 MHz, CDCl₃): δ = 6.6 ppm. The analytical and spectroscopic data are in accordance with those reported.^[S5]

4.2 *N*-(1-Phenylethyl)aniline (19)

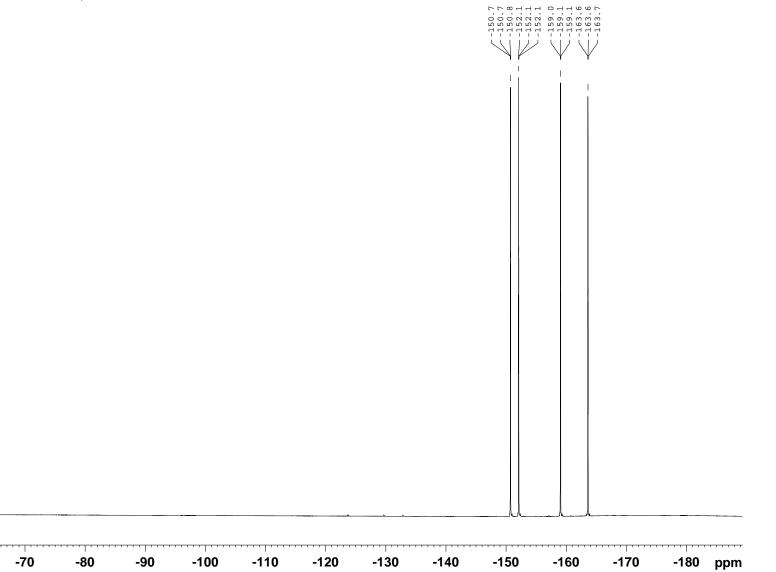

In a glove box, a 2-mL vial was charged with (*E*)-*N*,1-diphenylethan-1-imine (**18**, 39.7 mg, 0.203 mmol, 0.92 equiv), dimethylphenylsilane (**15**, 30.0 mg, 0.220 mmol, 1.0 equiv), and borane **5** (4.6 mg, 7.6 μ mol, 3.7 mol % based on **18**) in toluene (0.5 mL). The reaction mixture was stirred at room temperature for 48 h and then subjected directly to flash column chromatography on silica gel using cyclohexane/ethyl acetate (50:1) as eluent, yielding the title compound **19** (34.4 mg, 86%) as a colorless oil.


*R*_f = 0.41 (cyclohexane/ethyl acetate = 20:1). **GLC** (SE-54): t_R = 17.2 min. **IR** (ATR): $\tilde{\nu}$ = 3406 (w), 3020 (w), 2964 (w), 2865 (w), 1598 (s), 1501 (s), 1447 (m), 1314 (m), 1255 (m), 1204 (w), 1138 (w), 867 (w), 754 (s), 690 (s) cm⁻¹. **HRMS** (ESI) calculated for C₁₄H₁₆N [M+H]⁺: 198.1277; found: 198.1276. ¹**H NMR** (500 MHz, CDCl₃): δ = 1.53 (d, *J* = 6.8 Hz, 3H), 4.15 (br s, 1H), 4.49 (q, *J* = 6.8 Hz, 1H), 6.53 (m_c, 2H), 6.65 (tt, *J* = 7.3 Hz, *J* = 1.0 Hz, 1H), 7.10 (m_c, 2H), 7.23 (tt, *J* = 7.3 Hz, *J* = 1.4 Hz, 1H), 7.30–7.35 (m, 2H), 7.35–7.40 (m, 2H). ¹³**C NMR** (126 MHz, CDCl₃): δ = 25.1, 53.7, 113.6, 117.5, 126.0, 127.0, 128.8, 129.2, 145.3, 147.3 ppm. The analytical and spectroscopic data are in accordance with those reported.^[S6]

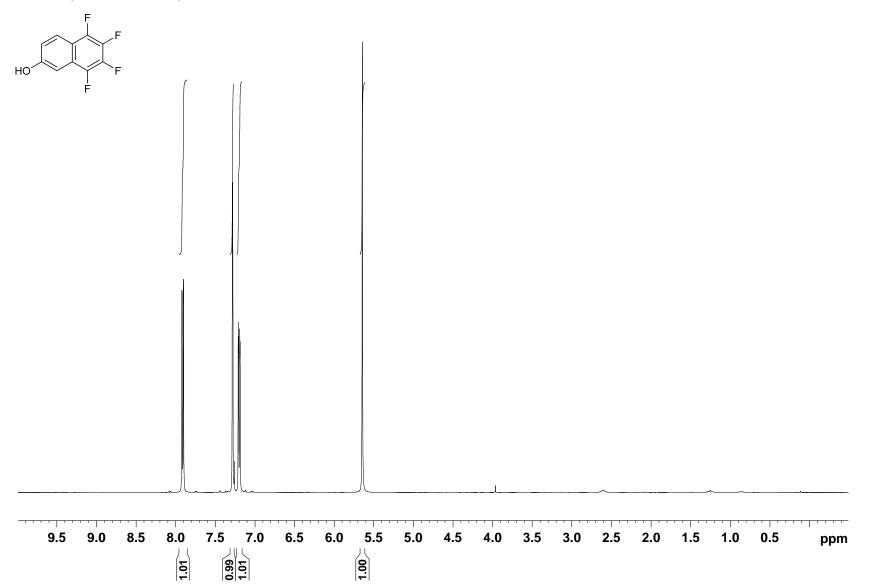
5 NMR Spectra

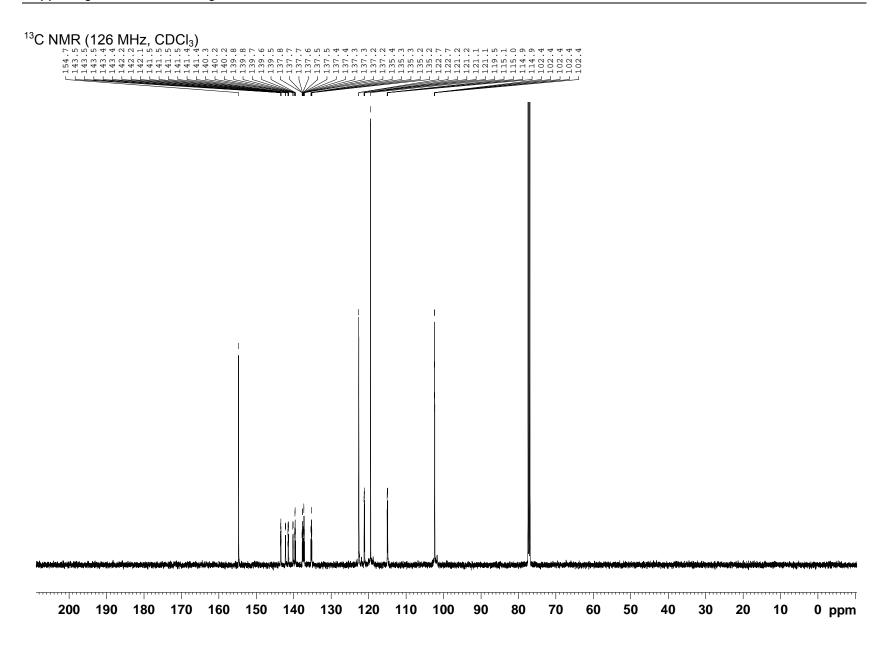
1,2,3,4-Tetrafluoro-6-methoxynaphthalene

