Supporting Information

Tunable Band Structures of Heterostructured Bilayers with Transition Metal Dichalcogenide and MXene Monolayer

Zhinan Ma, Zhenpeng Hu, Xudong Zhao, Qing Tang, Dihua Wu, Zhen Zhou,* and Lixin Zhang

Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Computational Centre for Molecular Science, Institute of New Energy Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Physics, Nankai University, Tianjin 300071, P. R. China

*Corresponding Author, Email: zhouzhen@nankai.edu.cn (ZZ).

Effect of spin-orbit coupling (SOC)

As shown in Figure S1, due to the SOC effect, the valence band maximum (VBM) or conduction band minimum (CBM) could split into two energy levels with an energy difference of Δ SOC. Therefore, the VBM/CBM value computed through the method including SOC is higher/lower than VBM/CBM through the method ignoring SOC by Δ SOC/2. To investigate the effect of SOC on TMD-Sc₂CF₂ bilayers, we computed the band structures including SOC effect for MoS₂, WS₂, MoSe₂, WSe₂ and Sc₂CF₂ monolayers with the hybrid functional of Heyd-Scuseria-Ernzerhof (HSE) within the Vienna ab initio package (VASP).^{1,2} The ion-electron interaction is described with the projector augmented wave (PAW) method.³ A 400 eV cutoff was used for the plane-wave basis set. $6 \times 6 \times 1$ k-points were used for sampling the Brillouin zone. All these computations were performed in supercells with a vacuum space lager than 10 Å above and below the layered materials. The Δ SOCs at VBM and CBM for all the monolayers are displayed in Table S1. In Sc_2CF_2 the SOC effect is nearly zero. Though the CBMs of TMD-Sc₂CF₂ bilayers are located at TMD monolayers, the SOC affects the CBMs scarcely because the values of $\Delta SOC_{VBM}/2$ are so small in the range of 0.005~0.013 eV. The VBMs for TMD-Sc₂CF₂ bilayers are located at Sc_2CF_2 monolayer. In Figure 6, it could be seen that the VBM at Sc_2CF_2 is higher than the VBM at TMDs by at least 0.45 eV (WSe₂-Sc₂CF₂ bilayer) which is larger than $\Delta SOC_{VBM}/2$ of VBM at TMDs (0.084~0.258 eV). Therefore, even if the SOC effect is included, the VBM at TMD monolayers would not exceed the VBM at Sc_2CF_2 and it means that the SOC effect does not impact the VBM of TMD- Sc_2CF_2

bilayers. We could safely neglect the SOC effect in our CASTEP computations and reach the same reliable conclusions.

TMD	MoS_2	WS_2	MoSe ₂	WSe ₂	Sc_2CF_2
ΔSOC_{CBM}	0.009	0.019	0.029	0.026	0
$\Delta SOC_{CBM}/2$	0.005	0.008	0.015	0.013	0
ΔSOC_{VBM}	0.167	0.473	0.212	0.516	0
$\Delta SOC_{VBM}/2$	0.084	0.237	0.106	0.258	0

Table S1. \triangle SOC (eV) for TMD and Sc₂CF₂ monolayers.

Figure S1. The diagrammatic sketch of the effect of SOC on band gap.

Optical properties

Since the VBM and CBM for TMD- Sc_2CF_2 bilayers are located at Sc_2CF_2 and TMD monolayers respectively, it is necessary to consider the excitonic effect on optical properties.⁴ Therefore, we calculated the imaginary part of the dielectric

constant (ε_2) for MoS₂-Sc₂CF₂ bilayer (black line), MoS₂ monolayer (red line) and Sc₂CF₂ monolayer (blue line) as an example. The optical properties computations were performed with plane-wave pseudopotentials implemented in CASTEP code.⁵ The cutoff energy was set as 400 eV, and self-consistent field (SCF) computations were adopted with a convergence of 10⁻⁶ eV/atom. 7 × 7 × 1 k-points were used for sampling the Brillouin zone. The ε_2 calculated by CASTEP was defined in CASTEP tutorials (labeled as Eq. CASTEP 55) as following:

$$\varepsilon_{2} = \frac{2e^{2}\pi}{\Omega\varepsilon_{0}} \sum_{\mathbf{k},\mathbf{v},c} \left| \left\langle \Psi_{\mathbf{k}}^{c} \left| \mathbf{u} \cdot \mathbf{r} \right| \Psi_{\mathbf{k}}^{v} \right\rangle \right|^{2} \delta\left(E_{\mathbf{k}}^{c} - E_{\mathbf{k}}^{v} - E \right)$$

where u is the vector defining the polarization of the incident electric field. ε_2 for electric vector perpendicular and parallel to c axis of MoS₂-Sc₂CF₂ bilayer, MoS₂ monolayer, and Sc₂CF₂ monolayer are in Figure S2. The ε_2 of MoS₂ in Figure S2 is similar to the results reported in a previous paper,⁶ ensuring the reasonability of our results. It could be seen that the $\varepsilon_2^{MoS2-Sc2CF2}$ are not consistent to the 0.13 eV band gap and it means that interlayer transition is hard to happen.⁴ The results seem more like the sum of two monolayers. Since the ε_2^{MoS2} is much larger than ε_2^{Sc2CF2} in the most region, the $\varepsilon_2^{MoS2-Sc2CF2}$ of the bilayer seem more like ε_2^{MoS2} . However, in the regions around 6 eV in Figure S2(a) and lower than 5 eV in Figure S2(b), the $\varepsilon_2^{MoS2-Sc2CF2}$ exhibits the sum of two layers. As mentioned above the excitions are confined in each monolayer.

Figure S2. The imaginary part of the dielectric constant (ε₂) for electric vector (a) perpendicular and (b) parallel to c axis for MoS₂-Sc₂CF₂ bilayer (black line), MoS₂ monolayer (red line), and Sc₂CF₂ monolayer (blue line).

Reference

- Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid Functionals Based on a Screened Coulomb Potential. J. Chem. Phys. 2003, 118, 8207-8215.
- (2) Kresse, G.; Furthmullerr, J. Efficient iterative schemes for *ab initio* total-energy calculations using a plane-wave basis set. *Phys. Rev. B* **1996**, *54*, 11169-11186.
- (3) Blöchl P. E. Projector augmented-wave method. *Phys. Rev. B* 1996, 50, 17953-17979.
- (4) Komsa, H.; Krasheninnikov, A. V. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles.
 Phys. Rev. B 2013, *88*, 085318.

- (5) Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark,
 S. J.; Payne, M. C. First-Principles Simulation: Ideas, Illustrations and the CASTEP Code. J. Phys.: Condens. Matter. 2002, 14, 2717-2744.
- (6) Kumar, A.; Ahluwalia, P. K. A first principle Comparative study of electronic and optical properties of 1*H*-MoS₂ and 2*H*-MoS₂. *Mater. Chem. Phys.* 2012, 135, 755-761.