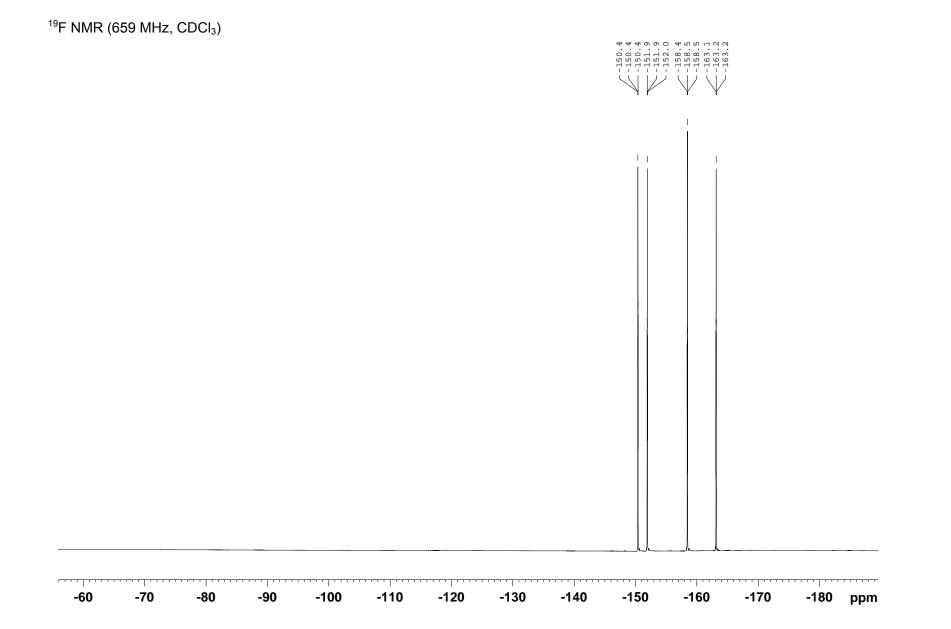
¹H NMR (400 MHz, CDCl₃)



¹⁹F NMR (659 MHz, CDCl₃)

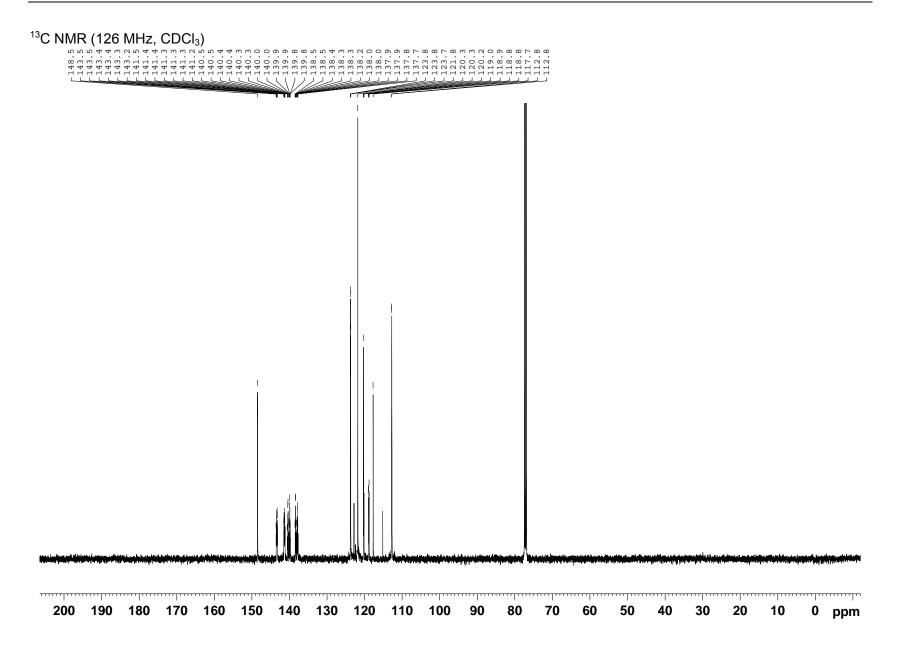


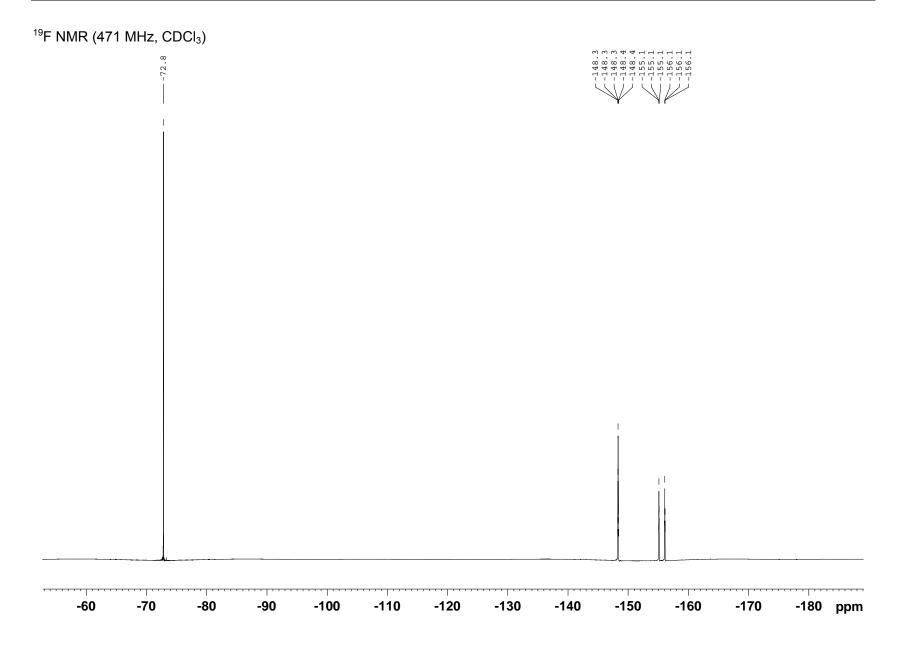

-60

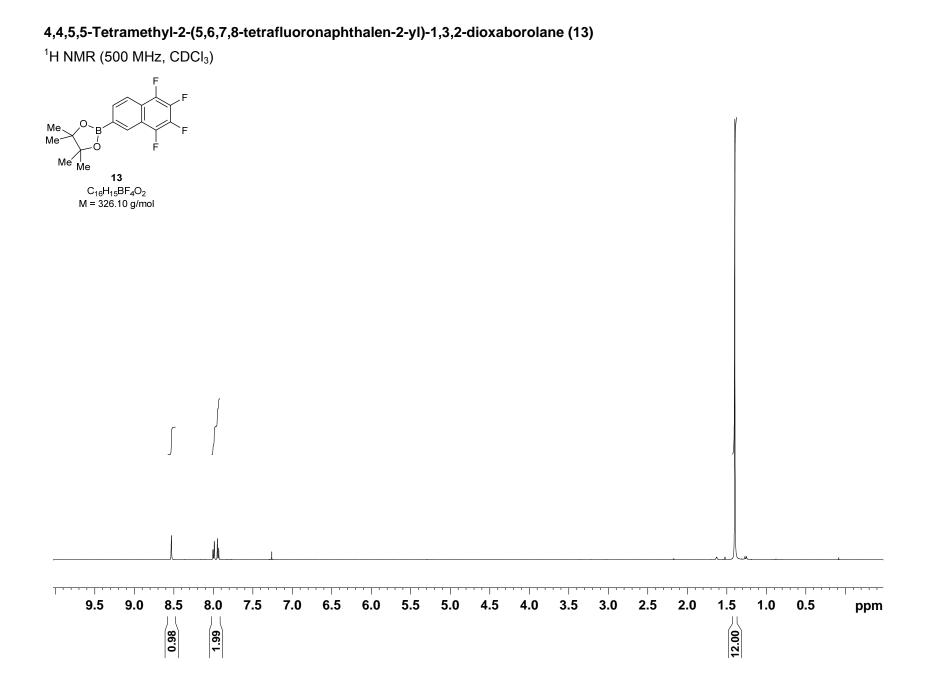


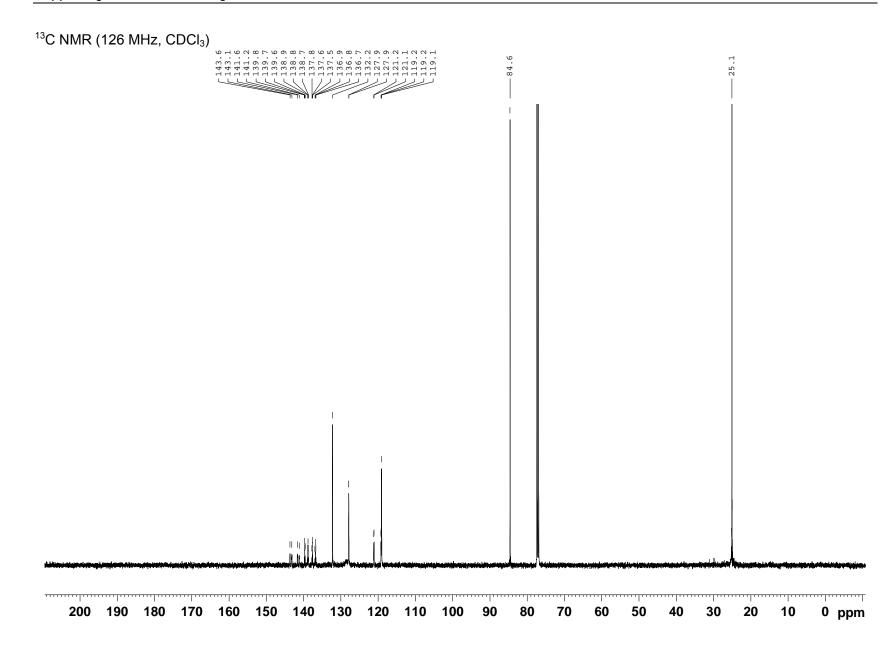
5,6,7,8-Tetrafluoronaphthalen-2-ol (11)

¹H NMR (500 MHz, CDCl₃)

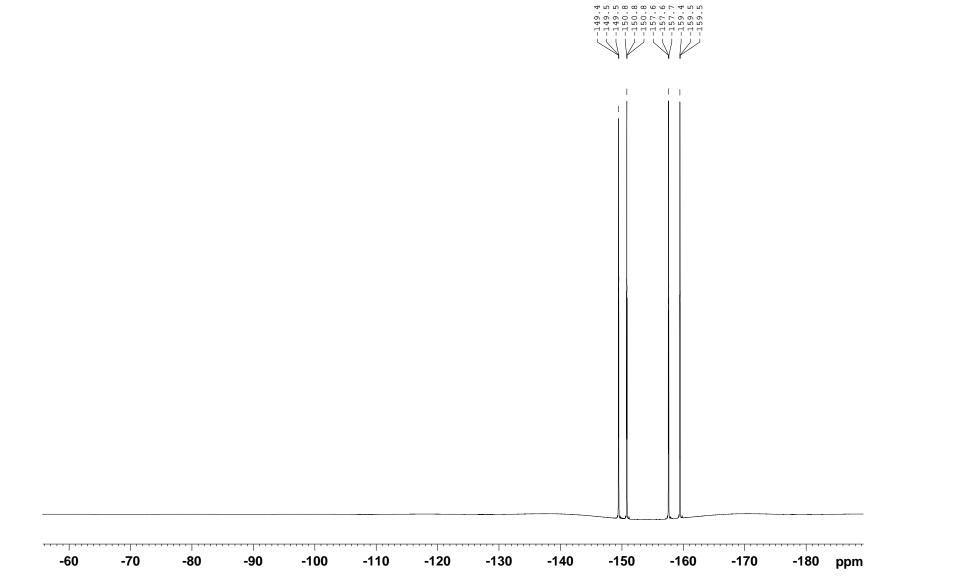


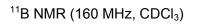


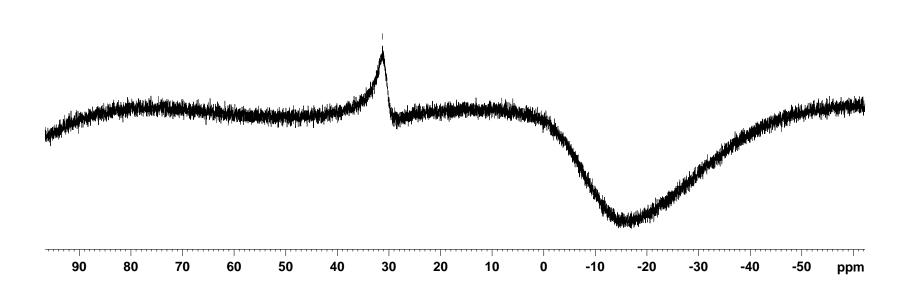

5,6,7,8-Tetrafluoronaphthalen-2-yl Trifluoromethanesulfonate (12)


¹H NMR (500 MHz, CDCl₃)

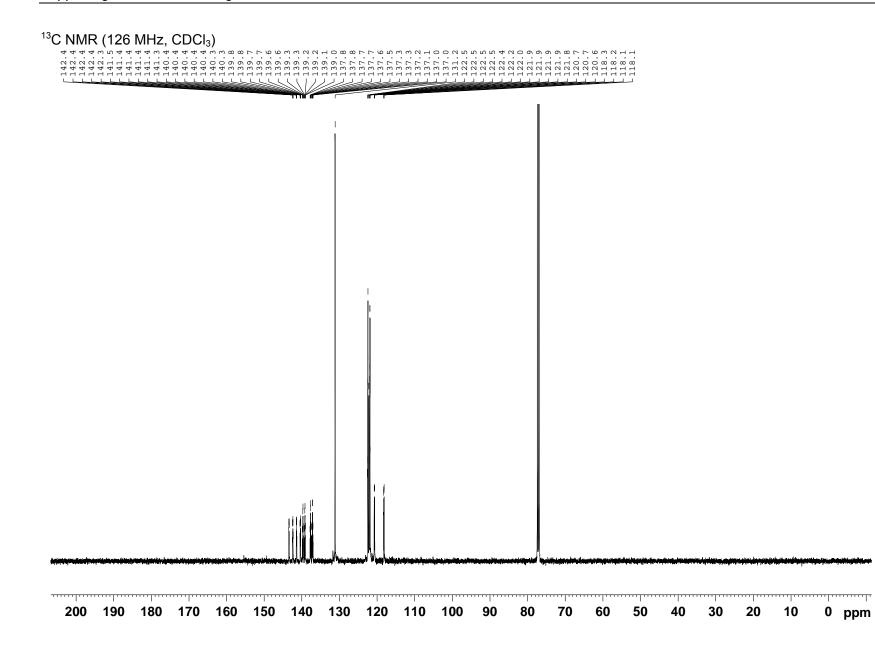
TfO 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm 1.02 1.00

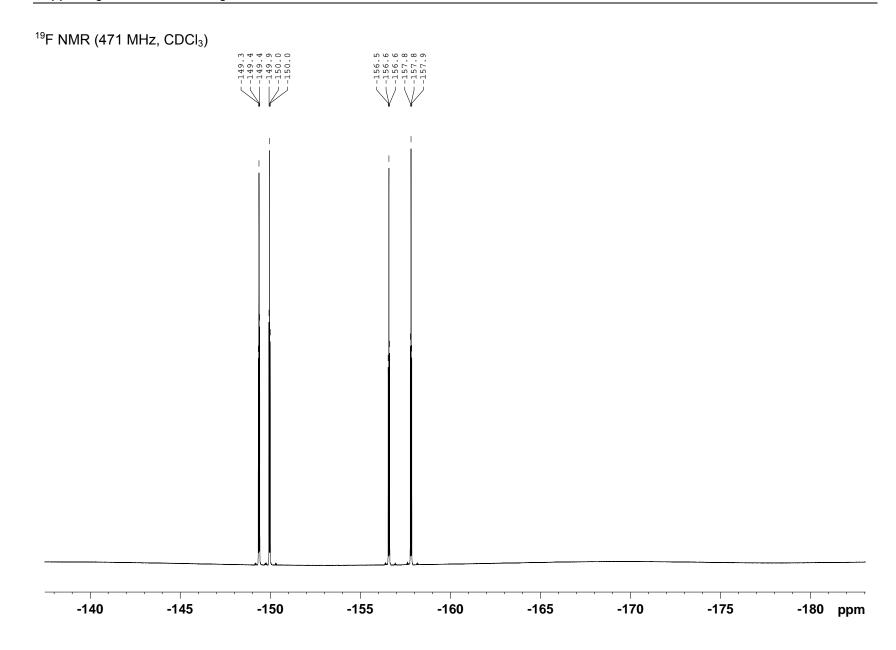






¹⁹F NMR (471 MHz, CDCl₃)





6-Bromo-1,2,3,4-tetrafluoronaphthalene (6)

¹H NMR (500 MHz, CDCl₃)

F B 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm 1.01

Trimethyl(5,6,7,8-tetrafluoronaphthalen-2-yl)stannane (14)

¹H NMR (500 MHz, CDCl₃)

Me₃Sn²

9.5 9.0

8.5 8.0 7.5

0.99 0.99 0.99

7.0

6.5

6.0

5.5

5.0

4.5

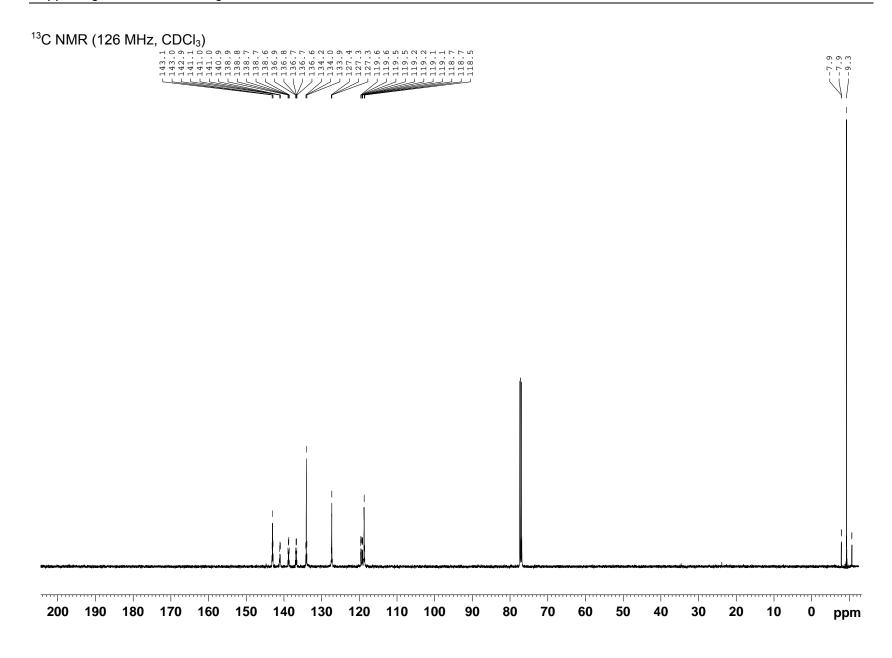
4.0

3.5

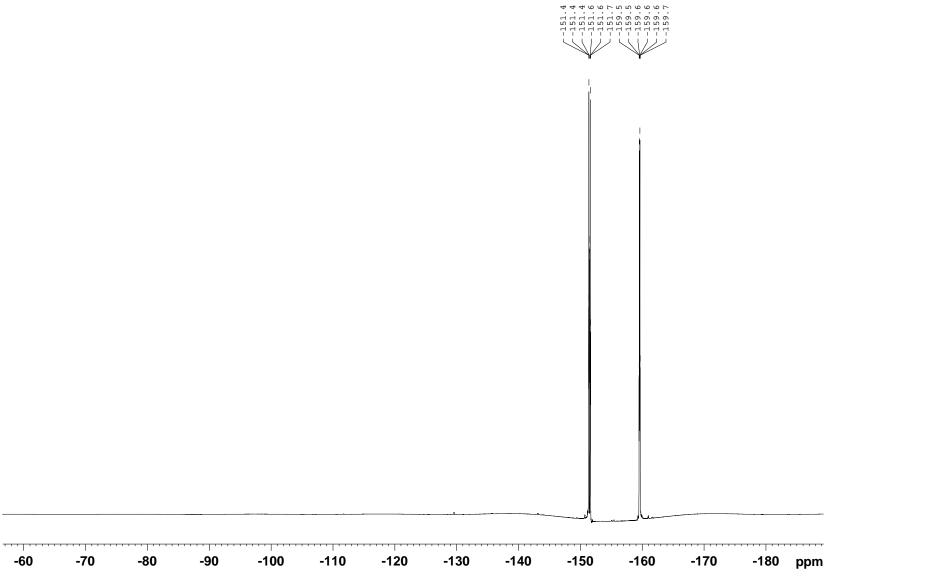
3.0

2.5

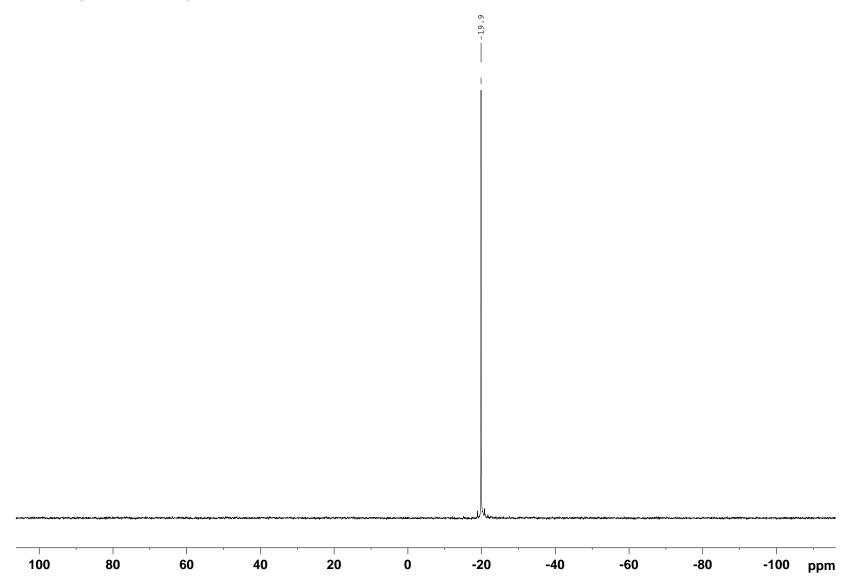
2.0


1.5

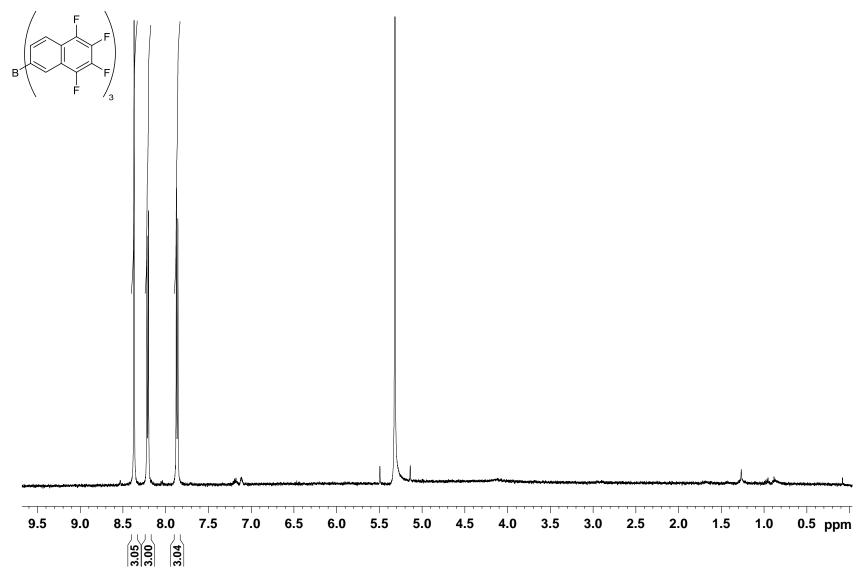
1.0


0.5

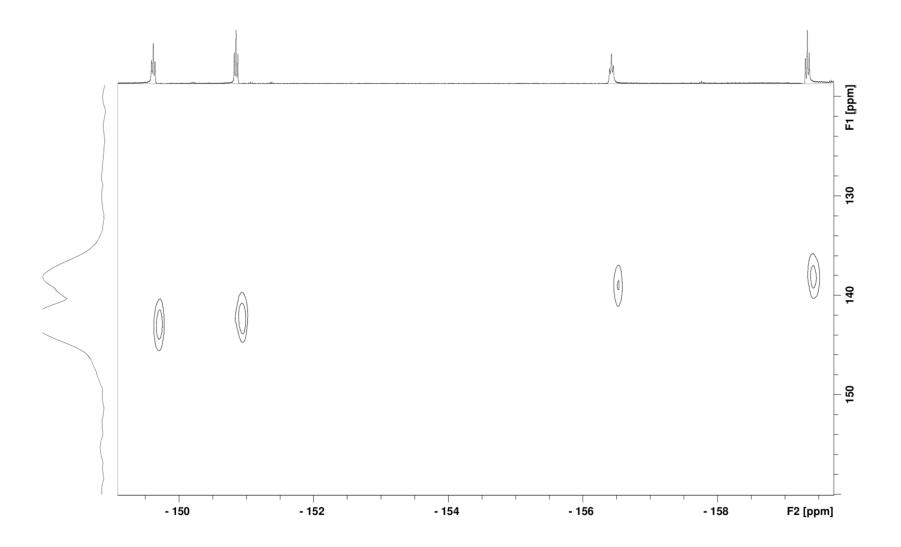
9.00

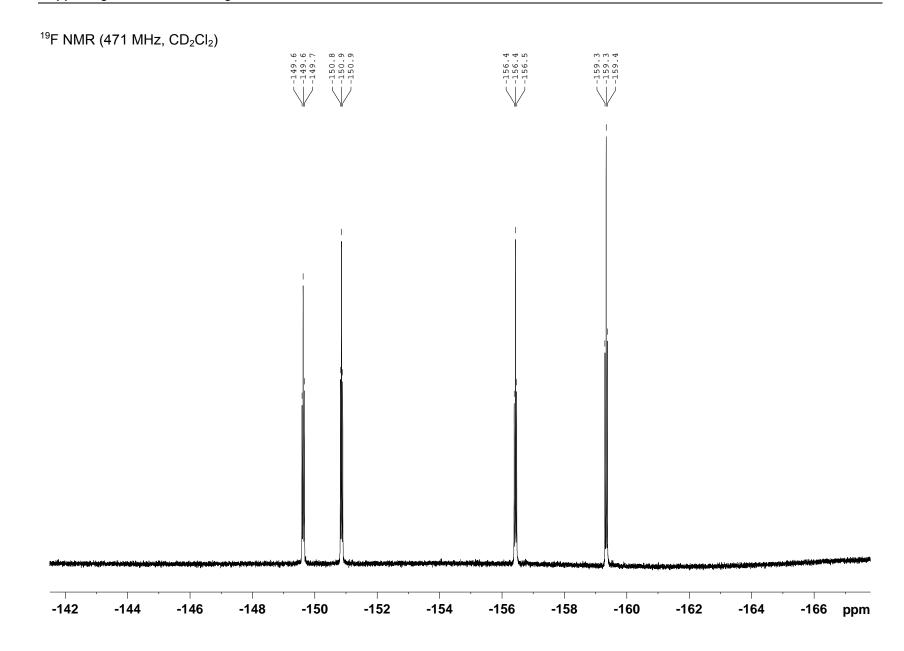

ppm

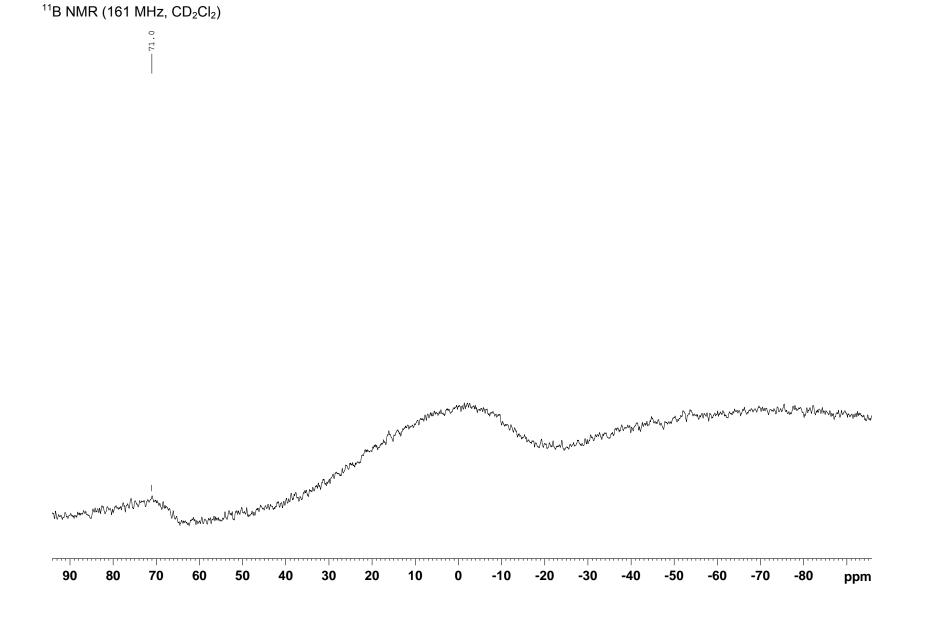
¹⁹F NMR (471 MHz, CDCl₃)



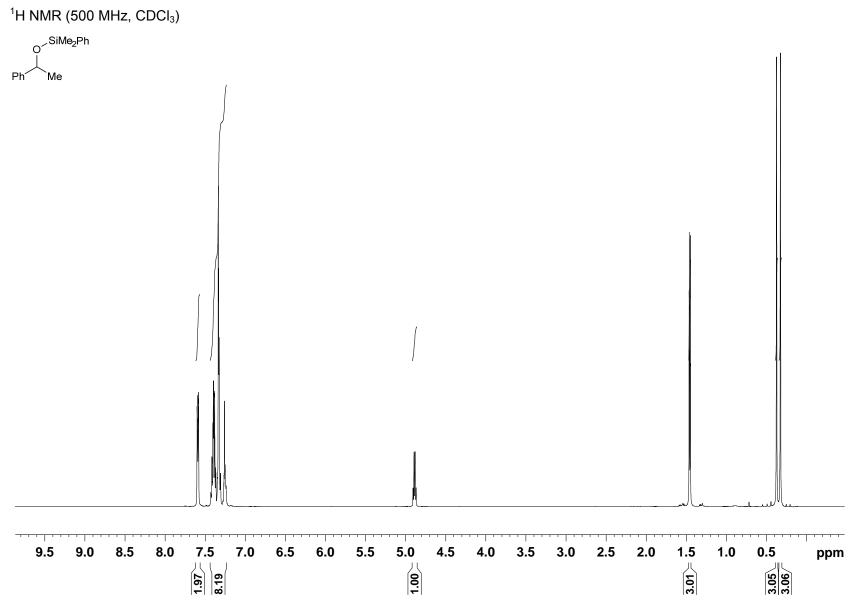
 ^{119}Sn NMR (187 MHz, CDCl_3)

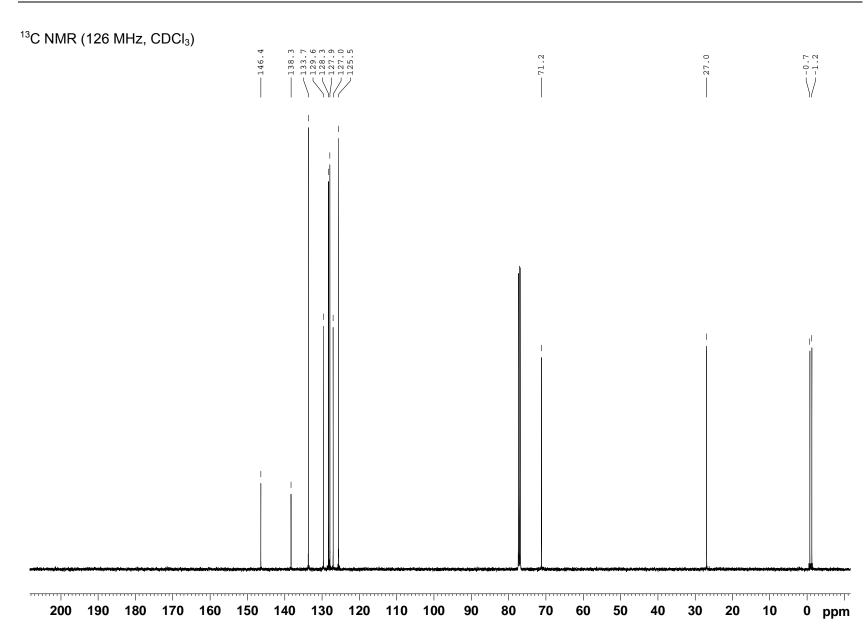

Tris(5,6,7,8-tetrafluoronaphthalen-2-yl)borane (5)

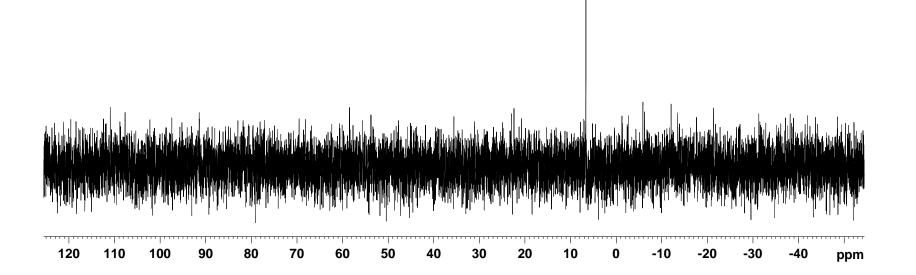

¹H NMR (500 MHz, CD₂Cl₂)



¹³ C DEPT (126 MHz, CD ₂ Cl ₂)		1 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1
And the set of provident was publicled a provide a little set of the		
al biological al al airteal billeling du biorairteacht biorairte		datu hukud ^u nan gasala parana na _{ma} lada kasa bara kasaraki kasara dalarin dalara bara parana na harang ara s
200 190 180 170 160 150 14	0 130	120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

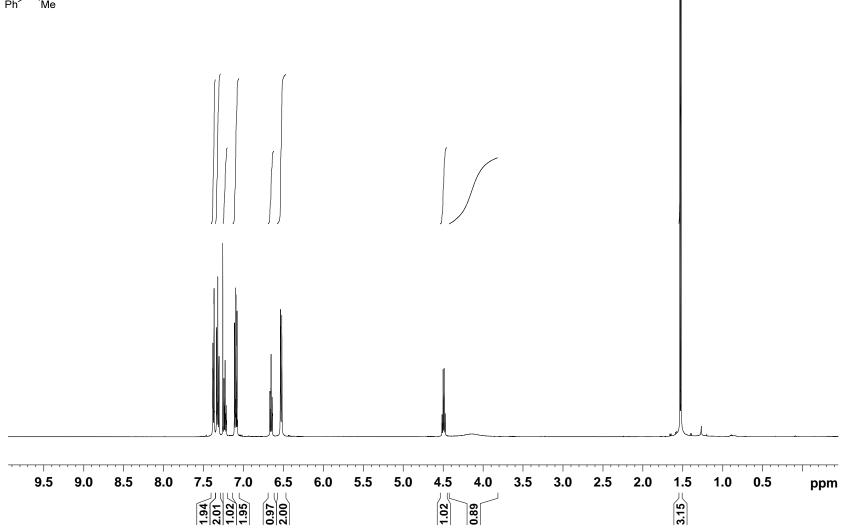

¹⁹F/¹³C HMQC (659 MHz/176 MHz, CD₂Cl₂)

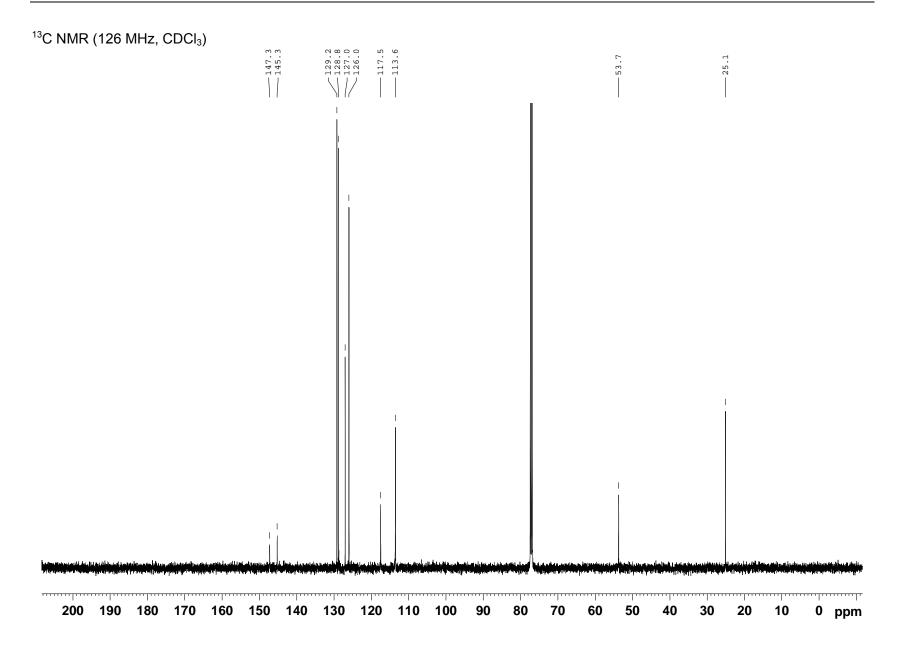




Dimethyl(phenyl)(1-phenylethoxy)silane (17)

²⁹Si NMR (99 MHz, CDCl₃)

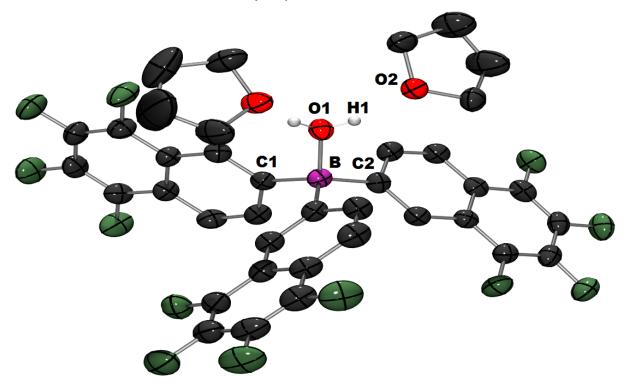



.6.6

N-(1-Phenylethyl)aniline (19)

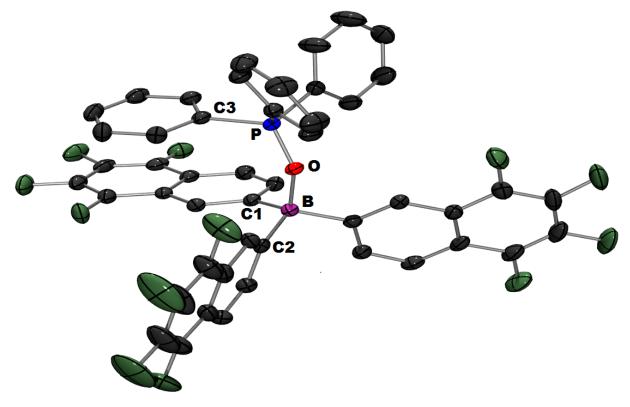
¹H NMR (500 MHz, CDCl₃)

HN^{Ph}



6 Molecular Structures and X-Ray Data

Data for the single-crystal structure determination were collected with an Agilent SuperNova diffractometer equipped with a CCD area Atlas detector and a mirror monochromator by utilizing Cu- K_{α} radiation (λ = 1.5418 Å). Software packages used: CrysAlis PRO for data collection, cell refinement, and data reduction,^[S7] SHELXS-97 for structure solution,^[S8] SHELXL-97 for structure refinement,^[S9] Ortep-3^[S10] and POV-Ray^[S11] for graphics.


CCDC-985744 (for **5**·OH₂(THF)₂) and CCDC-985745 (for **5**·Ph₃PO) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (internat.) +44(1223)336-033, E-mail: deposit@ccdc.cam.ac.uk].

6.1 Molecular Structure of 5-OH₂(THF)₂

X-ray crystal structure analysis: formula $C_{38}H_{27}BF_{12}O_3$; M = 770.41, colourless block, 0.12 x 0.18 x 0.25 mm, a = 12.5486(5) Å, b = 13.7189(6) Å, c = 20.0521(8) Å, $\alpha = 97.612(3)^{\circ}$, $\beta = 96.728(3)^{\circ}$, $\gamma = 92.256(3)^{\circ}$, V = 3392.8(2) Å³, $\rho_{calc} = 1.508$ g cm⁻³, $\mu = 1.222$ mm⁻¹, semiempirical absorption correction from equivalents (0.7499 $\leq T \leq 0.8672$), Z = 4, triclinic, space group P-1, $\lambda = 1.54184$ Å, T = 150(2) K, 23231 reflections collected, 12217 independent ($R_{int} = 0.0449$) and 12217 observed reflections [$I \geq 2 \sigma(I)$], 985 refined parameters, R = 0.0814, wR2 = 0.1891, GOF = 1.098, max. (min.) residual electron density 0.847 (-0.524) e Å⁻³.

6.2 Molecular Structure of 5-Ph₃PO

X-ray crystal structure analysis: formula $C_{63}H_{39}BF_{12}OP$; M = 770.41, colourless rod, 0.08 x 0.12 x 0.30 mm, a = 9.9578(4) Å, b = 12.8785(3) Å, c = 20.3876(7) Å, $\alpha = 89.118(2)^{\circ}$, $\beta = 89.773(3)^{\circ}$, $\gamma = 83.346(3)^{\circ}$, V = 2596.60(15) Å³, $\rho_{calc} = 1.384$ g cm⁻³, $\mu = 1.224$ mm⁻¹, semi-empirical absorption correction from equivalents (0.7103 $\leq T \leq 0.9084$), Z = 2, triclinic, space group P-1, $\lambda = 1.54184$ Å, T = 150(2) K, 19257 reflections collected, 9361 independent ($R_{int} = 0.0300$) and 9361 observed reflections [$I \geq 2 \sigma(I)$], 813 refined parameters, R = 0.0468, wR2 = 0.1364, GOF = 1.036, max. (min.) residual electron density 0.590 (-0.350) e Å⁻³.

7 References

- [S1] Imamoto, T.; Iwadate, N.; Yoshida, K. Org. Lett. 2006, 8, 2289–2292.
- [S2] Krasovskiy, A.; Knochel, P. Angew. Chem., Int. Ed. 2004, 43, 3333–3336.
- [S3] Wang, C.; Erker, G.; Kehr, G.; Wedeking, K.; Fröhlich, R. Organometallics 2005, 24, 4760–4773.
- [S4] Yudin, A. K.; Martyn, L. J. P.; Pandiaraju, S.; Zheng, J.; Lough, A. Org. Lett. 2000, 2, 41–
 44.
- [S5] Fujita, M.; Hiyama, T. J. Org. Chem. **1988**, 53, 5405–5415.
- [S6] Mewald, M.; Oestreich, M. Chem.-Eur. J. 2012, 18, 14079-14084.
- [S7] Agilent CrysAlis PRO, 2012, Agilent Technologies, Yarnton, UK.
- [S8] Sheldrick, G. M. Acta Crystallogr., Sect. A. **1990**, *46*, 467–473.
- [S9] Sheldrick, G. M. Acta Crystallogr., Sect. A. 2008, 64, 112–122.
- [S10] Farrugia, L. J. J. Appl. Crystallogr. 1997, 30, 565.
- [S11] Persistence of Vision Pty. Ltd. http://povray.org.